Chapter 1

1. Consider a long thin tube containing a solvent, in which another chemical is dissolved. Let \(u(x,t) \) be the linear density of the chemical (in grams per unit length) \(x \) centimeters from one end of the tube at time \(t \). Suppose more of the chemical is being produced at a rate of \(\alpha u(\beta - u) \) grams per unit length per unit time (we assume the density is constant across each cross-section of the tube, so that \(u \) is only a function of the distance \(x \) along the tube and time \(t \)). Derive the differential equation satisfied by \(u(x,t) \).

2. Suppose the temperature in a rod satisfies

\[
\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2} + Lx - \alpha x^2,
\]

and initial condition

\(u(x,0) = 0 \) for \(0 < x < L \)

and insulated boundary conditions

\[
\frac{\partial u}{\partial x}(0,t) = 0, \quad \frac{\partial u}{\partial x}(L,t) = 0
\]

(a) Find the total energy in the rod at time \(t \). Assume the specific heat of the material in the rod is \(c \), its density is \(\rho \), its thermal conductivity is \(K_0 \) and the cross-sectional area of the rod is \(A \).

(b) For a certain value of \(\alpha \), there is an equilibrium temperature distribution

\[
U(x) = \lim_{t \to \infty} u(x,t),
\]

find \(\alpha \) and the corresponding equilibrium temperature distribution.

Chapter 2

3. Solve the initial/boundary value problem

\[
\begin{align*}
 u_t &= 3u_{xx} - 2u, \\
 u(x,0) &= 5 + 4 \cos 3x, \\
 u_x(0,t) &= 0, \\
 u_x(\pi,t) &= 0.
\end{align*}
\]

What is \(\lim_{t \to \infty} u(x,t) \)?
4. Solve Laplace’s equation

\[u_{xx} + u_{yy} = 0 \]

on the rectangle \(0 < x < 10, \ 0 < y < 5 \) with boundary values

\[u(x, 0) = 0, \quad u(10, y) = y, \quad u(x, 5) = 0, \quad u(0, y) = 5 - y. \]

Chapter 3

5. Let

\[f(x) = \begin{cases}
(x - 2)^2 & \text{for } 0 \leq x \leq 2 \\
0 & \text{for } 2 \leq x \leq 4
\end{cases} \]

(a) Compute the Fourier sine series of \(f(x) \).

(b) Draw a careful graph of the function to which your series converges for \(-12 \leq x \leq 12\).

(c) Compute the Fourier cosine series of \(f(x) \).

(d) Draw a careful graph of the function to which your series converges for \(-12 \leq x \leq 12\).

Chapter 4

6. Suppose a flexible chain of length \(L \) is hanging from the ceiling, and suppose the linear density of the chain is \(\rho \). If we put \(x = 0 \) at the bottom of the chain, and \(x = L \) at the point where the chain is attached to the ceiling, then the magnitude of the tension in the chain at the point \(x \) is the weight of the part of the chain below \(x \), i.e., \(T = \rho gx \) (where \(g \) is the gravitational acceleration). Derive the equation for (small) side-to-side vibrations of the chain.

7. Solve the damped wave equation

\[u_{tt} = 4u_{xx} - u_t \]

with initial conditions

\[u(x, 0) = \sin \pi x, \quad u_t(x, 0) = \sin \pi x \]
and boundary conditions
\[u(0, t) = 0 \quad u(1, t) = 0. \]

Chapter 5

8. (a) Find the eigenvalues and eigenfunctions of the boundary-value problem
\[x^2 y'' + xy' + \lambda y = 0, \quad y(1) = 0 \quad y(e^\pi) = 0. \]

(b) What definition of the inner product (i.e., what weight function) makes eigenfunctions corresponding to different eigenvalues orthogonal to one another?

Chapter 7

9. (Also chapter 5 and chapter 4)

(a) Use the substitution \(s = 2\sqrt{x} \) to transform the equation
\[xy'' + y' + \lambda y = 0 \]
into Bessel’s equation.

