Reading: There are many excellent references for this material; several I especially like are *Complex Analysis* by Elias Stein and Rami Shakarchi, *Complex Analysis* by Lars V. Ahlfors, and *Conformal Mapping* by Zeev Nehari.

Homework assignment: The solutions to the following problems should be carefully written up and handed in.

1. Suppose that D is a bounded connected region in the plane, with a C^1 boundary, and u, v are twice continuously differentiable functions in D, whose first derivatives have continuous extensions to \overline{D}. We let n denote the outer unit normal vector along bD, and $t = in$, the oriented unit tangent vector. The normal and tangential derivatives of u along the boundary are defined by:

$$\frac{\partial u}{\partial n} = \langle \nabla u, n \rangle \quad \frac{\partial u}{\partial s} = \langle \nabla u, t \rangle. \tag{1}$$

(a) Show that *Stokes’ Theorem* (for 1-forms) implies that

$$\int_D [u_x v_x + u_y v_y] dx dy + \int_D u \Delta v dx dy = \int_{bD} u \frac{\partial v}{\partial n} ds. \tag{2}$$

Here ds denotes arclength measure along bD.

(b) Use this formula to deduce that if u is also harmonic in D, then

$$\int_{bD} \frac{\partial u}{\partial n} ds = 0. \tag{3}$$

(c) Show that equation (2) implies that

$$\int_D [u \Delta v - v \Delta u] dx dy = \int_{bD} [u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n}] ds. \tag{4}$$
2. Suppose that \(h \) is a continuous function on \(\mathbb{R} \) with support in the finite interval \([-1, 1]\), and define
\[
g(z) = \frac{1}{2\pi i} \int_{-1}^{1} \frac{h(x)dx}{x - z}\]

(a) Prove that \(g \) is an analytic function in \(\mathbb{C} \setminus [-1, 1] \), which tends to zero as \(|z| \) tends to infinity.

(b) Let \(D_1^+(0) (D_1^-(0)) \) denote the upper (resp. lower) half of the unit disk. If \(h \) is the restriction of an analytic function defined in \(D_1(0) \), then show that \(g \) has analytic continuations, across the interval \((-1, 1)\), from \(D_1^+(0) \) to \(D_1(0) \) and from \(D_1^-(0) \) to \(D_1(0) \). Hint: Deform the contour of integration \([-1, 1]\) to a curve lying below (resp. above) \((-1, 1)\).

(c) Does the continuation of \(g \) from \(D_1^+(0) \) to \(D_1^-(0) \), defined in (b), ever agree with \(g \mid_{D_1^-(0)} \), as defined by (5)?

3. In class we proved that for any \(\varphi \in \mathcal{C}_c^1(\mathbb{R}^2) \) the equation
\[
\bar{\partial} u = \varphi
\]
has a solution given by
\[
u_0(z, \bar{z}) = \frac{1}{\pi} \iint \varphi(w, \bar{w})dw \, d\bar{w}.\]

(a) \(u_0 \) is one solution; what are all the other solutions?

(b) Show that this solution satisfies \(\lim_{z \to \infty} u_0(z, \bar{z}) = 0 \), and it is uniquely determined by this condition.

(c) What conditions must \(\varphi \) satisfy for there to exist a solution with compact support? Hint: The solution \(u_0 \) is analytic outside the support of \(\varphi \). Find a representation, for \(z \) with large modulus, that reflects this fact. Note that \(\varphi \) must satisfy infinitely many conditions.

4. Using (4) show that if \(u \) is a \(C^2 \)-function with compact support then
\[
\frac{1}{4\pi} \int_{\mathbb{C}} \log(x^2 + y^2) \Delta u(x, y) \, dx \, dy = u(0).\]
If u is a compactly supported, C^2-function, then show that the function

$$U(x, y) = \frac{1}{4\pi} \int_C \log(x'^2 + y'^2)u(x - x', y - y')dx'dy'$$

is a twice differentiable function satisfying

$$\Delta U = u. \quad (10)$$

Hint: Be careful because $\log(x^2 + y^2)$ is singular at $(0, 0)$.

Under what condition is

$$\lim_{(x,y)\to\infty} U(x, y) = 0? \quad (11)$$

5. Suppose that u is a harmonic function defined in a simply connected domain, D with C^1-boundary, and let v denote a harmonic conjugate to u. Suppose that the first derivatives of u and v extend continuously to the bD. For a differentiable function f defined along bD let $\frac{\partial f}{\partial s}$ denote the derivative of f with respect to arclength along bD. If t is the unit tangent vector to bD, oriented in the positive direction, then the tangential derivative is:

$$\frac{\partial (v |_{bD})}{\partial s} = \langle \nabla v, t \rangle |_{bD}. \quad (12)$$

(a) Show that along bD we have the relation:

$$\frac{\partial u}{\partial n} = \frac{\partial v}{\partial s}. \quad (13)$$

(b) Let $g(s)$ be a continuous function defined along $bD_1(0)$ with s the arclength parameter and

$$\int_{bD_1(0)} g(s)ds = 0. \quad (14)$$

Explain how to use (13) to prove that there is a harmonic function u defined in $D_1(0)$ such that

$$\frac{\partial u}{\partial n}(s) = g(s). \quad (15)$$

Hint: The function $G(s) = \int_{s_0}^{s} g(\sigma)d\sigma$ is a continuous function on bD_1.

3
6. Let $g(x, y) = \frac{1}{4\pi} \log(x^2 + y^2)$. Let $\gamma : [0, L] \to \mathbb{C}$ give an arclength parametrization of, Γ, a simple closed C^1-curve. Let D be the domain bounded by Γ. For σ, a continuous function defined on Γ, and ds the arclength measure along Γ we define the function

$$u(x, y) = \int_0^L g(x - \gamma_1(s), y - \gamma_2(s))\sigma(s)ds, \quad (x, y) \in \mathbb{C}. \quad (16)$$

(a) Show that u is a continuous function in \mathbb{C}, which is harmonic in $\mathbb{C} \setminus \Gamma$.

(b) Let n denote the outward unit normal vector field along Γ. The normal lines to Γ foliate a neighborhood of Γ, see Figure 1. We can therefore extend n to a neighborhood of Γ as the unit tangent directions to these lines. For $p \in \Gamma$, let $\partial_n^+ u(p)$ denote the limit of $\partial_n u(q)$ from the inside of D, as $q \to p$, and $\partial_n^- u(p)$ the analogous limit from D^c. What is

$$\partial_n^+ u(p) - \partial_n^- u(p)? \quad (17)$$

Figure 1. Figure showing contour Γ with several normal lines, and outward normal vectors.