1. \(\int_{e}^{e^4} \frac{1}{x\sqrt{\ln x}} \, dx = \)

(a) 0
(b) 2
(c) 4
(d) \(e^2 \)
(e) \(e^4 - e \)

2. We know that the graph of a function \(\varphi(x) \) passes through the point (4,6). We also know that \(-1 \leq \varphi'(x) \leq 3\) for all \(x \) in the interval \([0, 10]\). What are the minimum and maximum values possible values for \(\varphi(7) \)?

(a) min = 7, max = 16
(b) min = 4, max = 7
(c) min = -1, max = 4
(d) min = 6, max = 10
(e) min = 4, max = 13
(f) min = 3, max = 15

3. \(\int_{1}^{e} x\ln x \, dx = \)

(a) \(\frac{e^2}{4} - \frac{4}{e^2} \)
(b) \(\frac{e^2}{2} - \frac{2}{e^2} \)
(c) \(\frac{3e^2}{4} \)
(d) \(\frac{e^2}{4} + \frac{1}{4} \)
(e) \(\frac{3e^2}{2} - \frac{1}{4e^2} \)
(f) \(\frac{e^2}{4} \)

4. What is the volume of the solid obtained by rotating the part of the graph of \(y = \cos x\sqrt{\sin x} \) between \(x = 0 \) and \(x = \frac{\pi}{2} \) around the \(x \)-axis?

(a) \(\pi \)
(b) \(\frac{\pi}{2} \)
(c) \(\frac{\pi}{3} \)
(d) \(\frac{\pi}{4} \)
(e) \(\frac{\pi}{6} \)

5. \(\lim_{b \to \infty} \int_{0}^{b} \arctan \frac{x}{1 + x^2} \, dx = \)

(a) \(\frac{\pi^2}{2} \)
(b) \(\pi^2 \)
(c) \(\frac{\pi^2}{4} \)
(d) \(\frac{\pi^2}{8} \)
(e) \(+\infty \)

6. The area between a curve \(y = f(x) \) and the \(x \)-axis between \(x = 1 \) and \(x = b \) is rotated around the \(x \) axis and the volume of the resulting solid is \(\frac{\pi}{3} (\ln b)^3 \), for all \(b > 1 \). What is \(f(x) \)?

(a) \((\ln x)^2 \)
(b) \(\frac{\ln x}{\sqrt{x}} \)
(c) \(\frac{\ln x}{x} \)
(d) \(\frac{(\ln x)^2}{x} \)
(e) \(\frac{(\ln x)^2}{\sqrt{x}} \)
7. \[\int_{0}^{\pi} \sin^2(2x) \, dx = \]
(a) 0 (b) 1 (c) 1/2 (d) \[\pi/2 \] (e) \[\pi \] (f) 2\[\pi \]

8. Suppose that \(f(x) \) and \(g(x) \) are two differentiable functions, and we know the following values:
\[
f(0) = 2, \quad f(1) = 3, \quad g(0) = 1, \quad g(1) = 4.
\]
Then \[
\int_{0}^{1} \left(f(x)^2 g'(x) + 2f(x)f'(x)g(x) \right) \, dx =
\]
(a) 6 (b) 12 (c) 14 (d) 16 (e) 32 (f) 48

9. The area bounded by the curves \(y = x^2 - 1 \) and \(y = 2x + 7 \) is
(a) 4 (b) 9 (c) 16 (d) 24 (e) 30 (f) 36

10. If \(f(x) \) is continuous for all \(x \) and \(\lim_{x \to 0} \frac{f(x)}{x} = 4 \), then
\[
\begin{array}{ll}
(a) f(0) = 1 \text{ and } f'(0) = 4 & \text{ (b) } f(0) = 0 \text{ and } f'(0) = 4 \\
(c) f(0) = 4 \text{ and } f'(0) = 0 & \text{ (d) } f(0) = 0 \text{ and } f'(0) = 1 \\
(e) f(0) = 0 \text{ and } f'(0) = 0 & \text{ (f) } f(0) = 4 \text{ and } f'(0) = 1
\end{array}
\]

11. \[\frac{d}{dx} \int_{0}^{\sin x} e^{t^2} \, dt = \]
(a) \(e^{\sin^2 x} \) (b) \(\cos x e^{\sin^2 x} \) (c) \(2 \sin x \cos x e^{\sin^2 x} \) (d) \(\cos x + e^{\sin^2 x} \) (e) \(2 \sin x e^{\sin^2 x} + e^{\sin^2 x} \) (f) \(e^{\cos^2 x} \)

12. \[\int_{1/e}^{e} \frac{(\ln x)^2}{x} \, dx = \]
(a) \(\frac{e^2}{2} - \frac{2}{e^2} \) (b) \(\frac{e}{2} - \frac{2}{e} \) (c) \(\frac{2e}{3} \) (d) \(\frac{2}{3} \) (e) \(\frac{e^2}{2} - \frac{1}{2e^2} \) (f) \(\frac{2e^2}{3} \)

