1. Let \(\{a_n\} \) be a sequence of real numbers such that \(\lim_{n \to \infty} a_n = 0 \). Prove that the series \(\sum_{n=0}^{\infty} a_n x^n \) converges uniformly on the closed interval \(-\frac{1}{2} \leq x \leq \frac{1}{2}\).

Since \(a_n \to 0 \), we have \(|a_n| \) is bounded, say \(|a_n| < M \). Therefore

\[
\left| \sum_{n=N}^{\infty} a_n x^n \right| \leq \sum_{n=N}^{\infty} |a_n| \left(\frac{1}{2} \right)^n \leq M \left(\frac{1}{2} \right)^N \left(\frac{1}{1 - \frac{1}{2}} \right) = \frac{M}{2^{N-1}}
\]

independent of \(x \in \left[-\frac{1}{2}, \frac{1}{2} \right] \). So the difference between the \(N \)th partial sum of the series and the sum of the whole series is bounded (and going to zero) independent of \(x \), thus uniformly.

2. Let \(f(x) \) be a continuous function on the closed interval \(0 \leq x \leq 1 \), and such that \(f(0) = 1 \), \(f(\frac{1}{2}) = 2 \) and \(f(1) = 3 \). Show that

\[
\lim_{n \to \infty} \int_{0}^{1} f(x^n) \, dx
\]

exists, and compute the limit.

We claim that \(\lim_{n \to \infty} \int_{0}^{1} f(x^n) \, dx = f(0) = 1 \). To see this, let \(\varepsilon > 0 \) be given, and we’ll show that there is an \(N > 0 \) such that for \(n > N \) we have

\[
\left| f(0) - \int_{0}^{1} f(x^n) \, dx \right| < \varepsilon.
\]

First, use the continuity of \(f \) on the closed interval \([0, 1]\) to assert that \(f \) is bounded, say \(|f(x)| < M \) for all \(x \in [0, 1] \). Next, there is a \(\delta > 0 \) such that \(|f(x) - f(0)| < \frac{1}{2} \varepsilon \) provided \(0 \leq x < \delta \). Finally, there is a \(\sigma > 0 \) such that \(2M\sigma < \frac{1}{2} \varepsilon \), and an \(N \) such that \((1 - \sigma)^n < \delta \) for all \(n > N \). So for \(n > N \),

\[
\begin{align*}
\left| f(0) - \int_{0}^{1} f(x^n) \, dx \right| &= \left| \int_{0}^{1} f(0) - f(x^n) \, dx \right| \\
&\leq \int_{0}^{1-\sigma} |f(0) - f(x^n)| \, dx + \int_{1-\sigma}^{1} |f(0) - f(x^n)| \, dx \\
&\leq \int_{0}^{1-\sigma} \frac{\varepsilon}{2} \, dx + \int_{1-\sigma}^{1} 2M \, dx < \int_{0}^{1} \frac{\varepsilon}{2} \, dx + 2M\sigma < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon
\end{align*}
\]
3. Let \(\{b_n\} \) be a sequence of real numbers such that
\[
\sum_{n=1}^{\infty} |b_n| = 1
\]
and let \(f(x) \) be the function given by
\[
\sum_{n=1}^{\infty} b_n \cos(nx).
\]
Prove that the series converges and that \(f \) is continuous on all of \(\mathbb{R} \). Is \(f \) uniformly continuous?

Since \(|\cos(nx)| \leq 1 \) for all \(x \), we have that the series for \(f(x) \) converges uniformly on all of \(\mathbb{R} \) by the Weierstrass \(M \)-test. Moreover, since \(f \) is periodic with period \(2\pi \), we get uniform continuity for \(f \) from the fact that it is continuous on any closed interval of length greater than \(2\pi \).

4. Let \(f : X \to Y \) be a continuous mapping from the metric space \((X, d_X) \) to the metric space \((Y, d_Y) \). For \(A \subset X \) be a subset of \(X \) we write \(f(A) \) for \(\{y \in Y \mid y = f(a) \text{ for some } a \in A\} \), and for \(B \subset Y \) a subset of \(Y \) we write \(f^{-1}(B) \) for \(\{x \in X \mid f(x) \in B\} \). For each of the following, give a proof or a counterexample:

(a) If \(A \subset X \) is connected, then \(f(A) \subset Y \) is also connected.
(b) If \(B \subset Y \) is connected, then \(f^{-1}(B) \subset X \) is also connected.
(c) If \(A \subset X \) is sequentially compact, then \(f(A) \subset Y \) is also sequentially compact.
(d) If \(B \subset Y \) is sequentially compact, then \(f^{-1}(B) \subset X \) is also sequentially compact.

(a) This is true (and a generalization of the intermediate-value theorem). If \(P \) and \(Q \) were disjoint open subsets of \(Y \) such that \((P \cap f(A)) \cup (Q \cap f(A)) = f(A) \), then their inverse images would be disjoint open sets in \(X \) such that \(A \cap \left(f^{-1}(P) \cup f^{-1}(Q) \right) = A \) so that \(A \) would not be connected either.

