7.4 p 452 #8

As \(x \to \infty \),

\[
\begin{align*}
(\ln 2)^x &< x^2 < e^x < 2^x \\
&\quad \uparrow \quad \uparrow \quad \uparrow \quad \uparrow \\
&\quad \quad \quad c \quad \quad b \quad \quad a \quad \quad d
\end{align*}
\]

7.4 p 452 #10

As \(x \to \infty \),

a. \(\frac{1}{x+3} = \Theta\left(\frac{1}{x}\right) \) True
b. \(\frac{1}{x} + \frac{1}{x^2} = \Theta\left(\frac{1}{x}\right) \) True

c. \(\frac{1}{x} - \frac{1}{x^2} = o\left(\frac{1}{x}\right) \) False
d. \(2 \ln x = \Theta(2) \) True
e. \(e^{x-x} = \Theta(e^x) \) True

f. \(x \ln x = o(x^2) \) True

g. \(\ln(x^2 + x) = \Theta(\ln x) \) True

(h. \(\ln x = o\left(\ln(x^2 + 1)\right) \) False

(in fact \(\ln(x^2 + 1) = o(\ln x) \))
10.1. p.581 # 5c
\(a_n = \frac{1}{n+1} \)

\[\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{n+1} = 0 \]

The sequence converges to 0.

10.1. p.581 # 48
\(a_n = \frac{1}{n} \)

\[\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{n} = 0 \]

The sequence converges to 0.

10.1. p.581 # 36
\(a_n = (-1)^n \)

\[\lim_{n \to \infty} a_n = \lim_{n \to \infty} (-1)^n \]

The sequence does not converge.

10.1. p.581 # 72
\(a_n = (1 - \frac{1}{n^2})^n \)

\[\lim_{n \to \infty} a_n = \lim_{n \to \infty} (1 - \frac{1}{n^2})^n = e^{-\frac{1}{2}} \]

The sequence converges to \(e^{-\frac{1}{2}} \).
10.1 p581 #94
\[a_1 = 0, \quad a_{n+1} = \sqrt{8 + 2a_n} \]

Let \(\lim_{n \to \infty} a_n = L \) then

\[L = \sqrt{8 + 2L} \Rightarrow L^2 = 8 + 2L \]

\[L^2 - 2L - 8 = 0, \quad (L-4)(L+2)=0 \]

So either \(L = 4 \) or \(L = -2 \). But all the terms are positive so \(L \) can't be \(-2\). Thus \(\lim_{n \to \infty} a_n = 4 \).

10.2 p591 #24
\[\sum_{n=1}^{\infty} \frac{414}{1000^n} = 1 + \frac{414}{1000} + \frac{414}{1000^2} + \cdots \]

geometric \(a = \frac{414}{1000} \), \(r = \frac{1}{1000} \)

\[= 1 + \frac{414}{1000} \left(1 - \frac{1}{1000} \right) = 1 + \frac{414}{999} \]

\[= \frac{1413}{999} \]

10.2 p591 #30
\[\sum_{n=1}^{\infty} \frac{n}{n^2 + 3} \lim_{n \to \infty} \frac{n}{n^2 + 3} = 0, \text{ so } n^{\text{th}} \text{ term test is inconclusive.} \]

(Series diverges, though, by the integral test eg.)

10.2 p591 #34
\[\sum_{n=0}^{\infty} (-1)^n \]

\[= \text{sum of terms} \] (Series diverges by the nth term test)

10.2 p591 #38
\[\sum_{n=1}^{\infty} (\tan^{-1} n - \tan^{-1} (n-1)) \]

\[= (\tan^{-1} \infty) + (\tan^{-1} 2 - \tan^{-1} 1) + \cdots \]

The nth partial sum is \(\tan^{-1} \infty \); but \(\tan^{-1} \) does not have a limit as \(n \to \infty \), so the series diverges.

10.2 p591 #54
\[\sum_{n=1}^{\infty} \frac{\cos n \pi}{5^n} = \sum_{n=0}^{\infty} \frac{(-1)^n}{5^n} \text{ geometric with } a = 1, \quad r = \frac{-1}{5} \]

Since \(|r| < 1 \), series converges to

\[\frac{1}{1 - (-\frac{1}{5})} = \frac{5}{6} \]
See 10.2 p591 #60
\[\sum_{n=1}^{\infty} \left(-\frac{1}{2} \right)^n \]
From #54 of Sec 10.1, we know \(\lim_{n \to \infty} \left(-\frac{1}{2} \right)^n = \frac{1}{2} \neq 0 \)
so series diverges by the \(n \)th term test.

See 10.2 p591 #76
\[\sum_{n=0}^{\infty} \left(-\frac{1}{2} \right)^n (x-3)^n \]
Geometric with \(a=1 \) and \(r = -\frac{1}{2} (x-3) \).
Series will converge if \(|r| = \frac{1}{2} |x-3| < 1 \)
\[1-\frac{1}{2} |x-3| < 1 \]
i.e. \(|x-3| < 2 \) or \(1 < x < 5 \)
Sum: \[a \left(1 - r \right) = \frac{1}{1 - \left(-\frac{1}{2} (x-3) \right)} = \frac{2}{5-x} \]

See 10.2 p591 #86
Since \(\sum \) an converges we know that \(a_n \to 0 \) as \(n \to \infty \). But then \(\frac{1}{a_n} \to \infty \) as \(n \to \infty \) so the series \(\sum \frac{1}{a_n} \) diverges by the \(n \)th term test.

