
Inhomogeneous problems

Q. How do you kill a blue elephant?
A. With a blue elephant gun

Q. How do you kill a pink elephant?
A. Squeeze its trunk until it turns blue, and then shoot it with a blue elephant gun.

Q. How do you kill a white elephant?
A. Tickle it pink, then squeeze its trunk until it turns blue, and then shoot it with a blue
elephant gun.

Q. How do you kill a yellow elephant?
A. Who’s ever heard of a yellow elephant?

Up to now, we’ve dealt almost exclusively with problems for the wave and heat
equations where the equations themselves and the boundary conditions are homoge-
neous. So a typical heat equation problem looks like

ut = k∇2u for x ∈ D, t > 0

for a domain D (an interval on the line or region in the plane or in 3-space), subject
to conditions like

u(x, t) = 0 (or
∂u

∂n
= 0) or some combination of these

for x in the boundary of the region, and

u(x, 0) = f(x) in D.

There are two new kinds of inhomogeneity we will introduce here. The first is an
inhomogeneous boundary condition — so instead of being zero on the boundary, u (or
∂u/∂n) will be required to equal a given function on the boundary. The second kind
is a “source” or “forcing” term in the equation itself (we usually say “source term”
for the heat equation and “forcing term” with the wave equation), so we’d have

ut = ∇2u+Q(x, t)

for a given function Q.

The method we’re going to use to solve inhomogeneous problems is captured in
the elephant joke above. Up to now, we’re good at “killing blue elephants” — that is,
solving problems with inhomogeneous initial conditions. So if we encounter a “pink
elephant” — a PDE with a source or forcing term — we’ll do something to change the
problem into a different problem without the forcing term but with inhomogeneous
initial conditions (or different ones from the ones we had to begin with). And if we
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encounter a “white elephant” — a problem with inhomogeneous boundary values —
we’ll exchange the problem for one with a (different) forcing term (and different initial
conditions), and then exchange that one for one whose only inhomogeneity is in the
initial data.

That’s the idea, and now we’ll illustrate with examples.

Example 1 – a source term

We consider the following problem for the heat equation:

ut = 5uxx + e−t for 0 < x < 1 and t > 0

u(0, t) = 0, u(1, t) = 0

u(x, 0) = x(1− x)

This problem has homogeneous boundary conditions (u(0, t) = u(1, t) = 0) but has
the source term e−t in the differential equation, so we deal with the source term first.

The way to deal with source (and forcing) terms is called the “method of eigenfunc-
tion expansions”. In it, we take the non-t part of the differential equation (the uxx)
and consider the eigenfunctions of it taken together with the homogeneous boundary
conditions. We’re used to this, it’s the problem for X(x) that we’ve been encountering
when we separate variables:

X ′′ + λX = 0 X(0) = X(1) = 0.

We know that the eigenfunctions are sinnπx for n = 1, 2, 3, . . . and the corresponding
values of λ are n2π2 for n = 1, 2, 3, . . ..

To get rid of the source term, we seek a solution of the equation in the form

u(x, t) =
∞∑
n=1

an(t) sinnπx

So we’re looking at the function u(x, t) as a time-varying function on the interval
0 < x < 1 — and so we’re writing it as a Fourier sine series whose coefficients
are allowed to vary with time. Because the boundary conditions are homogeneous,
we are justified in plugging the series into the differential equation and moving the
derivatives under the summation sign (my Math 360 conscience made me say that).
So the differential equation becomes

∞∑
n=1

a′n(t) sinnπx =
∞∑
n=1

−n2π2an(t) sinnπx+ e−t

We move the uxx sum to the left side and combine the sums to obtain
∞∑
n=1

(a′n + n2π2an) sinnπx = e−t. (∗)



math 425 3

Now, since we have a Fourier sine series (in x) on the left, we need to have a Fourier
sine series (in x) on the right, so we expand the function e−t as a Fourier sine series
in x with coefficients that are functions of t:

e−t =
∞∑
n=1

bn(t) sinnπx

where

bn = 2

∫ 1

0

e−t sinnπx dx = −2e−t

nπ
cosnπx

∣∣∣∣x=1

x=0

=
2e−t

nπ
(1−(−1)n) =


4e−t

nπ
n odd

0 n even

Now we can set the coefficients a′n + n2π2an on the left side of equation (*) equal to
the bn’s that we have found on the right, so we have the differential equations

a′n + n2π2an = 0 for even n

and

a′n + n2π2an =
4e−t

nπ
for odd n.

