Reading: There are many excellent references for this material; I especially like Real Analysis by Elias Stein and Rami Shakarchi. Standard problems: The solutions to the following problems do not need to be handed in.

1. Suppose that \(L : \mathbb{R}^d \to \mathbb{R}^d \) is a linear transformation. Show that if \(E \) is a Lebesgue measurable set then so is \(L(E) \). Hint: Show that \(L \) maps sets of measure zero to sets of measure zero. Prove that
\[
m(L(E)) = |\det(L)| m(E). \tag{1}
\]

Homework assignment: The solutions to the following problems should be carefully written up and handed in.

1. Suppose that \(\nu, \nu_1, \nu_2 \) are signed measures on \((X, \mathcal{M})\) and \(\mu \) is a positive measure. Prove the following assertions:

 (a) If \(\nu_1 \perp \mu \) and \(\nu_2 \perp \mu \), then \((\nu_1 + \nu_2) \perp \mu \).

 (b) If \(\nu_1 \ll \mu \) and \(\nu_2 \ll \mu \), then \((\nu_1 + \nu_2) \ll \mu \).

 (c) If \(\nu_1 \perp \nu_2 \) implies that \(|\nu_1| \perp |\nu_2| \).

 (d) \(\nu \ll |\nu| \).

 (e) If \(\nu \perp \mu \) and \(\nu \ll \mu \), then \(\nu = 0 \).

2. If \(\nu \ll \mu \), with \(\mu \) a positive, \(\sigma \)-finite measure, then we let \(\frac{d\nu}{d\mu} \) denote the Radon-Nikodym derivative, so that
\[
\int_E d\nu = \int_E \left[\frac{d\nu}{d\mu} \right] d\mu. \tag{2}
\]

 (a) If \(\nu \ll \mu \) and \(f \) is a non-negative measurable function, then
\[
\int_X f(x) d\nu(x) = \int_X f(x) \left[\frac{d\nu}{d\mu} \right] (x) d\mu(x). \tag{3}
\]
(b) If \(\nu_1 \ll \mu \) and \(\nu_2 \ll \mu \), then
\[
\frac{d(\nu_1 + \nu_2)}{d\mu} = \frac{d\nu_1}{d\mu} + \frac{d\nu_2}{d\mu}
\]
(4)

(c) If \(\lambda \ll \nu \ll \mu \), with \(\nu \) and \(\mu \) positive measures, then
\[
\frac{d\lambda}{d\mu} = \frac{d\lambda}{d\nu} \cdot \frac{d\nu}{d\mu}.
\]
(5)

(d) If \(\nu \ll \mu \), and \(\mu \ll \nu \), with both measures positive, then
\[
\frac{d\nu}{d\mu} = \left[\frac{d\mu}{d\nu} \right]^{-1}.
\]
(6)

3. In this problem we give an example to show that the \(\sigma \)-finiteness of \(\mu \) cannot be omitted from the hypotheses of the Radon-Nikodym theorem. Let \(X = [0, 1] \) and \(\mathcal{M} \) be the class of Lebesgue measurable subsets of \([0, 1] \). Let \(\nu \) be Lebesgue measure restricted to \(X \) and \(\mu \) be the counting measure on subsets of \(X \). Clearly \(\nu \ll \mu \), but show that there is no measurable function \(f \) such that
\[
\nu(E) = \int_E f(x) d\mu(x).
\]
(7)

4. Suppose that \(\mu_1, \nu_1 \) are \(\sigma \)-finite measures on \((X_1, \mathcal{M}_1) \) and \(\mu_2, \nu_2 \) are \(\sigma \)-finite measures on \((X_2, \mathcal{M}_2) \), with \(\mu_1 \) and \(\mu_2 \) positive measures. Show that if \(\nu_1 \ll \mu_1 \) and \(\nu_2 \ll \mu_2 \), then \(\nu_1 \times \nu_2 \ll \mu_1 \times \mu_2 \) and
\[
\frac{d(\nu_1 \times \nu_2)}{d(\mu_1 \times \mu_2)}(x_1, x_2) = \frac{d\nu_1}{d\mu_1}(x_1) \cdot \frac{d\nu_2}{d\mu_2}(x_2).
\]
(8)

5. Let \(f : \mathbb{R} \to \mathbb{R} \) be a monotone increasing, continuously differentiable function. Show that \(f \) maps Borel measureable sets to Borel measurable sets. Define a Borel measure by setting
\[
\mu(E) = m(f(E)),
\]
(9)

where \(m \) is Lebesgue measure. Show that \(\mu \ll m \), and compute the Radon-Nikodym derivative \(\frac{d\mu}{dm} \).

6. Let \((X, \mathcal{M}, \mu) \) be a \(\sigma \)-finite measure space, and \(\mathcal{N} \) a sub-\(\sigma \)-algebra of \(\mathcal{M} \), also \(\sigma \)-finite. We let \(\nu = \mu \restriction \mathcal{N} \).
(a) Show that for any \(f \in L^1(X; d\mu) \) there is a function \(g \in L^1(X; d\nu) \) (which is therefore \(\mathcal{N} \)-measurable) so that for any set \(E \in \mathcal{N} \), we have

\[
\int_E f(x) d\mu(x) = \int_E g(x) d\nu(x). \tag{10}
\]

The point here is that \(g \) is measurable with respect to \(\mathcal{N} \), while in general \(f \) is not. Show that \(g \) is unique modulo sets of \(\nu \) measure zero.

(b) Suppose that \(\mathcal{M} \) is the Lebesgue measurable subsets of \(\mathbb{R} \) and \(\mathcal{N} \) is the \(\sigma \)-algebra generated by the sets \(\{(n, n+1) : n \in \mathbb{Z}\} \). Give a formula for \(g \) in terms of \(f \).