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2. Solving Linear Equations

The prototypic finite dimensional problem we would like to solve is a system of
linear equations:

(3) Ax = y

where A : Rn → Rm is a linear transformation. In case m = n there is a simple
criterion for (3) to be solvable for any choice of y:

Theorem 2.1. : If A : Rn → Rn is linear then (0.1) has a solution for every
y ∈ Rn if and only if the only solution to

Ax = 0

is x = 0. More geometrically: A is surjective if and only if it is injective.

Note that this condition for solvability implies that the solution to (3) is unique.
The theorem is purely algebraic in character but we can also consider the depen-
dence of the solution, x on the data, y. To that end we need to introduce a topology
on Rn. For the purposes of studying linear equations the natural topology on Rn

is that defined by a norm. A norm is a function, || · || : Rn → Rn which satisfies
the conditions:

||x|| ≥ 0 ∀x ∈ Rn, ||x|| = 0 iffx = 0(4)

||x + y|| ≤ ||x|| + ||y|| (triangle inequality),(5)

∀x ∈ Rn, λ ∈ R ||λx|| = |λ| ||x||.(6)

For example if p ≥ 1 then

||x||p = (
n

∑

i=1

|xi|
p)

1

p

defines a norm. Note that

lim
p→∞

||x||p = max{|xi| : i = 1 . . . n} = ||x||∞.

This also a norm

Exercise 2.1. : Show that if 1 ≤ p, q ≤ ∞ then there are constants c, C such that

(7) c||x||q ≤ ||x||p ≤ C||x||q,

Briefly: || · ||q and || · ||p are equivalent norms.

A consequence of (7) is that all the norms, {|| · ||p} define the same topology on
Rn; in fact all norms on Rn are equivalent and therefore define the same topology.
Note in particular that the set {x : ||x|| ≤ 1} is compact. An especially useful norm
is

||x||22 =
n

∑

i=1

x2
1.

This is usually called the Euclidean norm. What distinguishes this norm is that it
is defined by an inner product. An inner product is a mapping

⟨·, ·⟩ : Rn × Rn → R
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such that

⟨x, y⟩ = ⟨y, x⟩,(8)

⟨x + y, z⟩ = ⟨x, z⟩ + ⟨y, z⟩,(9)

⟨ax, y⟩ = a⟨x, y⟩,(10)

⟨x, x⟩ ≥ 0 with equality only if x = 0.(11)

In the case at hand

⟨x, y⟩ =
n

∑

i=1

xiyi.

Evidently
||x||22 = ⟨x, x⟩.

A collection of vectors {e1 . . . en} is a basis for Rn iff every vector x has a unique
representation as

x =
n

∑

i=1

xiei.

We say that a basis is orthonormal if

⟨ei, ej⟩ =

{

1 for i = j,
0 for i ̸= j.

Exercise 2.2. Suppose we are given a basis, {f1 . . . fn} for Rn show that there is
an orthonormal basis, {e1 . . . en} such that for each 1 ≤ j ≤ n

{
j

∑

i=1

xifi : x1 ∈ R i = 1 . . . j} =

{
j

∑

i=1

xiei : xi ∈ R 2 = 1 . . . j}.

Give an algorithm to construct {ei} from {fi}.

Let {ei . . . en} be an orthonormal basis for Rn. For each x ∈ R we can express

x =
n

∑

i=1

xiei and thus

Ax =
n

∑

i=1

xiAei.

By the triangle inequality

||Ax|| ≤
n

∑

i=1

|x1| ||Aei||

So if M = max{||Ae1||, . . . ||Aen||} then

||Ax|| ≤ M ||x||1.

Since all norms on Rn are equivalent there is a constant C s.t. ||x||1 ≤ C||x|| and
therefore we’ve shown:
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Lemma 2.1. If A : Rn → Rn is a linear transformation and || · || is a norm on
Rn then there is a constant C such that

||Ax|| ≤ C||x|| ∀x ∈ Rn.

Corollary 2.1. : If A : Rn → Rn is a linear transformation then A : Rn → Rn

is continuous.

Proof. Since A is linear Ax − Ay = A(x − y), thus ||Ax − Ay|| = ||A(x − y)|| ≤
C||x − y||, for some constant C. !

Proposition 2.1. : If A : Rn → Rn is a linear transformation then A is surjective
iff there is a constant, C > 0 such that

(12) c||x|| ≤ ||Ax||.

Proof. By theorem 1.1 A is surjective iff A is injective. Thus ||Ax|| ≠ 0, ∀x ̸= 0.
Since S = {x : ||x|| = 1} is compact and A is continuous the function x → ||Ax||
assumes its minimum value at some point of x0 ∈ S1. As ||x0|| = 1 it is clear that
||Ax0|| = c > 0. For X ∈ S1 we have

c||x|| ≤ ||Ax||,

since ||λx|| = |λ| ||x|| and Aλx = λAx this shows that if A is surjective then (12)
holds. If (12) holds then evidently Ax = 0 iff x = 0 and so by Theorem 1.1 A is
surjective. !