The general solution for even n is an(t) = cne
−n2π2t – this is also the “complementary

solution” for odd n. But for the odd n we need a particular solution of

a′n + n2π2an =
4e−t

nπ
,

which we find by the method of undetermined coefficients: Taking our cue from the
right side of the equation, we guess that the particular solution is an = Ae−t, and
substitute this into the equation and get

(−1 + n2π2)Ce−t =
4e−t

nπ
,

so C = 4/(n3π3 − nπ) and so for odd n we have

an(t) =
4e−t

nπ(n2π2 − 1)
+ cne

−n2π2t.

OK, so far we have

u(x, t) =
∞∑
n=1

cne
−n2π2t sinnπx+

∑
n odd

4e−t sinnπx

nπ(n2π2 − 1)
,

and for any (reasonable) choice of the cn’s this will satisfy the partial differential
equation and the boundary conditions. So we’re done with the pink elephant, and
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now we have to choose the cn’s so that the initial condition u(x, 0) = x(1 − x) is
satisfied.

From our expression for u(x, t), we have that

u(x, 0) =
∞∑
n=1

cn sinnπx+
∑
n odd

4 sinnπx

nπ(n2π2 − 1)
,

and since we want this to be x(1− x), we’ll need the Fourier sine series for x(1− x),
which is

x(1− x) =
∑
n odd

8

n3π3
sinnπx

(we’ve done this one before). We conclude that for even n we have cn = 0, and for
odd n we have

cn +
4

nπ(n2π2 − 1)
=

8

n3π3
,

so

cn =
4(n2π2 − 2)

n3π3(n2π2 − 1)
.

Altogether, then, the solution of the problem is

u(x, t) =
∑
n odd

4(n2π2 − 2)

n3π3(n2π2 − 1)
e−n

2π2t sinnπx+
∑
n odd

4e−t sinnπx

nπ(n2π2 − 1)
,

which we could also write (substituting 2k + 1 for “n odd”)

u(x, t) =
∞∑
k=0

(
4[(2k + 1)2π2 − 2]

(2k + 1)3π3[(2k + 1)2π2 − 1]
e−(2k+1)2π2t +

4e−t

(2k + 1)π[(2k + 1)2π2 − 1]

)
sin(2k+1)πx.

This is the solution — the second term in the parentheses is devoted to the source
term in the equation, and the first addresses the initial conditions.

Example 2 – the works

This time we’ll consider a problem involving the wave equation:

utt = 4uxx + (t+ 1)x for 0 < x < π and t > 0

u(0, t) = 0, u(π, t) = sinαt

u(x, 0) = 0, ut(x, 0) = 0

This problem has both a forcing term (t+ 1)x in the equation and an inhomogeneous
boundary condition u(π, t) = sinαt — we put the parameter α in the problem to
illustrate something later. It won’t matter that the initial conditions start out ho-
mogeneous, because in compensating for the other inhomogeneities we will introduce
initial values and have to deal with them anyway.



math 425 5

When the boundary conditions are inhomogeneous, we always start with them,
and try to find the simplest possible function ubd(x, t) that satisfies them. In this
case, since we have u(0, t) = 0 and u(π, t) = sinαt, it would make sense to use a
function that is linear in x to match the boundary conditions for each t, that is,

ubd(x, t) =
x

π
sinαt.

Then we’ll set
v(x, t) = u(x, t)− ubd(x, t).