(b) Find the eigenvalues and eigenfunctions of the problem
\[xy'' + y' + \lambda y = 0, \quad y(0) \text{ bounded, } y(L) = 0. \]

(c) Solve the initial/boundary value problem
\[\frac{\partial^2 u}{\partial t^2} = g \left(x \frac{\partial^2 u}{\partial x^2} + \frac{\partial u}{\partial x} \right), \quad u(0, t) \text{ bounded, } u(L, t) = 0 \]
with initial conditions
\[u(x, 0) = f(x), \quad u_t(x, 0) = 0 \quad \text{for } 0 < x < L. \]

10. (a) Just to prove you can do it, expand the function \(f(r) = r^5 \) on the interval \(0 < r < 1 \) in a Fourier-Bessel series of the form
\[r^5 = \sum_{n=1}^{\infty} a_n J_3(z_{3n}r). \]
(b) And now that you’ve done that, solve the heat equation on the disk of radius 1

\[u_t = 2u_{xx} \]

with zero boundary values and initial values

\[u(r, \theta, 0) = r^5 \sin 3\theta. \]

11. Find the steady-state temperature \(u(\rho, \varphi, \theta) \) in the solid ball of radius 2 if the surface temperature is given in polar coordinates by

\[u(2, \varphi, \theta) = \sin^2 \varphi \]

for \(0 < \varphi < \pi \) in spherical coordinates (here, \(\varphi \) is the elevation angle from the \(xy \)-plane and \(\theta \) is the azimuthal angle).

Chapter 8

12. Solve the inhomogeneous heat equation

\[\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + r \]

for \(0 < x < 1, \ t > 0 \) with initial condition

\[u(x, 0) = 0 \]

and boundary conditions

\[\frac{\partial u}{\partial x}(0, t) = 0, \quad u(1, t) = 0. \]

13. Solve the wave equation

\[u_{tt} = u_{xx} \]

for \(0 < x < \pi \) and \(t > 0 \) with initial data \(u(x, 0) = 0 \) and \(u_t(x, 0) = 0 \) and with boundary data

\[u(0, t) = 0, \quad u(\pi, t) = \sin t. \]

What happens as \(t \to \infty \)?

Chapter 10
14. Let $f(x) = \begin{cases} 1 & \text{for } 0 < x < 2 \\ 0 & \text{otherwise} \end{cases}$.

(a) Calculate the Fourier transform $\hat{f}(\omega)$.

(b) Solve the initial-value problem for the heat equation

$$u_t = 3u_{xx} \quad u(x, 0) = f(x)$$

for $-\infty < x < \infty$, $t > 0$, with $f(x)$ as given in the beginning of the problem.

15. Consider the initial-value problem for the inhomogeneous heat equation on the whole line:

$$u_t = ku_{xx} + Q(x, t), \quad u(x, 0) = f(x)$$

for $-\infty < x < \infty$, $t > 0$ (and we assume that Q and f and hence u decay at infinity). Let

$$G(x, t) = \frac{1}{\sqrt{4\pi kt}} e^{-x^2/(4kt)}$$

be the fundamental solution of the heat equation (or the “heat kernel”) as defined in the textbook.

Use Fourier transform methods to show that the solution of the problem above is

$$u(x, t) = f \ast G + \int_{-\infty}^{\infty} \int_{0}^{t} Q(y, s) G(x - y, t - s) \, ds \, dy$$

$$= \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} f(y) e^{-(x-y)^2/(4kt)} \, dy + \int_{-\infty}^{\infty} \int_{0}^{t} Q(y, s) \frac{1}{\sqrt{4\pi k(t-s)}} e^{-(x-y)^2/(4k(t-s))} \, ds \, dy.$$

(Hint: Take the Fourier transform as usual but be very careful how you solve the linear first-order differential equation that results. At some crucial moment you will have to combine some exponentials and change the order of integration.)