MATH 240 – Homework assignment 4 – February 3, 2015

Make sure you can answer all of the True-False review questions at the end of sections 4.4, 4.6, 4.7 and 4.9 of the textbook. Also, make sure you can do the “core problems” (section 4.4: 7, 9, 12, 15, 17, 19, 25, 27, 28; section 4.6: 6, 11, 15, 17, 23, 25, 28; section 4.7: 5, 19, 23, 27, 38; section 4.9: 6, 9, 13, 15, 18).

Then write up solutions to the following to hand in on Tuesday February 10:

1. Suppose S and T are subspaces of a vector space V.

 (a) Show that the (set-theoretic) intersection $S \cap T$ is also a subspace of V.

 (b) Show that the (set-theoretic) union $S \cup T$ is not in general a subspace of V (by giving examples where this is not the case).

 (c) Define the set $S + T$ via:
 \[S + T = \{ x + y \mid x \in S \text{ and } y \in T \} \]
 in other words any element of $S + T$ can be written as the sum of two vectors, one from S and one from T. Show that $S + T$ is a subspace of V.

 (d) Show that
 \[\dim(S + T) = \dim S + \dim T - \dim(S \cap T). \]
 (The trick is to choose a “clever” basis for $S + T$).

 (a) We have to check two things: if v and w are arbitrary vectors in $S \cap T$ then $v + w$ is also in $S \cap T$ and for any scalar s, that sv is in $S \cap T$. So first, suppose first that v and w are in $S \cap T$. This means that v and w are both in S and that v and w are both in T. Since S and T are themselves subspaces of V, this implies that $v + w$ is in S and that $v + w$ is in T, and so $v + w \in S \cap T$. Likewise, sv is in S and sv is in T, and so sv is in $S \cap T$. So $S \cap T$ is also a subspace of V.

 (b) Here is an example: the set S of vectors of the form $[a_1, 0]$ is a subspace of \mathbb{R}^2, as is the set T of vectors of the form $[0, a_2]$. But then the set $S \cup T$ contains only vectors where one or the other (or both) of the components is zero, and so it does not contain the vector $[1, 1] = [1, 0] + [0, 1]$, even though both $[1, 0]$ and $[0, 1]$ are in $S \cup T$. Therefore $S \cup T$ is not a subspace of \mathbb{R}^2.

 (c) Suppose v and w are in $S + T$. Then $v = s_1 + t_1$ and $w = s_2 + t_2$ for vectors s_1 and s_2 in S and vectors t_1 and t_2 in T. But then $v + w = (s_1 + t_1) + (s_2 + t_2) = (s_1 + s_2) + (t_1 + t_2)$, and, since S and T are subspaces, $s_1 + s_2 \in S$ and $t_1 + t_2 \in T$, and so $v + w \in S + T$. Likewise, for any scalar a, $av = a(s_1 + t_1) = as_1 + at_1$, and $as_1 \in S$ and $at_1 \in T$, again because S and T are subspaces, and so $av \in S + T$. Thus $S + T$ is a subspace of V.

 (d) We choose a basis of $S + T$ as follows. Begin with the subspace $S \cap T$ of $S + T$, and let $\{v_1, \ldots, v_p\}$ be a basis of $S \cap T$, where $p = \dim(S \cap T)$.

 Since $S \cap T$ is a subspace of S, we have that v_1, \ldots, v_p are linearly dependent vectors in S, so the set $\{v_1, \ldots, v_p\}$ can be completed to a basis $\{v_1, \ldots, v_p, s_{p+1}, \ldots, s_q\}$ of S, where $q = \dim S$. None of the $q - p$ vectors s_{p+1}, \ldots, s_q are in T, because they are not in $S \cap T$.

Likewise, since $S \cap T$ is a subspace of T, we have that v_1, \ldots, v_p are linearly dependent vectors in T, so the set \{ v_1, \ldots, v_p \} can be completed to a basis \{ $v_1, \ldots, v_p, t_{p+1}, \ldots, t_r$ \} of T, where $r = \dim T$. And none of the $r - p$ vectors t_{p+1}, \ldots, t_r are in S, because they are not in $S \cap T$.

Altogether, the set \{ $v_1, \ldots, v_p, s_{p+1}, \ldots, t_r$ \} form a basis of $S + T$, since they are linearly independent and clearly span $S + T$. And so the dimension of $S + T$ is number of vectors in this basis, namely $p + (q - p) + (r - p) = q + r - p = \dim S + \dim T - \dim(S \cap T)$, which is what we set out to show.

2. Compute the dimension and find bases for the following vector spaces:

(a) Real skew-symmetric 4-by-4 matrices.

(b) Polynomials $p(x)$ of degree 4 which have the property that $p(2) = 0$ and $p(3) = 0$.

(c) Cubic polynomials $p(x, y)$ in two real variables with the properties: $p(0, 0) = 0$, $p(1, 0) = 0$ and $p(0, 1) = 0$.