We’ll calculate what initial/boundary-value problem for v is implied by the one we’re
solving for u — it should and will have homogeneous boundary conditions. Then
we’ll solve the new problem for v and finally let u = v + ubd to solve the original
problem.

So we calculate: we have

vtt(x, t) = utt(x, t)− (ubd)tt(x, t) = utt(x, t) +
α2x

π
sinαt

and
vxx(x, t) = uxx(x, t)− (ubd)xx(x, t) = uxx(x, t).

We can substitute this into the differential equation utt = 4uxx + (1 + t)x to get

vtt = 4vxx + (1 + t)x+
α2x

π
sinαt.

The initial and boundary conditions for v will be those for u− ubd, so

v(0, t) = 0, v(π, t) = 0

and, since ubd(x, 0) = 0 and (ubd)t(x, 0) = αx/π, the initial conditions for v will be

v(x, 0) = 0, vt(x, 0) = −αx
π
.

Now (having dealt with the “white elephant”) we’re back in the situation of Example
1, with homogeneous boundary conditions and an inhomogeneous equation. We’ll
seek the function v in the form

v(x, t) =
∞∑
n=1

an(t) sinnx

because sinnx are the eigenfunctions of X ′′ + λX = 0 with boundary conditions
X(0) = X(π) = 0. We put this into the differential equation for v and obtain (after
moving the 4vxx term to the left side)

∞∑
n=1

(a′′n + 4n2an) sinnx = (1 + t)x+
α2x

π
sinαt =

[
(1 + t) +

α

π
sinαt

]
x.
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So we need the Fourier sine series (in x, with coefficients that vary with t) for the
function on the right side. It’s not as bad as it looks, since the right side is just a
multiple of x, and since

2

π

∫ π

0

x sinnx dx =
2

π

(
−x
n

cosnx
∣∣∣π
0

+

∫ π

0

cosnx

n
dx

)
= (−1)n+1 2

n
,

the differential equation becomes

∞∑
n=1

(a′′n + 4n2an) sinnx =
∞∑
n=1

(
(1 + t) +

α2

π
sinαt

)
(−1)n+1 2

n
sinnx.

Setting the coefficients of sinnx equal to one another gives differential equations for
the an(t):

a′′n + 4n2an = (−1)n+1 2

n

(
(1 + t) +

α2

π
sinαt

)
.

As usual, we’ll find a particular solution by the method of undetermined coefficients,
and add to it the complementary solution cn cos 2nt+ dn sin 2nt of a′′n + 4n2an = 0.

Here is the little complication introduced by the presence of the parameter α —
and it has a physical meaning. If α 6= 2n, then our guess for the particular solution
will be

ap = A+Bt+ C sinαt+D cosαt

which gives us

a′′p + 4n2ap = (−Cα2 sinαt−Dα2 cosαt) + 4n2(A+Bt+ C sinαt+D cosαt)

= 4n2(A+Bt) + (4n2 − α2)(C sinαt+D cosαt)

so to match the coefficients we must choose

A = B =
(−1)n+1

2n3
C = (−1)n+1 2α2

nπ(4n2 − α2)
and D = 0.

Therefore, if α is not an even integer, we can write our function v as:

v(x, t) =
∞∑
n=1

(−1)n+1

(
1 + t

2n3
+

2α2 sinαt

nπ(4n2 − α2)
+ cn cos 2nt+ dn sin 2nt

)
sinnx

and we’re done with the pink elephant. All that’s left is to match the initial conditions.

For t = 0, we have

v(x, 0) =
∞∑
n=1

(−1)n+1

(
1

2n3
+ cn

)
sinnx.



math 425 7

Then the initial condition v(x, 0) = 0 tells us that we must choose cn = −1/(2n3).
The initial velocity is

vt(x, 0) =
∞∑
n=1

(−1)n+1

(
1

2n3
+

2α3

nπ(4n2 − α2)
+ 2ndn

)
sinnx.

