Reading: There are many excellent references for this material; I especially like *Real Analysis* by Elias Stein and Rami Shakarchi.

Standard problems: The solutions to the following problems do not need to be handed in.

1. If f is a function then we define
 \[f^+(x) = \max\{0, f(x)\} \quad \text{and} \quad f^-(x) = \min\{0, f(x)\}. \]

 Show that if f is measurable, then so are f^+ and f^-, and therefore so is $|f|$.

2. Show that f is measurable if and only if the sets \(\{ x : f(x) \geq a \} \) are measurable for every $a \in \mathbb{R}$.

Homework assignment: The solutions to the following problems should be carefully written up and handed in.

1. Prove that a σ-algebra is either finite or uncountable. Give an example of a finite σ-algebra.

2. Prove that every measurable function is the limit a.e. of a sequence of continuous functions.

3. Let $D \subseteq \mathbb{R}$ be a dense subset. Let f be an extended real-valued function defined on \mathbb{R}. Show that if the sets \(\{ x : f(x) > a \} \) are measurable for all $a \in D$, then f is measurable.

4. Let $E \subseteq \mathbb{R}^d$ be a measurable set and f a function defined on E. We define the function
 \[g(x) = \begin{cases} f(x) & \text{if } x \in E, \\ 0 & \text{if } x \notin E. \end{cases} \]

 Show that f is measurable if and only if g is measurable.
5. Let \(\{ f_n \} \) be a sequence of measurable functions on \([0, 1]\) with \(|f_n(x)| < \infty \) for a.e. \(x \). Show that there is a sequence of \(\{ c_n \} \) of positive real numbers such that

\[
\frac{f_n(x)}{c_n} \longrightarrow 0 \text{ for a.e. } x.
\]

(3)

Hint: Pick \(c_n \) such that \(m(\{ x : \frac{|f_n(x)|}{c_n} > 1/n \}) < 2^{-n} \) and apply the Borel-Cantelli lemma.

6. Let \(\mathcal{C} \) be the middle thirds Cantor set. Show that \(x \in \mathcal{C} \) if and only if it has a ternary expansion of the form

\[
x = \sum_{j=1}^{\infty} \frac{t_j}{3^j} \text{ where } t_j \in \{0, 2\}.
\]

(4)

Note that the ternary expansion is not unique. Define \(F : \mathcal{C} \rightarrow [0, 1] \) by letting

\[
F(x) = \sum_{j=1}^{\infty} \frac{t_j/2}{2^j}.
\]

(5)

Show that \(F \) is well defined and continuous on \(\mathcal{C} \), and that \(F(0) = 0 \), and \(F(1) = 1 \), then show that \(F \) is surjective. Finally show that if \((a, b) \) is a maximal open subset in \(\mathcal{C}^c \), then \(F(a) = F(b) \), and thereby extend \(F : [0, 1] \rightarrow [0, 1] \), as a continuous map.

Prove that there is a continuous function that maps a Lebesgue measurable set to a non-measurable set. Hint: If \(\mathcal{N} \subset [0, 1] \) is the non-measurable subset constructed in class, then consider \(F^{-1}(\mathcal{N}) \cap \mathcal{C} \).

7. Let \(\mathcal{N} \) be the non-measurable subset constructed in class. Show that any measurable set \(E \subset \mathcal{N} \) has measure zero. Show that if \(G \) is a set with \(m_*(G) > 0 \), then \(G \) has a non-measurable subset.

8. In this problem we prove the following theorem: A bounded function \(f \) defined on an interval \(J = [a, b] \) is Riemann integrable if and only if its set of discontinuities has measure zero.

To prove this we use the following concept: For a bounded function \(f \) defined on a compact interval \(J \) and \(0 < r \) let

\[
osc(f, c, r) = \sup\{|f(x) - f(y)| : x, y \in J \cap (c - r, c + r)\}.
\]

(6)
This is a non-decreasing function of r and therefore \(\text{osc}(f, c) = \lim_{r \to 0^+} \text{osc}(f, c, r) \) is well defined; f is continuous at c if and only if $\text{osc}(f, c) = 0$. To prove the statement above, prove the following assertions:

(a) For every $\epsilon > 0$ the set of points $A_\epsilon = \{x \in J : \text{osc}(f, x) \geq \epsilon \}$ is compact.

(b) If the set of discontinuities of f has measure 0, then f is Riemann integrable.
 Hint: Cover A_ϵ by a finite collection of open intervals of length less than ϵ, then construct appropriate partitions of J on which to estimate the difference between the upper and lower Riemann sums.

(c) Conversely, if f is Riemann integrable on J, then its set of discontinuities has measure zero. Hint: The set of discontinuities of f is contained in $\bigcup_n A_{\frac{\epsilon}{n}}$. Construct a partition P so that

\[
U(f, P) - L(f, P) \leq \frac{\epsilon}{n}. \tag{7}
\]

Show that the total length of the intervals in P that intersect $A_{\frac{\epsilon}{n}}$ is at most ϵ.