# AMCS 602 <br> Problem set 1, due September 6, 2016 <br> Dr. Epstein 

Reading: Please be sure to get Trefethen and Bau: Numerical Linear Algebra, which is published by SIAM. Page numbers below refer to this book.

Standard problems: The following problems should be done, but do not have to be handed in.

1. Show that an $m \times n$ matrix is rank 1 if and only if $A=u v^{*}$, where $u$ is an $m$-vector and $v$ is an $n$-vector.
2. Show that a matrix that is both orthogonal and upper triangular is diagonal. What are all such matrices?
3. Page 10, Problem 1.4.
4. Page 16, problem 2.6.
5. Page 24 , problem 3.2. When is this inequality strict?

Homework assignment: The solutions to the following problems should be carefully written up and handed in.

1. Let $A=\left(a_{i j}\right)$ be an $n \times n$ matrix. The trace of $A$ is defined to be

$$
\begin{equation*}
\operatorname{tr} A=\sum_{i=1}^{n} a_{i i} \tag{1}
\end{equation*}
$$

If $A$ and $B$ are $n \times n$ matrices then show that $\operatorname{tr} A B=\operatorname{tr} B A$. Suppose that $A(t)$ satisfies the differential equation

$$
\begin{equation*}
\frac{d A}{d t}=[X(t), A(t)] \tag{2}
\end{equation*}
$$

for a matrix valued function $X(t)$. Recall the $[X, A]=X A-A X$, is the commutator. What can you say about $\operatorname{tr} A(t)$ ?
2. Recall that if $\left\{x_{1}, \ldots, x_{n}\right\}$ are complex numbers, then the Vandermonde matrix is given by

$$
V\left(x_{1}, \ldots, x_{n}\right)=\left(\begin{array}{ccc}
1 & \cdots & 1  \tag{3}\\
x_{1} & \cdots & x_{n} \\
& \vdots & \\
& x_{1}^{n-1} & \cdots
\end{array} x_{n}^{n-1}\right) .
$$

Compute the $\operatorname{det} V\left(x_{1}, \ldots, x_{n}\right)$. From this formula it is clear that $V\left(x_{1}, \ldots, x_{n}\right)$ is invertible whenever the points are distinct. Give an independent proof of this fact using the connection between the Vandermonde matrix and polynomial interpolation.
3. Let $\|\cdot\|_{1}$, and $\|\cdot\|_{2}$ be norms on $\mathbb{C}^{m}$. Prove that there is a constant $C$ so that

$$
\begin{equation*}
\frac{1}{C}\|x\|_{1} \leq\|x\|_{2} \leq C\|x\|_{1} \text { for all } x \in \mathbb{C}^{m} \tag{4}
\end{equation*}
$$

4. Let $\mathscr{P}_{d}=\left\{\sum_{j=0}^{d} a_{j} x^{j}: a_{j} \in \mathbb{R}\right\}$, be the vector space of real polynomials of degree at most $d$. Show that

$$
\begin{equation*}
\|p\|_{1}=\max \{|p(x)|: x \in[10,100]\} \tag{5}
\end{equation*}
$$

defines a norm on $\mathscr{P}_{d}$ and

$$
\begin{equation*}
\langle p, q\rangle_{2}=\int_{0}^{1} p(x) q(x) d x \tag{6}
\end{equation*}
$$

defines an inner product on $\mathscr{P}_{d}$. Prove that there is a constant $C_{d}$ so that

$$
\begin{equation*}
\|p\|_{1}^{2} \leq C_{d}\langle p, p\rangle \tag{7}
\end{equation*}
$$

How does this constant behave as $d \rightarrow \infty$.
5. Let $V$ be a real vector space and $\langle\cdot, \cdot\rangle_{1}$, and $\langle\cdot, \cdot\rangle_{2}$, inner products on $V$. Show that there are unique matrices $A$ and $B$ so that

$$
\begin{equation*}
\langle x, y\rangle_{2}=\langle A x, y\rangle_{1} \text { and }\langle x, y\rangle_{1}=\langle B x, y\rangle_{2} \tag{8}
\end{equation*}
$$

Show that these matrices are symmetric. How are $A$ and $B$ related to one another?

If

$$
\begin{equation*}
\left\langle\sum_{j=0}^{d} a_{j} x^{j}, \sum_{j=0}^{d} b_{j} x^{j}\right\rangle_{1}=\sum_{j=0}^{d} a_{j} b_{j} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle p, q\rangle_{2}=\int_{0}^{1} p(x) q(x) d x \tag{10}
\end{equation*}
$$

then what is $A$ ? What does the first part of this problem tell us about $A$ ?
6. Define the Hermitian inner product on $\mathbb{C}^{m}$ :

$$
\begin{equation*}
\langle z, w\rangle=\sum_{j=1}^{n} z_{j} \bar{w}_{j} \tag{11}
\end{equation*}
$$

and let $\|z\|=\sqrt{\langle z, z\rangle}$ be the norm it defines. Show that

$$
\begin{equation*}
\langle z, w\rangle=\frac{1}{4}\left[\|z+w\|^{2}-\|z-w\|^{2}+i\|z+i w\|^{2}-i\|z-i w\|^{2}\right] . \tag{12}
\end{equation*}
$$

7. Page 16 , problems 2.5 , and 2.6 .
8. Page 24 , problems 3.3 , and 3.6