This is supposed to equal

vt(x, 0) = −αx
π

=
∞∑
n=1

(−1)n
2α

πn
sinnx

(from the Fourier series for x which we computed already). Therefore, equating
corresponding coefficients gives us

dn = − 1

2n

(
2α

πn
+

1

2n3
+

2α3

nπ(4n2 − α2)

)
=

α3

n2π(α2 − 4n2)
− α

πn2
− 1

4n4
.

Now we can put these coefficients back into our expression for v, and add on ubd
to get the final solution of the problem (provided α is not an even integer):

u(x, t) =
x

π
sinαt+

∞∑
n=1

(−1)n+1

[
1 + t

2n3
+

2α2 sinαt

nπ(4n2 − α2)
− 1

2n3
cos 2nt

+

(
α3

n2π(α2 − 4n2)
− α

πn2
− 1

4n4

)
sin 2nt

]
sinnx

Here is a graph of the solution for 0 < x < π and 0 < t < 10:
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In the graph you can see the zero initial conditions and the sine wave on the boundary
at x = π. This boundary condition causes the “waviness” of the solution. The forcing
term causes the general arched shape of the solution to grow as t increases (from left
to right).

We’ve so far ignored what happens if α is an even integer, but we will take that
up now. For definiteness, let’s put α = 12. We don’t have to reconstruct the entire
solution — everything up until the middle of page 6, where we guessed the particular
solution for the differential equation satisfied by an(t) remains unchanged. And in
fact, the rest of the solution, so all of the terms in the series for u(x, t) except the
term for n = 6 (so 2n = 12 = α) remain unchanged (except we can put α = 12 in
them). We need only to understand what changes for the function a6.

The differential equation satisfied by a6 is

a′′6 + 144a6 = −1

3

(
(1 + t) +

144

π
sin 12t

)
.

The complementary solution is still c6 cos 12t+ d6 sin 12t. But since the complemen-
tary solution has sin 12t in it, we cannot include this in our guess for the particular
solution. In this case, our guess has to be

ap = A+Bt+ Ct sin 12t+Dt cos 12t

and we get

a′′p + 144ap = [C(24 cos 12t− 144t sin 12t)−D(24 sin 12t+ 144t cos 12t)]

+ 144[A+Bt+ Ct sin 12t+Dt cos 12t]

= 144A+ 144Bt+ 24C cos 12t− 24D sin 12t

so to match the coefficients we need

A = B = − 1

432
C = 0 and D =

2

π
.

Therefore, if α = 12, we must write the n = 6 term of our function v as:(
−1 + t

432
+

2t cos 12t

π
+ c6 cos 12t+ d6 sin 12t

)
sin 6x

and what remains is to determine c6 and d6 from the initial conditions.

Setting t = 0 in this term yields the same equation as before, namely

− 1

432
+ c6 = 0

(well, we didn’t put the complementary solution under the minus sign, but the result
is the same: c6 is what it was before). This derivative of this term with respect to t
is

− 1

432
+

2 cos 12t

π
− 24t sin 12t

π
− 12c6 sin 12t+ 12d6 cos 12t.
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So this term in the initial velocity is

− 1

432
+

2

π
+ 12d6,

which is supposed to equal 4/π from Fourier series for the the initial condition
vt(x, 0) = −αx/π. Therefore

d6 =
1

5184
+

1

6π
.