See 10.2 p591 #96
A) Each time, every side of the figure is replaced by three sides, each of which has \(\frac{1}{3} \) the length of the original side. So \(L_1 = 3 \), \(L_2 = \frac{4}{3} \), \(L_3 = \frac{4}{3} \cdot \frac{4}{3} \), etc. \(L_n = \left(\frac{4}{3} \right)^n \) \(\to \infty \) as \(n \to \infty \).
Note: the number of sides of \(C_n \) is \(3^n \).

See 10.3 p598 #4
\[\sum_{n=1}^{\infty} \frac{1}{n+4} \]
Terms are positive and decreasing,
\[\int_1^{\infty} \frac{1}{x+4} \, dx = \ln(x+4) \bigg|_1^{\infty} = \infty \] so series diverges.

See 10.3 p598 #6
\[\sum_{n=2}^{\infty} \frac{1}{n \ln^2 n} \]
Terms are positive and decreasing,
\[\int_2^{\infty} \frac{1}{n \ln^2 n} \, dx = \int_2^{\infty} \frac{1}{u^2} \, du = -\frac{1}{u} \bigg|_2^{\ln 2} = \frac{1}{\ln 2} \]
\[\Rightarrow \text{series converges} \]

See 10.3 p598 #16
\[\sum_{n=1}^{\infty} \frac{2}{n^{3/2}} \]
This series has \(\frac{2}{n^{3/2}} \), terms decreasing,
\[\int_1^{\infty} \frac{2}{x^{3/2}} \, dx = -\frac{4}{x^{1/2}} \bigg|_1^{\infty} = 4 \Rightarrow \text{series converges} \]

See 10.3 p598 #22
\[\sum_{n=1}^{\infty} \frac{5^n}{4^n+3} \]
\[\lim_{n \to \infty} \frac{5^n}{4^n+3} = \lim_{n \to \infty} \frac{5^n}{4^n} = \infty \]
Series diverges by the \(n \)th term test.

See 10.3 p598 #30
\[\sum_{n=1}^{\infty} \frac{1}{(\ln n)^n} \]
Since \(\ln 3 > 1 \), this is a geometric series with \(1/\ln 3 < 1 \), so it converges (and \(\frac{1}{\ln 3} - 1 \)).

b) Each time, a triangle of area \(\frac{A_1}{9^n} \) is added on each side, so the first time \(\frac{3 \cdot A_1}{9} \), then \(3 \cdot \frac{A_1}{9^2} \) then \(3 \cdot \frac{A_1}{9^3} \) etc. So the total area is
\[A_1 \left(1 + \frac{3}{9} + \frac{3}{9^2} + \frac{3}{9^3} + \cdots \right) \]
\[= A_1 \left(1 + \sum_{n=0}^{\infty} \frac{1}{3} (\frac{1}{9})^n \right) \]
\[\stackrel{\text{Note}}{=} A_1 \left(1 + \frac{\sqrt{3}}{1-\frac{1}{9}} \right) = A_1 (1 + \frac{\sqrt{3}}{8}) = A_1 (\frac{8 + \sqrt{3}}{5}) = \frac{8}{5} A_1 \]
Sec 10.3 p598 # 34

\[\sum_{n=1}^{\infty} n \tan^{-1} \frac{1}{n} \]

\[= \lim_{n \to \infty} n \tan^{-1} \frac{1}{n} \]

\[= \lim_{n \to \infty} \frac{-\frac{1}{2} \ln(n^2+1)}{1} \]

So series diverges by nth term test.

Sec 10.3 p598 # 38

\[\sum_{n=1}^{\infty} \frac{n}{n^2+1} \quad \text{terms } \to \infty, \text{ decreases} \]

\[\therefore \int_{1}^{\infty} \frac{1}{x^2+1} \, dx = \frac{1}{2} \ln(x^2+1) \]

So series diverges.

Sec 10.3 p598 # 60

a) The sum is bounded as follows:

\[\sum_{k=1}^{10} \frac{1}{k^4} + \int_{10}^{\infty} \frac{1}{x^4} \, dx < \sum_{k=1}^{\infty} \frac{1}{k^4} < \sum_{k=1}^{10} \frac{1}{k^4} + \int_{1}^{10} \frac{1}{x^4} \, dx \]

\[\approx 1.082036583 < \sum_{k=1}^{\infty} \frac{1}{k^4} < 1.082036583 + 0.000250438 \]

\[= 1.082287 < \sum_{k=1}^{\infty} \frac{1}{k^4} < 1.082370 \]

b) The difference between the two bounds is about 0.000083, so their average, namely 1.082328468 is off by less than half of this, or 0.0000415.

