Problem set 3, due February 12, 2019
Dr. Epstein

Your solutions to these problems should be written in English: Use complete sentences and paragraphs.

For this week, read Chapter 7.4, Chapter 8 and Chapter 9.1.3 in The Way of Analysis.

You should do the following problems, but you do not need to hand in your solutions:

1. Do the following complex arithmetic problems
 (a) \((1 + 3i)(4 - 2i) = ?\)
 (b) \(1/(3 - 8i) = ?\)
 (c) Find all complex numbers \(z\) so that \(z^2 = i\).

2. Prove that \(e^{xy} = (e^x)^y\). Using this, for \(x > 0\), define the function \(x^x = e^{x \log x}\).
 Show that \(x^x\) is differentiable in \((0, \infty)\), and compute its derivative.
 What is \(\lim_{x \to 0^+} x^x\)?

The following problems should be carefully written up and handed in.

1. Define the map \(T: C^0([0, 1]) \to C^0([0, 1])\) by
 \[
 Tf(x) = x + \int_0^x tf(t)dt.
 \]
 (a) Show that there is a radius \(0 < r\) so that \(T: B_r(0) \to B_r(0)\), and that \(T\) is a contraction on this ball.
 We use the sup-norm on \(C^0([0, 1])\).
 (b) Show that \(T(B_r(0))\) is, in fact, a precompact subset of \(C^0([0, 1])\),
 that is its closure is a compact set.
 (c) Explain why \(T\) has a fixed point in this ball, even though \(\dim C^0([0, 1]) = \infty\).
 Prove this directly, do not simply quote the theorem in the book.
 (d) Show that a fixed point of \(T\) actually belongs to \(C^1([0, 1])\).
 (e) Find the fixed point. Hint: Differentiate! The final answer is expressed as an
 indefinite integral, which cannot done explicitly.

2. Recall that the Hermitian inner product on \(\mathbb{C}^n\) is defined by
 \[
 \langle z, w \rangle = \sum_{j=1}^n \bar{z}_j \bar{w}_j.
 \]
 Prove the polarization identity
 \[
 \langle z, w \rangle = \frac{1}{4} \left[\|z + w\|^2 - \|z - w\|^2 + i \|z + iw\|^2 - i \|z - iw\|^2 \right].
 \]

3. For a a positive real number, prove that the power series
 \[
 f(x) = 1 + \sum_{j=1}^{\infty} \frac{a \cdots (a + 1 - j)}{j!} x^j
 \]
converges in $(-1, 1)$. Prove that it converges to the function $(1 + x)^a$.

4. For each of the following power series describe the exact subset of \mathbb{C} where it converges.
 (a) $\sum_{j=1}^{\infty} z^j$.
 (b) $\sum_{j=1}^{\infty} \frac{z^j}{j}$.
 (c) $\sum_{j=1}^{\infty} \frac{z^j}{j^2}$.

5. Suppose that $f(x)$ is a function represented by a convergent power series in the interval $(-1, 1)$.
 (a) Prove: If there is a sequence of distinct points, $\langle x_j \rangle$, in $(-1, 1)$ such that $\lim_{j \to \infty} x_j = 0$, and $f(x_j) = 0$, then $f(x) = 0$ for all $x \in (-1, 1)$. Hint: Show $f(0) = 0$, consider $f(x)/x$, and repeat.
 (b) Show that if $f^{[k]}(0) = 0$, for all non-negative integers k, then $f(x) = 0$ for all $x \in (-1, 1)$.

6. Let

 \begin{equation}
 f(z) = \sum_{j=0}^{\infty} a_j z^j
 \end{equation}

 be a convergent power series with real coefficients. Prove that

 \begin{equation}
 \overline{f(z)} = f(\overline{z}).
 \end{equation}

 If (5) holds does it imply that the coefficient in the power series expansion are real?