13. What is the average value of the function \(f(x) = \sqrt{\arcsin \frac{x}{1-x^2}} \) on the interval \([0, \frac{1}{2}]\)?
\[
\begin{array}{ll}
(a) \frac{\pi \sqrt{6}}{15} & \text{ (b) } \frac{\pi^{3/2} \sqrt{2}}{54} \\
(c) \frac{\pi \sqrt{3}}{18} & \text{ (d) } \frac{\pi^{3/2} \sqrt{6}}{27} \\
(e) \frac{\pi \sqrt{5}}{48}
\end{array}
\]
14. What is the volume of the solid obtained by rotating the region bounded by the graphs of \(y = \sqrt{x}, \ y = 2 - x \) and \(y = 0 \) around the \(x \)-axis?

(a) \(\frac{5\pi}{6} \) (b) \(\frac{2\pi}{3} \) (c) \(\frac{2\pi}{5} \) (d) \(\frac{11\pi}{6} \) (e) \(\frac{5\pi}{3} \) (f) \(\frac{7\pi}{6} \)

15. The functions \(\cosh x \) and \(\sinh x \) are defined as \(\cosh x = \frac{1}{2}(e^x + e^{-x}) \) and \(\sinh x = \frac{1}{2}(e^x - e^{-x}) \). Calculate the area bounded by the curves \(y = \cosh x, \ y = \sinh x, \ x = 0 \) and \(x = b \). What is the limit of this area as \(b \to \infty \)?

(a) 1 (b) \(e \) (c) \(e + \frac{1}{e} \) (d) \(\frac{1}{e} \) (e) \(\infty \)

16. Suppose \(f(x) \) is a monotonically increasing function on the interval \([0, \infty)\), and that \(f(0) = 2 \) and \(\lim_{x \to \infty} f(x) = 6 \). Suppose \(A(b) \) is the average value of \(f(x) \) on the interval \([0, b]\) for \(b > 0 \). What is \(\lim_{b \to \infty} A(b) \)?

(a) 2 (b) 4 (c) 0 (d) 6 (e) 5 (f) \(\infty \)

17. What is the volume obtained by revolving the region bounded by \(y = x^2 - 4 \) and \(y = 4 - x^2 \) around the line \(x = 2 \)?

(a) \(\frac{16\pi}{3} \) (b) \(\frac{64\pi}{3} \) (c) \(\frac{256\pi}{3} \) (d) \(\frac{512\pi}{3} \) (e) \(\frac{1024\pi}{3} \)

18. \(\int_{\pi/4}^{\pi/2} \cos \frac{\sqrt{x}}{\sqrt{x}} \, dx = \)

(a) 0 (b) 1 (c) \(\sqrt{2} \) (d) 2 (e) \(2\sqrt{2} \) (f) 3

19. Compute \(\int (\sin^2 x + 8)^7 \sin x \cos x \, dx \).

(a) \(\frac{1}{16}(\sin^2 x + 8)^8 + C \) (b) \((\cos^2 x + 8)^7 + C \) (c) \(\frac{1}{2}(\sin^2 x + 8)^8 + C \)

(d) \(\frac{1}{8}(\sin^2 x + 8)^8 + C \) (e) \(\frac{1}{8}(\cos^2 x + 8)^8 + C \) (f) \(\frac{1}{32}(\sin^2 x + 8)^7 + C \)

20. Suppose \(f \) is a continuous function and \(\int_{1}^{9} f(x) \, dx = 6 \). Then \(\int_{1}^{3} xf(x^2) \, dx = \)

(a) 6 (b) 4 (c) 3 (d) 2 (e) 1 (f) 0
21. \[\int_{0}^{1} \frac{e^{\arctan(x)}}{1 + x^2} \, dx = \]
(a) \(e^{\pi/4} - 1 \) (b) \(e^{\pi/4} \) (c) \(e - 1 \) (d) \(\frac{\pi}{4} \) (e) \(\frac{\pi}{4} - e \) (f) \(e^{\pi/2} - e^{\pi/4} \)

22. Find the area between the graphs of \(y = \sin x \) and \(y = \cos x \) for \(0 \leq x \leq \pi/4 \)
(a) \(\frac{\sqrt{2}}{2} \) (b) \(\sqrt{2} \) (c) \(\sqrt{2} - 1 \) (d) \(\frac{\sqrt{2}}{2} + 1 \) (e) \(\frac{\sqrt{2}}{2} - 1 \) (f) 1

