Math 241: More heat equation/Laplace equation

D. DeTurck

University of Pennsylvania

September 27, 2012
Another example

- Another heat equation problem:

\[u_t = \frac{1}{2} u_{xx}, \quad u(0, t) = 0, \ u_x(L, t) = 0, \quad u(x, 0) = 2Lx - x^2 \]

for \(t > 0 \) and \(0 \leq x \leq L \).
Another example

• Another heat equation problem:

\[u_t = \frac{1}{2} u_{xx}, \quad u(0, t) = 0, u_x(L, t) = 0, \quad u(x, 0) = 2Lx - x^2 \]

for \(t > 0 \) and \(0 \leq x \leq L \).

• To match the boundary conditions this time, we’ll assume that we can express \(u \) as

\[u(x, t) = \sum_{n=0}^{\infty} b_n e^{-(n+\frac{1}{2})^2 \pi^2 t / 4 L^2} \sin \left(\frac{(n + \frac{1}{2})\pi x}{L} \right) \]

and see if we can figure out what the constants \(b_n \) should be — we know that the boundary conditions are automatically satisfied, and perhaps we can choose the \(b_n \)'s so that

\[2Lx - x^2 = \sum_{n=0}^{\infty} b_n \sin \left(\frac{(n + \frac{1}{2})\pi x}{L} \right). \]
Integral facts

- We’re trying to find b_n’s so that

$$2Lx - x^2 = \sum_{n=0}^{\infty} b_n \sin \left(\frac{n + \frac{1}{2}}{L} \pi x \right).$$
Integral facts

• We’re trying to find \(b_n \)’s so that

\[
2Lx - x^2 = \sum_{n=0}^{\infty} b_n \sin \left(\frac{(n + \frac{1}{2})\pi x}{L} \right).
\]

• We’ll use two basic facts:

• If \(n \neq m \) then

\[
\int_0^L \sin \left(\frac{(n + \frac{1}{2})\pi x}{L} \right) \sin \left(\frac{(m + \frac{1}{2})\pi x}{L} \right) \, dx = 0.
\]

• If \(n = m \) then

\[
\int_0^L \sin \left(\frac{(n + \frac{1}{2})\pi x}{L} \right) \sin \left(\frac{(m + \frac{1}{2})\pi x}{L} \right) \, dx = \int_0^L \sin^2 \left(\frac{(n + \frac{1}{2})\pi x}{L} \right) \, dx = \frac{L}{2}.
\]
Finding the coefficients

• We’re still trying to find b_n’s so that

$$2Lx - x^2 = \sum_{n=0}^{\infty} b_n \sin \frac{(n + \frac{1}{2})\pi x}{L}.$$

• Motivated by the facts on the previous slide, we multiply both sides by $\sin \frac{(m_1)\pi x}{L}$ and integrate both sides from 0 to L:

$$\int_{0}^{L} (2Lx - x^2) \sin \frac{(m + \frac{1}{2})\pi x}{L} \, dx = \int_{0}^{L} \left(\sum_{n=0}^{\infty} b_n \sin \frac{(n + \frac{1}{2})\pi x}{L} \right) \sin \frac{(m + \frac{1}{2})\pi x}{L} \, dx$$

$$= \sum_{n=0}^{\infty} b_n \int_{0}^{L} \sin \frac{(n + \frac{1}{2})\pi x}{L} \sin \frac{(m + \frac{1}{2})\pi x}{K} \, dx$$

$$= \frac{Lb_m}{2}$$
Integration by parts

- It’s an exercise in integration by parts to show that

\[\int_0^L (2Lx - x^2) \sin \left(\frac{m + \frac{1}{2}}{L} \pi x \right) dx = \frac{8L^3}{(m + \frac{1}{2})^3 \pi^3} \]
Integration by parts

- It’s an exercise in integration by parts to show that

$$\int_0^L (2Lx - x^2) \sin \frac{(m + \frac{1}{2})\pi x}{L} \, dx = \frac{8L^3}{(m + \frac{1}{2})^3\pi^3}$$

- Therefore,

$$b_m = \frac{32L^2}{(2m + 1)^3\pi^3}$$
Integration by parts

• It’s an exercise in integration by parts to show that

\[
\int_0^L (2Lx - x^2) \sin \left(\frac{m + \frac{1}{2}}{L} \pi x \right) \, dx = \frac{8L^3}{(m + \frac{1}{2})^3 \pi^3}
\]

• Therefore,

\[
b_m = \frac{32L^2}{(2m + 1)^3 \pi^3}
\]