(a) The dimension of this space is 6 and a basis is

$$\begin{bmatrix}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0
\end{bmatrix} \}$$

(b) One way to do this would be to start with all quartic (degree-4) polynomials written in the form $a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$, and imposing the equations $a_1 + 2a_3 + 4a_2 + 8a_3 + 16a_4 = 0$ and $a_0 + 3a_1 + 9a_2 + 27a_3 + 81a_4 = 0$, but that looks like a messy computation. Rather, you can use the factor theorem and write polynomials p for which $p(2) = p(3) = 0$ as $(x - 2)(x - 3)(a_0 + a_1 x + a_2 x^2)$. In this way it is clear that the space of such polynomials is three-dimensional and a basis is

$$\{(x - 2)(x - 3), x(x - 2)(x - 3), x^2(x - 2)(x - 3)\}.$$

(c) This one is a little harder. A cubic polynomial $p(x, y)$ has the form:

$$p(x, y) = a_{00} + a_{10} x + a_{01} y + a_{20} x^2 + a_{11} xy + a_{02} y^2 + a_{30} x^3 + a_{21} x^2 y + a_{12} xy^2 + a_{03} y^3.$$

Since $p(0, 0) = a_{00}$, the condition $p(0, 0) = 0$ simply says that $a_{00} = 0$. Next, $p(1, 0) = a_{00} + a_{10} + a_{20} + a_{30}$. Since a_{00} is already zero, the new condition is $a_{10} + a_{20} + a_{30} = 0$. Likewise, the condition $p(0, 1) = 0$ means that $a_{01} + a_{02} + a_{03} = 0$. These are clearly three independent conditions on the ten variables a_{ij}, so the dimension of the space is 7 and a basis is

$$\{x^2 - x, xy, y^2 - y, x^3 - x, x^2 y, xy^2, y^3 - y\}.$$
3. Let \(A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \). Show that the set of 2-by-2 matrices that commute with \(A \) (i.e., matrices \(B \) for which \(AB = BA \)) is a subspace of the vector space of 2-by-2 matrices, and find the dimension of and a basis for this subspace.

To show that the set of matrices that commute with \(A \) is a subspace, first note that the 2-by-2 zero matrix \(0 \) commutes with \(A \), since \(A0 = 0A = 0 \) (this shows that the set of matrices that commute with \(A \) is not empty). Next, suppose that \(B \) and \(C \) are 2-by-2 matrices that commute with \(A \), so that \(AB = BA \) and \(AC = CA \). Then \(A(B + C) = AB + AC = BA + CA = (B + C)A \), so \(B + C \) also commutes with \(A \). Likewise, if \(s \) is a scalar, then \(A(sB) = s(AB) = s(BA) = (sB)A \), so \(sB \) also commutes with \(A \). Therefore the set of matrices that commute with \(A \) is closed under both addition and scalar multiplication and so is a subspace of the space of all 2-by-2 matrices.

Two (linearly independent, unless \(A = I \)) matrices that commute with \(A \) are obviously the identity matrix \(I \) and \(A \) itself. So the question is whether there are others besides linear combinations of \(I \) and \(A \).

To find out, begin by writing the matrix \(B \) as \(B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \). Then
\[
AB = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} b_{11} + 2b_{21} & b_{12} + 2b_{22} \\ 2b_{11} + b_{21} & 2b_{12} + b_{22} \end{bmatrix}
\]
and
\[
BA = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} b_{11} + 2b_{12} & 2b_{11} + b_{12} \\ b_{21} + 2b_{22} & 2b_{21} + b_{22} \end{bmatrix}
\]
Therefore
\[
AB - BA = \begin{bmatrix} 2b_{21} - 2b_{12} & 2b_{22} - 2b_{11} \\ 2b_{11} - 2b_{22} & 2b_{12} - 2b_{21} \end{bmatrix}
\]
At first glance, this seems to place four conditions on the matrix \(B \) (all four components of the matrix \(AB - BA \) must equal zero), but there are actually only two independent conditions, namely \(b_{21} = b_{12} \) and \(b_{11} = b_{22} \). So the matrices that commute with \(A \) are all of the form:
\[
\begin{bmatrix} p & q \\ q & p \end{bmatrix}
\]
for various values of \(p \) and \(q \). So a basis is
\[
\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}
\]
and the dimension of this space is 2 (note that we could also have used \(\{I, A\} \) as a basis.

4. (a) Show that the set of polynomials \(B = \{1, x, x(x - 1), x(x - 1)(x - 2), x(x - 1)(x - 2)(x - 3)\} \) is a basis for the vector space \(P_3 \) of quartic polynomials.

(b) By multiplying out the elements of \(B \), you can express them in terms of the standard basis for \(P_3 \), namely \(A = \{1, x, x^2, x^3, x^4\} \). Explain how to use linear algebra (in particular, the computation
of a certain inverse matrix) to express the elements of A in terms of the elements of B. We’ll talk more about this and why it’s useful next week.