So the final solution of the problem for α = 12 is

u(x, t) =
x

π
sin 12t+

∞∑
n=1
n 6=6

(−1)n+1

[
1 + t

2n3
+

288 sin 12t

nπ(4n2 − 144)
− 1

2n3
cos 2nt

+

(
1728

n2π(144− 4n2)
− 12

πn2
− 1

4n4

)
sin 2nt

]
sinnx

+

[
−1 + t

432
+

2t cos 12t

π
+

cos 12t

432
+

(
1

5184
+

1

6π

)
sin 12t

]
sin 6x

Note in the graph of the solution this time:

the scale on the u-axis goes from −5 to 10 as opposed to −1 to 5 like last time. This
is because the effect of the wavy boundary condition is to build up a resonant wave
along the string — because the boundary condition on the right side is oscillating with
exactly the same frequency as one of the eigenfunctions (normal modes of vibration)
of the string. This causes bigger and bigger vibrations of that frequency to build up
in the string as time increases. It is this phenomenon that occurs, for example, when
a singer shatters a glass by singing and sustaining a very high note. A better look at
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this would be provided by looking at the shape of the string for a fairly large positive
value of t, say t = 50, for both the example with, say α = 4π and this one for α = 12:

It’s easy to tell which is which. An animation is more compelling and I’ll try to get
one up onto the webpage.

Example 3 – polar coordinates

We’ll do one more example, this time in polar coordinates, to show how to carry
out the procedure when Bessel functions are involved. This time, we’ll solve the
following problem for the heat equation on a disk of radius 5:

ut = 3∇2u+ 25− x2 − y2 for x2 + y2 < 25, t > 0

u(x, y, 0) = 0 for x2 + y2 < 25

u = 20 on the boundary of the disk for all t ≥ 0.

From the form of the source term and the shape of the domain, it is clear that
we should use polar coordinates — it’s also the case that neither the source term,
the initial data, nor the boundary data depend on θ, so the solution will also be
independent of θ. Our problem is thus

ut =
3

r
(rur)r + 25− r2 fpr r < 5, t > 0

u(r, 0) = 0, and u(5, 0) = 20.

As usual, we’ll deal with the boundary condition first. But this time, because the
problem involves the heat equation and the source term does not depend on t, there
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will be an equilibrium solution (a time-independent solution for which the heat being
added by the source term is exactly balanced by flux out of the boundary). So rather
than just subtracting off ubd = 20, which would work, we’ll find the equilibrium
solution and subtract it from u instead.

The equilibrium solution satisfies the problem

3

r
(rur)r + 25− r2 = 0, u(0) finite, u(5) = 20.

We rewrite the differential equation as

3

(
u′′ +

1

r
u′
)

= r2 − 25,

which will become an inhomogeneous Cauchy-Euler equation if we multiply by r2:

r2u′′ + ru′ = 1
3
(r4 − 25r2).

For the complementary solution, we guess uc = rα. Plug this in and discover that α =
0 is a double root, so the general solution of the homogeneous equation r2u′′+ru′ = 0
is uc = c1 + c2 ln r. We can immediately set c2 = 0 because we need u(0) to be finite.

For the particular solution, we use the method of undetermined coefficients and
guess up = Ar4 +Br2. Putting this into the equation gives

r2u′′p + ru′p = r2(12Ar2 + 2B) + r(4Ar3 + 2Br) = 16Ar4 + 4Br2.

For this to equal 1
3
(r4 − 25r2) we need A = 1

48
and B = −25

12
. So far we have

ueq = 1
48
r4 − 25

12
r2 + c1 and we need to choose c1 to satisfy the condition u(5) = 20.

So we solve

ueq(5) =
54

48
− 25 · 52

12
+ c1 = 20

and get c1 = 945
16

.

So now we can set

v(r, t) = u(r, t)− ueq(r) = u(r, t)− ( 1
48
r4 − 25

12
r2 + 945

16
).

The bonus we will reap for doing this is to get rid of both the boundary values and
the source term:

vt − 3∇2v = ut − 3∇2u− 3∇2( 1
48
r4 − 25

12
r2 + 945

16
)

= ut − 3∇2u− 25 + r2

= 0

because 3∇2ueq = r2 − 25 (you should check this!). The boundary values of v are
zero (i.e., v(5, t) = 0) because the boundary values of ueq are the same as those of u,
namely ueq(5, t) = 20. The only distressing thing is the initial values of v:

v(r, 0) = u(r, 0)− ueq(r) = − 1
48
r4 + 25

12
r2 − 945

16
.
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To recap, the problem we have to solve for v is

vt = 3

(
vrr +

1

r
vr

)
, v(5, t) = 0, v(r, 0) = − 1

48
r4 + 25

12
r2 − 945

16
.

