Math 509
Problem set 8, due March 27, 2018
Dr. Epstein

In Bak & Newman read Chapters 1, 2, and 3. Your solutions to these problems should be written in English: Use complete sentences and paragraphs.

For $z = x + iy$, we define the functions

$$\Re(z) = x, \ \Im(z) = y, \ \bar{z} = x - iy.$$

You should do the following problems, but you do not need to hand in your solutions:

1. Show that $\{z : |z - w| < r\}$ is a disk of radius r centered at w.
2. Geometrically what is the set
 $$\{z : a|z|^2 + b\Re(z^2) = 1\}?$$
 Here a and b are real numbers with $0 < a$. Hint: What are $|z + \bar{z}|^2$ and $|z - \bar{z}|^2$?
3. If $z = \frac{1+i\sqrt{3}}{2}$, then what are z^2 and z^{-1}?
4. For w a non-zero complex number, geometrically what is the set
 $$\{z : 0 < \arg(z\bar{w}) < \frac{\pi}{2}\}?$$

The following problems should be carefully written up and handed in.

1. Give complete proofs that for $z_1, z_2 \in \mathbb{C}$
 $$|z_1 + z_2| \leq |z_1| + |z_2|$$
 and interpret this result geometrically.
2. For $z_1, z_2 \in \mathbb{C}$ prove that
 $$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2),$$
 and give a simple geometric description of the set $\{z : \Re(z\bar{w}) > 0\}$.
3. Suppose that $P(z)$ is a polynomial with real coefficients. Show that
 $$P(\bar{z}) = \overline{P(z)}.$$
 Conclude that if z_0 is a root of P, then so is \bar{z}_0.
 Show that if $f(z)$ is given by a power series with real coefficients, convergent in $D_R(0)$, for an $0 < R$, then $f(\bar{z}) = \overline{f(z)}$. Show that a convergent power series has real coefficients if and only if $f(x) \in \mathbb{R}$, for $x \in \mathbb{R}$ with $|x| < R$.
4. Let $P(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$, where $a_n \geq a_{n-1} \geq \cdots \geq a_0 \geq 0$ are real numbers. By considering the polynomial $(1 - z)P(z)$ show that all solutions of $P(z) = 0$ lie inside the closed unit disk. Hint: Use the triangle inequality.
6. Show that any complex-valued polynomial in two real variables,
\[P(x, y) = \sum_{0 \leq m, n \leq N} a_{mn} x^m y^n, \]
can be re-expressed in the form
\[P = \sum_{0 \leq m, n \leq N} a_{mn} z^m \bar{z}^n. \]
Show that \(P \) has a complex derivative if and only if \(a_{mn} = 0 \) for \(0 < n \).

7. Suppose that \(f \) is a complex differentiable function defined in a connected open set \(D \subset \mathbb{C} \). Show that if \(f(z) \in \mathbb{R} \) for all \(z \in D \), then \(f \) is a constant function.