MATH 240 – Homework assignment 1 – January 15, 2015

Make sure you can answer all of the True-False review questions at the end of sections 2.1 and 2.2 of the textbook. Also, make sure you can do the “core problems” (section 2.1: 9, 11, 23, 25 and section 2.2: 5, 13, 16, 19, 39, 43).

Then write up solutions to the following to hand in on Tuesday January 20:

1. Find formulas for \(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^n \) and \(\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^n \).

Try a few cases:

\(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^2 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \)

and

\(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^3 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^2 \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \).

So it would appear that

\(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \).

To prove this, note that we already know that it’s true for \(n = 1, 2, 3 \). So we’ll show that if it’s true for \(n \) then it is also true for \(n + 1 \), which will complete the proof by mathematical induction. So assuming the formula is true for \(n \), we calculate

\(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{n+1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^n \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & n+1 \\ 0 & 1 \end{bmatrix} \)

and we are done.

Likewise

\(\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^2 = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \)

and

\(\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^3 = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^2 \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} \).

The tricky part seems to be the pattern of the numbers in the first row, third column. But 1,3,6 are the first three “triangular” numbers (1 = 1, 3 = 1 + 2, 6 = 1 + 2 + 3 etc), and the formula for the \(n \)th triangular number is \(\frac{1}{2}n(n+1) \). So it appears that

\(\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & n & \frac{1}{2}n(n+1) \\ 0 & 1 & n \\ 0 & 0 & 1 \end{bmatrix} \).
To prove this, we once again know that it is true for \(n = 1, 2, 3 \). So assume that it’s true for \(n \) and we’ll see if it’s true for \(n + 1 \) as follows:

\[
\begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1 \\
\end{bmatrix}^{n+1} = \begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1 \\
\end{bmatrix}^n \begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1 \\
\end{bmatrix} = \begin{bmatrix}
1 & n & \frac{1}{2}n(n+1) \\
0 & 1 & n \\
0 & 0 & 1 \\
\end{bmatrix} \begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1 \\
\end{bmatrix} \\
= \begin{bmatrix}
1 & n+1 & 1 + n + \frac{1}{2}n(n+1) \\
0 & 1 & 1 \\
0 & 0 & 1 \\
\end{bmatrix} = \begin{bmatrix}
1 & n+1 & \frac{1}{2}(n+1)(n+2) \\
0 & 1 & 1 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

which is what we needed to show.

2. (a) Explain why (prove that), for square matrices \(A \) and \(B \), it is true that \(\text{tr}(AB) = \text{tr}(BA) \).

(b) Recall that the \textit{commutator} of two square matrices \(A \) and \(B \) is the matrix \([A, B] = AB - BA \). Explain why it is impossible for \([A, B] = I \), where \(I \) is the appropriately-sized identity matrix.

(a) The trace of a matrix is the sum of its diagonal elements. The \(i \)th diagonal element of \(AB \) is the sum of the products of the elements of the \(i \)th row of \(A \) with the corresponding elements of the \(i \)th column of \(B \), in other words, the sum of all products of the form \(a_{ik}b_{ki} \) for all values of \(k \). Since the trace adds these all together for all values of \(i \), we have that \(\text{tr}(AB) \) is the sum of all products of the form \(a_{ik}b_{ki} \) over all \(i \) and \(k \). Clearly the trace of \(BA \) is the same sum (just organized differently), so \(\text{tr}(AB) = \text{tr}(BA) \). That is the reason the equality holds. In symbols, which may or may not be clearer:

\[
\text{tr}(AB) = \sum_{i=1}^{n} (AB)_{ii} = \sum_{i=1}^{n} \left(\sum_{k=1}^{n} a_{ik}b_{ki} \right) = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik}b_{ki} \\
= \sum_{i=1}^{n} \sum_{k=1}^{n} b_{ki}a_{ik} = \sum_{k=1}^{n} \sum_{i=1}^{n} b_{ki}a_{ik} \\
= \sum_{k=1}^{n} \left(\sum_{i=1}^{n} b_{ki}a_{ik} \right) = \sum_{k=1}^{n} (BA)_{kk} \\
= \text{tr}(BA)
\]

(b) Take the trace of both sides of the equation \([A, B] = I \). The easy side first: \(\text{tr}(I) = n \) if the matrices are \(n \)-by-\(n \), but

\[
\text{tr}([A, B]) = \text{tr}(AB - BA) = \text{tr}(AB) - \text{tr}(BA) = 0
\]

by part (a). So if the \([A, B] \) were equal to \(I \) we would have the equation \(0 = n \), which is impossible.

3. Let \(M(t) \) be the matrix function

\[
M(t) = \begin{bmatrix}
e^t & 3e^{2t} - 3e^t \\
0 & e^{2t}
\end{bmatrix}
\]
Show that $M(t)$ satisfies the matrix differential equation:

$$\frac{dM}{dt} = AM,$$

where A is the matrix

$$A = \begin{bmatrix} 1 & 3 \\ 0 & 2 \end{bmatrix}.$$

We simply calculate both sides of the differential equation and see whether they are the same:

$$\frac{dM}{dt} = \frac{d}{dt} \begin{bmatrix} e^t & 3e^{2t} - 3e^t \\ 0 & e^{2t} \end{bmatrix} = \begin{bmatrix} e^t & 6e^{2t} - 3e^t \\ 0 & 2e^{2t} \end{bmatrix}$$

and

$$AM = \begin{bmatrix} 1 & 3 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} e^t & 3e^{2t} - 3e^t \\ 0 & e^{2t} \end{bmatrix} = \begin{bmatrix} e^t & 6e^{2t} - 3e^t \\ 0 & 2e^{2t} \end{bmatrix}$$

so they’re the same all right.