(a) Call the polynomials $p_0 = 1$, $p_1 = x$, $p_2 = x(x - 1)$, $p_3 = x(x - 1)(x - 2)$ and $p_4 = x(x - 1)(x - 2)(x - 3)$. There are five of them, and the dimension of P_4 is five, so we need only show that they are linearly independent. So suppose we have five constants a_0, \ldots, a_4 so that $a_0p_0 + a_1p_1 + a_2p_2 + a_3p_3 + a_4p_4 = 0$. Since p_4 is the only one of the p_i’s to have an x^4 term, we must then have $a_4 = 0$ or else the sum will have a non-zero x^4 term. But if $x_4 = 0$, then p_3 is the only one of the remaining p_i’s to have a cubic term, so we must have $a_3 = 0$ or else the sum will have a non-zero x^3 term. And now that a_4 and a_3 are zero, then p_2 is the only one of the remaining p_i’s with a quadratic term, so a_2 must equal zero or else the sum will have a non-zero quadratic term. Likewise $a_1 = 0$ or else the sum will have a non-zero linear term, and then $a_0 = 0$ or else the sum will be a non-zero constant. So we’ve shown that the only way we can arrange for $a_0p_0 + a_1p_1 + a_2p_2 + a_3p_3 + a_4p_4 = 0$ is to set $a_0 = a_1 = a_2 = a_3 = a_4 = 0$. Therefore the polynomials p_0, \ldots, p_4 are linearly independent and so $\{p_0, p_1, \ldots, p_4\}$ is a basis for P_4.

(b) We have $p_0 = 1$, $p_1 = x$, $p_2 = x^2 - x$, $p_3 = x^3 - 3x^2 + 2x$ and $p_4 = x^4 - 6x^3 + 11x^2 - 6x$. Therefore

$$a_0p_0 + a_1p_1 + a_2p_2 + a_3p_3 + a_4p_4 + 4 = a_0 + (a_1 - a_2 + 2a_3 - 6a_4)x + (a_2 - 3a_3 + 11a_4)x^2 + (a_3 - 6a_4)x^3 + a_4x^4.$$

In matrix-speak, if $[a_0, a_1, a_2, a_3, a_4]_B$ is the vector of a polynomial in the basis B, then

$$\begin{bmatrix}
 c_0 \\
 c_1 \\
 c_2 \\
 c_3 \\
 c_4
\end{bmatrix}_S = \begin{bmatrix}
 1 & 0 & 0 & 0 & 0 \\
 0 & 1 & -1 & 2 & -6 \\
 0 & 0 & 1 & -3 & 11 \\
 0 & 0 & 0 & 1 & -6 \\
 0 & 0 & 0 & 1 & 0
\end{bmatrix} \begin{bmatrix}
 a_0 \\
 a_1 \\
 a_2 \\
 a_3 \\
 a_4
\end{bmatrix}_B.$$

To go from the representation of a polynomial in the standard basis to the B basis (i.e., how to represent x^3 as a linear combination of the p_i’s?), we need to invert the above matrix. This is not so hard, since the matrix is already upper-triangular with 1’s on the main diagonal (i.e., it is already in row-echelon form). So we go the rest of the way:

$$\begin{bmatrix}
 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 1 & -1 & 2 & 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 1 & -3 & 11 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0
\end{bmatrix} \begin{bmatrix}
 a_0 & 0 & 0 & 0 & 0 \\
 0 & a_1 & 0 & 0 & 0 \\
 0 & 0 & a_2 & 0 & 0 \\
 0 & 0 & 0 & a_3 & 0 \\
 0 & 0 & 0 & 0 & a_4
\end{bmatrix}_B.$$
So we have found the change of basis matrix $P_{B \rightarrow S}$ and we’ll have:

$$
\begin{bmatrix}
 a_0 \\
 a_1 \\
 a_2 \\
 a_3 \\
 a_4 \\
\end{bmatrix}_B =
\begin{bmatrix}
 1 & 0 & 0 & 0 & 0 \\
 0 & 1 & 1 & 1 & 1 \\
 0 & 0 & 1 & 3 & 7 \\
 0 & 0 & 0 & 1 & 6 \\
 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 c_0 \\
 c_1 \\
 c_2 \\
 c_3 \\
 c_4 \\
\end{bmatrix}_S.
$$

For instance, in the standard basis, the polynomial x^3 is represented by the vector $v_S = [0, 0, 0, 1, 0]^T_S$ (the transpose is to make v_S a column vector). If we multiply this vector by $P_{B \rightarrow S}$ we should get x^3 represented as a sum of elements of the basis B. And $v_B = P_{B \rightarrow S} [0, 1, 3, 1, 0]^T_B$, and we can check:

$$
0(1)+1(x)+3(x(x-1))+1(x(x-1)(x-2))+0(x(x-1)(x-2)(x-3)) = x+(3x^2-3x)+(x^3-3x^2+2x) = x^3.
$$