23. \[\int_{0}^{\pi/3} \sec^3 x \tan x \, dx \]
(a) \(\frac{\sqrt{2}}{6} - \frac{1}{6} \) (b) \(\frac{\sqrt{3}}{6} - 1 \) (c) \(\frac{11}{3} \) (d) \(\frac{7}{3} \) (e) \(\frac{\sqrt{2}}{3} - \frac{1}{3} \) (f) \(\frac{\sqrt{3}}{2} - \frac{1}{2} \)

24. The base of a solid is the triangle in the \(xy \)-plane with vertices (0,0), (1,0) and (0,1). Cross-sections of the solid perpendicular to the \(x \)-axis are squares. What is the volume of the solid?
(a) \(\frac{2}{3} \) (b) \(\frac{1}{4} \) (c) \(\frac{3}{4} \) (d) \(\frac{4}{3} \) (e) \(\frac{5}{4} \) (f) \(\frac{1}{3} \)

25. Find the volume of the solid obtained by rotating the area between the graphs of \(y = x^2 \) and \(x = 2y \) around the \(y \)-axis.
(a) \(\frac{2\pi}{45} \) (b) \(\frac{\pi}{2} \) (c) \(\frac{\pi}{96} \) (d) \(\frac{\pi}{24} \) (e) \(\frac{\pi}{180} \) (f) \(\frac{3\pi}{64} \)

26. \[\int_{1}^{2} \ln\frac{x}{x^2} \, dx = \]
(a) \(4 - \ln(\sqrt{2}) \) (b) \(\frac{1 - \ln(2)}{2} \) (c) \(\ln(2) - 1 \) (d) \(\ln(2) \) (e) \(1 - \frac{\ln(2)}{2} \) (f) \(\frac{\ln(2)}{2} \)

27. Find the average value of the function \(f(x) = t\sqrt{16 + t^2} \) on the interval \(0 \leq x \leq 3 \).
(a) \(\sqrt{2} \) (b) \(\frac{2\sqrt{2}}{9} \) (c) \(\frac{32}{9} \) (d) \(\frac{61}{3} \) (e) \(\frac{\sqrt{2}}{3} \) (f) \(\frac{61}{9} \)

28. Find the volume obtained by rotating the region between the \(x \)-axis, the \(y \)-axis and the line \(x + y = 1 \) around the line \(x = -2 \).
(a) \(\frac{7\pi}{3} \) (b) \(\frac{7\pi}{6} \) (c) \(\frac{19\pi}{3} \) (d) \(\frac{19\pi}{6} \) (e) \(\frac{19\pi}{12} \) (f) \(\frac{7\pi}{12} \)
29. Find the volume of the solid obtained by rotating the region between the graph of \(y = \sin(x/2) \) and the \(x \)-axis for \(0 \leq x \leq 2\pi \) around the \(y \)-axis.

(a) \(\frac{\pi^2}{4} \) (b) \(\frac{\pi^2}{2} \) (c) \(\pi^2 \) (d) \(2\pi^2 \) (e) \(4\pi^2 \) (f) \(8\pi^2 \)

30. Find the volume of the solid obtained by rotating the region between the graph of \(y = \sin(x/2) \) and the \(x \)-axis for \(0 \leq x \leq 2\pi \) around the \(y \)-axis.

(a) \(\frac{\pi^2}{8} \) (b) \(\frac{\pi^2}{4} \) (c) \(\frac{\pi^2}{2} \) (d) \(\pi^2 \) (e) \(2\pi^2 \) (f) \(4\pi^2 \)

1. Find the area between the graphs of \(y = 1 \) and \(y = x^4 \).

(a) \(\frac{8}{7} \) (b) \(\frac{16}{9} \) (c) \(\frac{16}{5} \) (d) \(\frac{12}{7} \) (e) \(\frac{8}{5} \) (f) \(1 \)

2. Find the volume of the solid obtained by rotating the area between the graphs of \(y = x \sqrt{2-x} \) and \(y = 0 \) around the \(x \)-axis.

(a) \(\frac{\pi}{30} \) (b) \(\frac{\pi}{24} \) (c) \(\frac{4\pi}{3} \) (d) \(\frac{\pi}{12} \) (e) \(\frac{3\pi}{64} \) (f) \(\frac{\pi}{180} \)

3. Find the volume of the solid obtained by rotating the area between the graph of \(y = x \cos x \) and the \(x \)-axis for \(0 < x < \frac{\pi}{2} \) around the \(y \)-axis.

(a) \(\frac{\pi^3}{2} \) (b) \(\frac{2\pi^3}{3} \) (c) \(\frac{\pi^3}{2} - 8\pi \) (d) \(2\pi^3 - 8\pi \) (e) \(2\pi^3 - 4\pi \) (f) \(\frac{\pi^3}{2} - 4\pi \)

4. Find the volume obtained by rotating the square with corners at the points \((0,0), (0,1), (1,1)\) and \((1,0)\) around the line \(x = 4 \).