Corollary 2.2. : If A : Rn → Rn is a surjective linear transformation then

(13) ||A−1x|| ≤
1

c
||x||

where c is the constant appearing in (13).

In summary we see that
max

{||x||=1}
||Ax||

gives a quantitative measure of the continuity of A whereas

min
{||x||=1}

||Ax||

gives a quantitative measure of the continuity of A−1.

Now we consider the equation (3) when n ̸= m. If for example m > n then it
seems quite unlikely that (3) could be solvable for arbitrary y ∈ Rm. In order to
obtain conditions on y for (3) to be solvable we need to consider the space of linear
functions on Rn. A map ℓ : Rn → R is linear if

(14) ℓ(x + y) = ℓ(x) + ℓ(y),

ℓ(ax) = aℓ(x).
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The set of such linear maps clearly is itself a linear space which we denote by
(Rn)′. For example, if y ∈ Rn then

ℓy(x) = ⟨x, y⟩

defines an element of (Rn)′. In fact it is quite easy to prove

Proposition 2.2. : The map y → ℓy is an isomorphism of the linear spaces Rn

and (Rn)′.

If A : Rn → Rm is a linear transformation then for each y ∈ Rm we can think
of the map

x → ⟨Ax, y⟩

as defining an element of (Rn)′. Hence by Proposition 1.2 there is a unique vector
zy ∈ Rn such that

⟨Ax, y⟩ = ⟨x, zy⟩.

Exercise 2.3. : Show that the map y → zy is a linear transformation.

We call this linear transformation the transpose, dual or adjoint of A, it is
denoted At:

⟨Ax, y⟩ = ⟨x, Aty⟩.

For any linear transformation, A : Rn → Rm we define

image of A = Im A = {Ax : x ∈ Rn},

kernel of A = kerA = {x : Ax = 0},

cokemel of A = cokerA = Rm/ Im A.

Evidently if y ∈ Im A and z ∈ KerAt then

⟨y, z⟩ = ⟨Ax, z⟩ = ⟨x, Atz⟩ = 0.

Thus we have a necessary condition for Ax = y to be solvable. This turns out also
to be a sufficient condition:

Theorem 2.2. : The equation Ax = y is solvable iff ⟨y, z⟩ = 0 for all z ∈ ker At.

Exercise 2.4. : A map B : Rn × Rn → R is called a bilinear form if

B(x + y, z) = B(x, z) + B(y, z)

B(x, y + z) = B(x, y) + B(x, z)

B(ax, y) = B(x, ay) = aB(x, y).

A bilinear form is non degenerate provided B(x, y) = 0 for all x ∈ Rn iff y = 0.

(a) Show that y → B(·, y) defines an isomorphism, Rn → (Rn)′

(b) If B1 and B2 are nondegenerate bilinear on Rn and Rm, respectively
forms show that there is a uniquely defined linear transformation At such
that B2(Ax, y) = B1(x, Aty).

(c) Show that Ax = y is solvable iff B2(y, z) = 0 for every z ∈ KerAt.
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Exercise 2.5. : If A : Rn → Rm then show that:

dim ImA = n − dimKerA,

dim ImA = m − dim KerA′

therefore:

dim KerA − dimKerA′ = n − m.

Exercise 2.6. : If S ≤ Rn is a subspace and || · || is a norm on Rn then we can
define a function N([x]) on the quotient vector space Rn/S by setting:

N([x0]) = inf
x∈[x0]

||x||.

Prove that N(·) is a norm on Rn/S

Exercise 2.7. : Let A : Rn → Rm be a linear map and suppose that || · || denotes a
norm on Rn or Rm. Show that there exists a constant C such for y ∈ Im A there
is an x ∈ Rn with Ax = y and ||x|| ≤ C||y||.

Good references for this material are

1. Linear Algebra by Peter D. Lax

2. Intro. to Matrix Analysis by Richard Bellman

3. Calculus, vol II by Tom M. Apostol.

3. Basic Functional Analysis

In finite dimensions the problem of solving linear equations is purely algebraic.
That is: there is no necessity to introduce a topology to give necessary and sufficient
conditions for the solvability of Ax = y. In infinite dimensions there is a simi lar
analysis but it requires a topology on the domain and range of the linear map. In
finite dimensions there is a unique norm topology, this is closely related to the fact
that the unit sphere, with respect to any norm, is compact. To compare two norms
, || · ||1, || · ||2 we simply compute

c1 = inf
{||x||1=1}

||x||2 and c2 = sup{||x||1=1}||x||2

Then

c1||x||1 ≤ ||x||2 ≤ c2||x||1.

In infinite dimensions the unit sphere is never compact and there are many different
normed linear spaces. Recall that in the analysis of Ax = y the dual space (Rm)∗

played an important role. This feature becomes even more pronounced in infinite
dimensions.

Let’s briefly consider normed linear spaces in general. Let X be a vector space.
We need to specify an underlying field, the field of scalars. It will usually be C but
occasionally we use R. A norm is a map:

|| · || : x → R such that