• So we arrive at a candidate for the solution:

\[
u(x, t) = \sum_{n=0}^{\infty} \frac{32L^2}{(2n + 1)^3 \pi^3} e^{-\left(\frac{n + \frac{1}{2}}{2L^2}\right)^2 \pi^2 t} \sin \left(\frac{n + \frac{1}{2}}{L} \pi x \right)
\]
Validating the solution

- The series

\[u(x, t) = \sum_{n=0}^{\infty} \frac{32L^2}{(2n + 1)^3 \pi^3} e^{-\left(\frac{n + \frac{1}{2}}{2L^2}\right)^2 \pi^2 t / 2L^2} \sin \left(\frac{n + \frac{1}{2}}{L} \pi x \right) \]

converges for \(t \geq 0 \), and certainly satisfies the boundary conditions. What about the initial condition \(u(x, 0) = 2Lx - x^2 \)?
Validating the solution

• The series

\[u(x, t) = \sum_{n=0}^{\infty} \frac{32L^2}{(2n + 1)^3 \pi^3} e^{-(n+\frac{1}{2})^2 \pi^2 t / 2L^2} \sin \left(\frac{(n + \frac{1}{2})\pi x}{L} \right) \]

converges for \(t \geq 0 \), and certainly satisfies the boundary conditions. What about the initial condition \(u(x, 0) = 2Lx - x^2 \)?

• Well,

\[u(x, 0) = \sum_{n=0}^{\infty} \frac{32L^2}{(2n + 1)^3 \pi^3} \sin \left(\frac{(n + \frac{1}{2})\pi x}{L} \right) \]
Graphical evidence

Use $L = 5$. Red graph: $10x - x^2$, Blue graph: sum

One term:

Three terms:
Plotting the solution

Here is a plot of the sum of the first three terms of the solution:
Laplace equation on a rectangle

• The two-dimensional Laplace equation is

\[u_{xx} + u_{yy} = 0. \]

Solutions of it represent equilibrium temperature (squirrel, etc) distributions, so we think of both of the independent variables as space variables.
• The two-dimensional Laplace equation is

\[u_{xx} + u_{yy} = 0. \]

Solutions of it represent equilibrium temperature (squirrel, etc) distributions, so we think of both of the independent variables as space variables.

• We’ll solve the equation on a bounded region (at least at first), and it’s appropriate to specify the values of \(u \) on the boundary (Dirichlet boundary conditions), or the values of the normal derivative of \(u \) at the boundary (Neumann conditions), or some mixture of the two.
One uniqueness proof: suppose $u = 0$ on the boundary of the region (so u could arise as the difference between two solutions of the Dirichlet problem).
One uniqueness proof: suppose \(u = 0 \) on the boundary of the region (so \(u \) could arise as the difference between two solutions of the Dirichlet problem).

Since \(\nabla \cdot (u \nabla u) = u \nabla \cdot \nabla u + (\nabla u) \cdot (\nabla u) \), the divergence theorem tells us:

\[
\int_{\partial R} u \nabla u \cdot n \, ds - \int_R \nabla^2 u \, dA.
\]

But the right side is zero because \(u = 0 \) on \(\partial R \) (the boundary of \(R \)) and because \(\nabla^2 u = 0 \) throughout \(R \).

So we conclude \(u \) is constant, and thus zero since \(u = 0 \) on the boundary.
Uniqueness proof #1

- One uniqueness proof: suppose \(u = 0 \) on the boundary of the region (so \(u \) could arise as the difference between two solutions of the Dirichlet problem).
- Since \(\nabla \cdot (u \nabla u) = u \nabla \cdot \nabla u + (\nabla u) \cdot (\nabla u) \), the divergence theorem tells us:
 \[
 \int \int_{R} |\nabla u|^2 \, dA = \oint_{\partial R} u \nabla u \cdot \mathbf{n} \, ds - \int \int_{R} u \nabla^2 u \, dA.
 \]
- But the right side is zero because \(u = 0 \) on \(\partial R \) (the boundary of \(R \)) and because \(\nabla^2 = 0 \) throughout \(R \).
Uniqueness proof #1

• One uniqueness proof: suppose \(u = 0 \) on the boundary of the region (so \(u \) could arise as the difference between two solutions of the Dirichlet problem).

• Since \(\nabla \cdot (u \nabla u) = u \nabla \cdot \nabla u + (\nabla u) \cdot (\nabla u) \), the divergence theorem tells us:

\[
\iint_R |\nabla u|^2 \, dA = \oint_{\partial R} u \nabla u \cdot \mathbf{n} \, ds - \iint_R u \nabla^2 u \, dA.
\]

• But the right side is zero because \(u = 0 \) on \(\partial R \) (the boundary of \(R \)) and because \(\nabla^2 = 0 \) throughout \(R \).