(a) \(3\pi \) (b) \(5\pi \) (c) \(7\pi \) (d) \(9\pi \) (e) \(11\pi \) (f) \(13\pi \)

5. Let \(V(b) \) be the volume obtained by rotating the area between the \(x \)-axis and the graph of \(y = \frac{1}{x^3} \) from \(x = 1 \) to \(x = b \) around the \(x \)-axis. What is \(\lim_{b \to \infty} V(b) \)?

(a) \(\frac{\pi}{5} \) (b) \(\frac{\pi}{4} \) (c) \(\frac{\pi}{3} \) (d) \(\frac{\pi}{2} \) (e) \(\pi \) (f) \(\infty \)

6. Let \(V(a) \) be the volume obtained by rotating the area between the \(x \)-axis and the graph of \(y = \frac{1}{x^{3/2}} \) from \(x = a \) to \(x = 1 \) around the \(y \)-axis. What is \(\lim_{a \to 0^+} V(a) \)?

(a) \(\frac{\pi}{5} \) (b) \(\frac{4\pi}{3} \) (c) \(\frac{2\pi}{3} \) (d) \(4\pi \) (e) \(\frac{6\pi}{5} \) (f) \(\infty \)
7. \[\int_0^1 \arcsin x \, dx \]
(a) \(\frac{\pi}{3} - \frac{1}{3} \)
(b) \(\frac{\pi}{6} - \ln 2 \)
(c) \(\frac{\pi}{2} - 1 \)
(d) \(\frac{\pi}{4} - \frac{\ln 2}{2} \)
(e) \(\pi - \frac{\ln 2}{6} \)
(f) \(\frac{\pi}{4} - \frac{1}{2} \)

8. \[\int_0^{\sqrt{\pi}} x \sin^2(x^2) \, dx \]
(a) \(\pi \)
(b) \(\frac{\pi}{2} \)
(c) \(\frac{\pi}{3} \)
(d) \(\frac{2\pi}{3} \)
(e) \(\frac{\pi}{4} \)
(f) \(\frac{3\pi}{4} \)

9. Find the area between the graphs of \(y = x^4 + 4x^2 \) and \(y = 4x^3 \).
(a) \(\frac{1}{30} \)
(b) \(\frac{8}{15} \)
(c) \(\frac{16}{15} \)
(d) \(\frac{27}{10} \)
(e) \(\frac{81}{10} \)
(f) \(\frac{512}{15} \)

10. The average value of the function \(f(x) \) on the interval \([0, b] \) is \(\sqrt{b} \). What is \(f(x) \)?
(a) \((1 + x)e^x \)
(b) \(\frac{e^x}{1 + x} \)
(c) \(\cos x + x \sin x \)
(d) \(\sin x + x \cos x \)
(e) \(\frac{3}{2\sqrt{x}} \)
(f) \(\frac{3\sqrt{x}}{2} \)

31. Calculate the length:
(a) of the part of \(y = \frac{1}{3}(x^2 + 2)^{3/2} \) from \(x = 0 \) to \(x = 1 \). (Answer: \(4/3 \))
(b) of the part of \(y = x^{2/3} \) from \(x = -1 \) to \(x = 8 \) (careful!) (Answer: \(\frac{80\sqrt{10} + 13\sqrt{13} - 16}{27} \))
(c) of the part of \(y = \ln(\cos x) \) for \(0 \leq x \leq \pi/4 \). (Answer: \(\ln(\sqrt{2} + 1) \))
(d) of the part of \(y = \ln x \) for \(1 \leq x \leq 2 \) (Answer: \(\sqrt{5} - \sqrt{2} + \frac{1}{2} \ln(\sqrt{5} - 1) - \frac{1}{2} \ln(\sqrt{2} - 1) - \frac{1}{2} \ln(\sqrt{5} + 1) + \frac{1}{2} \ln(\sqrt{2} + 1) \))

32. Calculate the surface area obtained by rotating:
(a) \(y = \sqrt{x} \) around the \(x \) axis for \(0 \leq x \leq 4 \) (Answer: \(\frac{\pi}{6}(17\sqrt{17} - 1) \))
(b) \(y = x^3 \) around the \(x \) axis for \(1 \leq x \leq 2 \) (Answer: \(\frac{\pi}{27}(145\sqrt{145} - 10\sqrt{10}) \))
(c) \(y = \sqrt{9 - x^2} \) around the \(y \) axis for \(1 \leq x \leq 3 \). (Answer: \(12\pi\sqrt{2} \))
(d) \(y = x^2 \) around the \(x \) axis for \(0 \leq x \leq 1 \). (Answer: \(\frac{\pi}{32}(18\sqrt{5} - \ln(\sqrt{5} + 2)) \))