Reading: Chapter 3 of Stein-Shakarchi.

Homework assignment: The solutions to the following problems should be carefully written up and handed in.

2. Stein and Shakarchi page 106, problem 17.
5. If \(c(t) = x(t) + iy(t) \) is a \(C^1 \)-mapping from \([a, b]\) to \(\mathbb{C} \setminus \{0\} \), then show that we can express \(c(t) = r(t)e^{i\theta(t)} \), where \(r \) and \(\theta \) are \(C^1 \)-functions.
6. Suppose that \(f \) is a holomorphic function in \(\Omega \). Prove that \(\log f \) can be defined as a single valued holomorphic function in \(\Omega \), if and only if \(f^{\frac{1}{n}} \) has a single valued holomorphic branch, in \(\Omega \), for every \(n \in \mathbb{N} \).
7. Show, by directly computing the kernel and the co-kernel, that the index of the operator \(T_{z^n} \) equals \(-n\), for all \(n \in \mathbb{Z} \).
8. Let \(\Pi_+ : L^2(S^1) \to H^2(S^2) \) be the orthogonal projection onto the boundary values of functions holomorphic in \(D_1 \), and set
 \[
 f(z) = \sum_{j=-N}^{N} a_j z^j.
 \]
 (1)
 Show that the operator \([\Pi_+, f] \) has finite rank.
9. Let \(f \) be a holomorphic function defined in a neighborhood of \(D_1(0) \), non-vanishing on \(|z| = 1 \), with \(m \) zeros in \(D_1(0) \). By directly computing the kernel and co-kernel, show that the index \(T_f \) equals \(-m\).
10. Find the kernel function of the orthogonal projection $B : L^2(D_1) \to H^2(D_1)$, that is, the function $b(z, w)$ defined on $D_1 \times D_1$, so that

$$Bf(z) = \int_{D_1} b(z, w) f(w) dxdy. \quad (2)$$

Recall that $H^2(D_1)$ are the holomorphic functions on D_1, which are square integrable. Hint: It’s easy to find an orthonormal basis for $H^2(D_1)$.