• So we conclude \(u \) is constant, and thus zero since \(u = 0 \) on the boundary.
Case 1: \(R \) is a rectangle

- We’ll first solve the Dirichlet problem on a rectangle, say \(0 \leq x \leq L \) and \(0 \leq y \leq M \).
Case 1: \(R \) is a rectangle

- We’ll first solve the Dirichlet problem on a rectangle, say \(0 \leq x \leq L \) and \(0 \leq y \leq M \).

- Let’s see what we get by separation of variables: Let \(u(x, y) = X(x)Y(y) \), then \(X''Y + XY'' = 0 \), or

\[
\frac{X''}{X} = -\frac{Y''}{Y} = \lambda
\]

a constant because \(X'''/X \) is a function of \(x \) alone and \(Y''/Y \) is a function of \(y \) alone.
Case 1: R is a rectangle

- We’ll first solve the Dirichlet problem on a rectangle, say $0 \leq x \leq L$ and $0 \leq y \leq M$.
- Let’s see what we get by separation of variables: Let $u(x, y) = X(x)Y(y)$, then $X''Y + XY'' = 0$, or

$$\frac{X''}{X} = -\frac{Y''}{Y} = \lambda$$

a constant because X''''/X is a function of x alone and Y''/Y is a function of y alone.
- The boundary data might look like:

$$u(x, 0) = f(x), \quad u(L, y) = g(y)$$

$$u(x, M) = h(x), \quad u(0, y) = k(y)$$

but that’s too much to deal with all at once.
• You can add together four solutions to problems with boundary data like:

\[u(x, 0) = 0, \quad u(L, y) = 0 \]
\[u(x, M) = 0, \quad u(0, y) = k(y) \]
You can add together four solutions to problems with boundary data like:

\[u(x, 0) = 0, \quad u(L, y) = 0 \]
\[u(x, M) = 0, \quad u(0, y) = k(y) \]

Since \(u \) is zero for two values of \(y \), we’ll use \(Y'' + \alpha^2 Y = 0 \), so \(X'' - \alpha^2 X = 0 \).

This gives

\[Y = \sin \left(\frac{n\pi y}{M} \right) \quad n = 1, 2, 3 \ldots \]

and \(\alpha = \frac{n\pi}{M} \).
You can add together four solutions to problems with boundary data like:

\[u(x, 0) = 0, \quad u(L, y) = 0 \]
\[u(x, M) = 0, \quad u(0, y) = k(y) \]

Since \(u \) is zero for two values of \(y \), we’ll use \(Y'' + \alpha^2 Y = 0 \), so \(X'' - \alpha^2 X = 0 \).

This gives

\[Y = \sin \left(\frac{n\pi y}{M} \right) \quad n = 1, 2, 3 \ldots \]

and \(\alpha = \frac{n\pi}{M} \).

A useful way to write the corresponding \(X \) solutions is

\[X = \sinh \left(\frac{n\pi}{M} (L - x) \right) \]

so that \(X(L) = 0 \).
So we now have

\[u(x, y) = \sum_{n=1}^{\infty} b_n \sinh \left(\frac{n\pi}{M} (L - x) \right) \sin \left(\frac{n\pi y}{M} \right). \]

and we have to match:

\[u(0, y) = k(y) = \sum_{n=1}^{\infty} b_n \sinh \left(\frac{n\pi L}{M} \right) \sin \left(\frac{n\pi y}{M} \right). \]
So we now have

$$u(x, y) = \sum_{n=1}^{\infty} b_n \sinh \left(\frac{n\pi}{M} (L - x) \right) \sin \left(\frac{n\pi y}{M} \right).$$

and we have to match:

$$u(0, y) = k(y) = \sum_{n=1}^{\infty} b_n \sinh \left(\frac{n\pi L}{M} \right) \sin \left(\frac{n\pi y}{M} \right).$$

Thus

$$b_n = \frac{2}{M \sinh \left(\frac{n\pi L}{M} \right)} \int_{0}^{M} k(y) \sin \left(\frac{n\pi y}{M} \right) \, dy.$$
Laplace on a disk

• Next up is to solve the Laplace equation on a disk with boundary values prescribed on the circle that bounds the disk.

• We’ll use polar coordinates for this, so a typical problem might be:

\[\nabla^2 u = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0 \]

on the disk of radius \(R = 3 \) centered at the origin, with boundary condition

\[u(3, \theta) = \begin{cases}
1 & 0 \leq \theta \leq \pi \\
\sin^2 \theta & \pi < \theta < 2\pi
\end{cases} \]