We want to use a series of r-eigenfunctions with coefficients that are functions of
t the way we did for the previous examples. So we first need the eigenvalues and
eigenfunctions of the problem

R′′ +
1

r
R′ + λR = 0, R(0) finite, R(5) = 0

We multiply the differential equation by r2 and recognize

r2R′′ + rR′ + λr2R = 0

as Bessel’s equation of order zero, which has general solution

R(r) = cJ0(
√
λ r) + dY0(

√
λ r).

We immediately set d = 0 because Y0(r) goes to −∞ as r goes to 0. Since we also
need R(5) = 0, we conclude that

R(r) = J0

(znr
5

)
and λ =

z2n
25

where we write zn for the nth positive zero of J0(x) (we write z)n instead of z0n since
we won’t be using any Bessel functions besides J0 for this problem).

So we seek v(r, t) in the form:

v(r, t) =
∞∑
n=1

an(t)J0

(znr
5

)
.

We have that

vt(r, t) =
∞∑
n=1

a′n(t)J0

(znr
5

)
and, because J0

(
znr
5

)
is a solution of the equation R′′ + 1

r
R′ = − z2n

25
R we have

∇2v(r, t) =
∞∑
n=1

−z
2
n

25
an(t)J0

(znr
5

)
.

We put this into the differential equation for v and get

vt − 3∇2v =
∞∑
n=1

(
a′n +

3z2n
25

an

)
J0

(znr
5

)
= 0.
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All of the coefficients in this last series must be zero, which gives first-order ordinary
differential equations for the an(t)’s, and we conclude that

an(t) = cne
−3z2nt/25

and so

v(r, t) =
∞∑
n=1

cne
−3z2nt/25J0

(znr
5

)
.

Now we have to use the initial conditions for v to find the constants cn:

v(r, 0) =
∞∑
n=1

cnJ0

(znr
5

)
= − 1

48
r4 + 25

12
r2 − 945

16
.

We know how to do this:

cn =

〈
− 1

48
r4 +

25

12
r2 − 945

16
, J0

(znr
5

)〉
〈
J0

(znr
5

)
, J0

(znr
5

)〉
where the inner product is given as usual in polar coordinates by

〈f(r) , g(r)〉 =

∫ 5

0

f(r)g(r) r dr.

We defer the calculation of the integrals to avoid losing the track of the story (the
calculations are given below), and simply report that

cn = − 1

J1(zn)

(
40

zn
+

5000

3z5n

)
.

Then we can conclude that

v(r, t) +
∞∑
n=1

− 1

J1(zn)

(
40

zn
+

5000

3z5n

)
e−3z

2
nt/25J0

(znr
5

)
and so the solution to our original problem is

u(r, t) =
1

48
r4 − 25

12
r2 +

945

16
−
∞∑
n=1

1

J1(zn)

(
40

zn
+

5000

3z5n

)
e−3z

2
nt/25J0

(znr
5

)
Here are graphs of the temperature as a function of the radius for t between 0 and 3
at time steps of 0.2, together with the equilibrium solution they are approaching:
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We still have to compute the inner product integrals that produce the coefficients
cn. There are four integrals to do. In the first three, we will repeatedly use the
formula

d

dx
(xnJn(x)) = xnJn−1(x) or

∫
xnJn−1(x) dx = xnJn(x) + C

with various values of n. We’ll also be integrating by parts with dv = xnJn−1(x) dx
and u equal to whatever powers of x remain unaccounted for in dv (like that problem
in the midterm).

