Chapter 1 One complex variable, for adults
1.1 Introduction
1.2 Review of Functional Analysis
1.3 The Cauchy integral formula, holomorphic functions
1.4 Elementary facts about analytic functions of one variable
1.5 The Runge approximation theorem, the holomorphic convex hull
1.6 Solving the \(\overline{\partial} \)-equation
1.7 The Mittag-Leffler and Weierstraß Theorems, domains of holomorphy

Chapter 2 Elementary properties of holomorphic functions in several variables
2.1 Holomorphy for functions of several variables
2.2 The Cauchy formula for polydiscs and its elementary consequences
2.3 Hartogs’ Theorem on separately holomorphic functions
2.4 Solving the \(\overline{\partial} \)-equation in a polydisc and holomorphic extension
2.5 Local solution of the \(\overline{\partial} \)-equation for \(p,q \)-forms
2.6 Power series and Reinhardt domains
2.7 Domains of holomorphy and holomorphic convexity
2.8 Pseudoconvexity, the ball versus the polydisc
2.9 CR-structures and the Lewy extension theorem
2.10 The Weierstraß preparation theorem

Chapter 3 The complete metric approach to the \(\overline{\partial} \)-problem
3.0 Introduction
3.1 The geometry of the unit ball
3.2 Analysis of Bergman Laplacian
3.3 Polyhomogeneous conormal distributions
3.4 A simple model for blow-ups
3.5 Parabolic blow-ups for the model problem
3.6 The \(\Theta \)-tangent bundle and parabolic blow-ups

Version: 0.2; Revised: 3-22-90; Run: February 5, 1998