Sec 10.4 p603 # 4

\[\sum_{n=1}^{\infty} \frac{n+2}{2n^2-1} \quad \text{Well, } \frac{n+2}{2} > \frac{n}{n} = \frac{1}{n} , \]

and \(\sum \frac{1}{n} \) is the (divergent) harmonic series.

\[\therefore \sum \frac{n+2}{2n^2-1} \quad \text{diverges by the comparison test.} \]

Sec 10.4 p603 # 6

\[\sum_{n=1}^{\infty} \frac{1}{n^3} \quad \text{Well, } \frac{1}{n^3} < \frac{1}{3^n} , \]

and \(\sum \frac{1}{3^n} \) is a convergent geometric series (\(r = \frac{1}{3} < 1 \)).

\[\therefore \sum \frac{1}{n^3} \quad \text{converges by the comparison test.} \]

Sec 10.4 p603 # 12

\[\sum_{n=1}^{\infty} \frac{2^n}{3+4^n} \quad \text{(Regular comparison:} \quad \frac{2^n}{3+4^n} < \frac{2^n}{4^n} = \left(\frac{1}{2} \right)^n \quad \text{so this converges by comparison to}\} \]

\[\text{the geometric series} \}

\[\text{limit compare with } \sum \frac{2^n}{4^n} = \sum \frac{1}{2^n} \]

\[\lim_{n \to \infty} \frac{\frac{2^n}{3+4^n}}{\frac{1}{2^n}} = \lim_{n \to \infty} \frac{2^n}{2^n} = \frac{4^n}{3+4^n} = 1 \]

\[\text{So two sides do the same thing} \]

\[\text{namely converge since } \sum \frac{1}{2^n} \text{ converges.} \]

Sec 10.4 p603 # 16

\[\sum \ln(1+\frac{1}{n^2}) \]

\[\text{Limit comp. to } \sum \frac{1}{n^2} \text{ (Convergent p-series p=2 > 1)} \]

\[\lim_{n \to \infty} \ln(1+\frac{1}{n^2}) = \lim_{n \to \infty} \frac{1}{1+\frac{1}{n^2}} \]

\[= \lim_{n \to \infty} \frac{1}{1+\frac{1}{n^2}} = 1 \]

\[\therefore \sum \ln(1+\frac{1}{n^2}) \]

\[\text{converges by LCT with } \sum \frac{1}{n^2}. \]
Sec 10.4 p603 #22
\[\sum_{n=1}^{\infty} \frac{n+1}{n^2 \sqrt{n}} \]

The n-th term is like \(\frac{n}{n^{3/2}} = \frac{1}{n^{1/2}} \)

Limit comparison with \(\sum \frac{1}{n^{1/2}} \) (Convergent p-series \(p = \frac{3}{2} > 1 \))

\[\lim_{n \to \infty} \frac{n+1}{n^{3/2}} = \lim_{n \to \infty} \frac{n}{n^{3/2}} = 1 \]

So our series converges by L.C.T.

Sec 10.4 p603 #28
\[\sum_{n=1}^{\infty} \frac{(\ln n)^2}{n^3} \]

Since \(\ln n < \sqrt{n} \), compare to \(\sum \frac{1}{n^{3/2}} \) (Convergent p-series \(p = 2 \))

\[\frac{(\ln n)^2}{n^3} \leq \frac{(\sqrt{n})^2}{n^3} = \frac{1}{n} \]

So \(\sum \frac{(\ln n)^2}{n^3} \) converges by C.T.

Sec 10.4 p603 #34
\[\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^{2} + 1} \]

Like \(\frac{\sqrt{n}}{n^{3/2}} = \frac{1}{n^{1/2}} \)

So compare to \(\sum \frac{1}{n^{3/2}} \) (Convergent p-series \(p = 3/2 \))

\[\frac{\sqrt{n}}{n^{2} + 1} < \frac{\sqrt{n}}{n^{3/2}} = \frac{1}{n^{1/2}} \]

So \(\sum \frac{\sqrt{n}}{n^{2} + 1} \) converges by C.T.

Sec 10.4 p603 #40
\[\sum_{n=1}^{\infty} \frac{2^n + 3^n}{3^n + 4^n} \]

Compare to \(\sum \frac{2^n + 3^n}{4^n} = \sum \left(2^n + 3^n\right) \)

A sum of two convergent geometric series

\[r = \frac{2}{4}, \frac{3}{4} \]

\[\sum \frac{2^n + 3^n}{3^n + 4^n} \] converges by C.T.

Sec 10.4 p603 #52
\[\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2} \]

\[\sum_{n=1}^{\infty} \frac{1}{n^{3/2}} \]

Converges by C.T.

Sec 10.4 p603 #60
\[a > 0 \]
\[\lim_{n \to \infty} n^2 a_n = 0 \]

So for large \(n \) we have \(n^2 a_n < 1 \) or \(a_n < \frac{1}{n^2} \). So compare \(\sum a_n \) with \(\sum \frac{1}{n^2} \), which converges.

So \(\sum a_n \) converges, too.