Start with the substitution x = znr/5 (so r = 5x/zn and dr = 5dx/zn) and
compute:〈

r4 , J0

(znr
5

)〉
=

∫ 5

0

r5J0

(znr
5

)
dr =

(
5

zn

)6 ∫ zn

0

x5J0(x) dx

=

(
5

zn

)6 [
x5J1(x)

∣∣∣∣zn
0

−
∫ zn

0

4x4J1(x) dx

]

=
56

zn
J1(zn)− 4

(
5

zn

)6 [
x4J2(x)

∣∣∣∣zn
0

−
∫ zn

0

2x3J2(x) dx

]

=
56

zn
J1(zn)− 4 · 56

z2n
J2(zn) + 8

(
5

zn

)6

x3J3(x)

∣∣∣∣∣
zn

0

=
56

zn
J1(zn)− 4 · 56

z2n
J2(zn) +

8 · 56

z3n
J3(zn)
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where we integrated by parts with u = x4 and dv = xJ0(x) dx to go from the first to
the second line, and we integrated by parts with u = x2 and dv = x2J1(x) dx to go
from the second to the third line.

Now we can use the Bessel function identity 2n
x
Jn(x) = Jn−1(x) + Jn+1(x) (and

remember that J0(zn) = 0 by definition of zn) with n = 1 to get J2(zn) = 2
zn
J1(x)

and first with n = 2 and then with n = 1 to get

J3(zn) =
4

zn
J2(zn)− J1(zn) =

(
8

z2n
− 1

)
J1(x).

Therefore〈
r4 , J0

(znr
5

)〉
=

56

zn
J1(zn)− 4 · 56

z2n

2

zn
J1(zn) +

8 · 56

z3n

(
8

z2n
− 1

)
J1(x)

= 56J1(zn)

(
1

zn
− 16

z3n
+

64

z5n

)
.

In a similar way, we calculate〈
r2 , J0

(znr
5

)〉
=

∫ 5

0

r3J0

(znr
5

)
dr =

(
5

zn

)4 ∫ zn

0

x3J0(x) dx

=

(
5

zn

)4 [
x3J1(x)

∣∣∣∣zn
0

−
∫ zn

0

2x2J1(x) dx

]

=
54

zn
J1(zn)− 2

(
5

zn

)4

x2J2(x)

∣∣∣∣∣
zn

0

=
54

zn
J1(zn)− 2 · 54

z2n
J2(zn)

=
54

zn
J1(zn)− 2 · 54

z2n

2

zn
J1(zn)

= 54J1(zn)

(
1

zn
− 4

z3n

)

The next one is easy:〈
1 , J0

(znr
5

)〉
=

∫ 5

0

rJ0

(znr
5

)
dr =

(
5

zn

)2 ∫ zn

0

xJ0(x) dx =
52

zn
J1(zn).

And finally, we use the substitution x = r/5 (or r = 5x and dr = 5 dx together
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with the orthogonality relation∫ 1

0

x(Jm(zmnx))2 dx = 1
2
(Jm+1(zmn))2

to compute the inner product〈
J0

(znr
5

)
, J0

(znr
5

)〉
=

∫ 5

0

r(J0

(znr
5

)
)2 dr = 52

∫ 1

0

x(J0(znx))2 dx =
52

2
(J1(zn))2.

We put these all together to compute

cn =

〈
− 1

48
r4 +

25

12
r2 − 945

16
, J0

(znr
5

)〉
〈
J0

(znr
5

)
, J0

(znr
5

)〉
=

2

52(J1(zn))2

(
− 1

48

〈
r4 , J0

(znr
5

)〉
+

25

12

〈
r2 , J0

(znr
5

)〉
− 945

16

〈
1 , J0

(znr
5

)〉)
=

1

J1(zn)

[
− 54

24

(
1

zn
− 16

z3n
+

64

z5n

)
+

25 · 52

6

(
1

zn
− 4

z3n

)
− 945

8

1

zn

]
=

1

J1(zn)

(
−40

zn
− 5000

3z5n

)
.

That’s it.