(b) This is false. Consider \(f(x) = x^2 \) on \(\mathbb{R} \), and the set \(B = [1, \infty) \). We have \(f^{-1}(B) = (-\infty, -1] \cup [1, \infty) \) which is not connected.
(c) True. Let \(\{y_n\} \) be a sequence in \(f(A) \), then there is a sequence \(\{x_n\} \) in \(A \) with \(f(x_n) = y_n \) for each \(n \). Since \(A \) is sequentially compact, there is a subsequence of the \(x_n \)'s that converges (say to \(x \)). But then \(f \) of that subsequence will converge in \(f(A) \), since if \(x_n \to x \) in \(A \), then \(f(x_n) \to f(x) \in f(A) \) by continuity. So \(\{y_n\} \) has a convergent subsequence, and so \(f(A) \) is sequentially compact as well.

(d) This is false. Consider \(f(x) \) is the constant 0. Then \(f^{-1}(\{0\}) = \mathbb{R} \) which is not sequentially compact.

5. Consider the set \(\mathbb{Q} \) of rational numbers with its usual metric.

(a) Is every closed, bounded subset of \(\mathbb{Q} \) sequentially compact?

(b) Show that every continuous function \(f: \mathbb{R} \to \mathbb{Q} \) is constant.

Justify your assertions.

(a) No – the set of rational numbers satisfying \(0 \leq r \leq \sqrt{2} \) is closed in \(\mathbb{Q} \), but there is a sequence of rationals \(\{r_n\} \) in the interval such that \(r_n \to \sqrt{2} \). So this is a Cauchy sequence in \(\mathbb{Q} \cap [0, \sqrt{2}] \) without a limit.

(b) Since \(\mathbb{R} \) is connected, we would have \(f(\mathbb{R}) = \mathbb{Q} \) is connected. But the only connected subsets of \(\mathbb{Q} \) are isolated points, since for any \(r_1 < r_2 \) in \(\mathbb{Q} \), there is an irrational number \(x \) such that \(r_1 < x < r_2 \) and the open sets \((-\infty, x) \cap \mathbb{Q} \) and \((x, \infty) \cap \mathbb{Q} \) are a decomposition of \(\mathbb{Q} \) into two disjoint open sets (whose inverse images would be such a decomposition of \(\mathbb{R} \)).

6. Suppose \(f \) is a twice-differentiable function which satisfies the differential equation

\[
\frac{d^2f}{dx^2} = (2 + e^{-x}) f(x)^2
\]

for \(x \geq 0 \). Suppose \(f(0) = 1 \) and \(f'(0) = 0 \). (Do not attempt to solve the equation.) Sketch the graph of \(f \) and show that \(f(x) = 0 \) for one and only one positive value of \(x \).

Certainly \(f''(x) \leq 0 \) for all \(x > 0 \), and \(f''(0) < 0 \). Therefore \(f'(x) < 0 \) for all \(x > 0 \) by the mean-value theorem. (So the graph sketch would look something like the right half of the parabola \(y = 1 - x^2 \).) Moreover, the graph of \(f \) lies below its tangent lines, which have negative slope, so there must be a \(x > 0 \) where \(f(x) = 0 \). There can’t be two of them or else we’d have \(f'(c) \geq 0 \) for some \(c \) between the two solutions.
7. Suppose f is a continuous function defined on the whole real line which is periodic with period one (so $f(x + 1) = f(x)$ for all real x). Suppose

$$\int_0^1 f(x) \, dx = 1 \quad \text{and} \quad f(0) = 2.$$

Compute the limits

$$\lim_{c \to \infty} \int_0^1 f(cx) \, dx \quad \text{and} \quad \lim_{c \to 0} \int_0^1 f(cx) \, dx$$

and justify your answers.

First, make the change of variables $u = cx$ (or $x = u/c$) so $dx = du/c$ and

$$\int_0^1 f(cx) \, dx = \frac{1}{c} \int_0^c f(u) \, du.$$

The limit of this as $c \to 0$ is $f(0)$ by L’Hospital’s rule and the fundamental theorem of calculus (among other reasons).

For the limit as $c \to \infty$, use the fact that f is periodic to conclude first that f is bounded, say $|f(x)| < M$ for all $x \in \mathbb{R}$ and that the integral of f over any interval of length 1 is 1. In particular, if $n \leq c < n + 1$, then (using that same change of variables)

$$\left| \int_0^c f(u) \, du - n \right| = \left| \int_n^c f(u) \, du + \int_0^n f(u) \, du - n \right| = \left| \int_n^c f(u) \, du \right| \leq \int_n^{n+1} M \, du = M.$$

Therefore (since $c - 1 < n$ and $c + 1 > n$),

$$\frac{c - 1 - M}{c} < \frac{1}{c} \int_0^c f(u) \, du < \frac{c + 1 + M}{c}.$$

The limits of both expressions on the ends is 1 as $c \to \infty$, so the middle one approaches 1 as well, which allows us to conclude that

$$\lim_{c \to \infty} \int_0^1 f(cx) \, dx = 1.$$

8. Say $a_n > 0$ are a sequence of positive real numbers and $a_n \to A$ as $n \to \infty$. Either prove that $A \geq 0$ or provide a counterexample.

If A were negative, there would be an N such that $|a_n - A| < \frac{1}{2}|A|$ for all $n > N$. But then

$$a_n < A + \frac{|A|}{2} = \frac{A}{2} < 0,$$

a contradiction of the fact that $a_n > 0$ for all n. Therefore A cannot be negative.
9. For each of the following, give either a proof or a counterexample.

(a) Let \(f \) be a continuous real-valued function on the open interval \(0 < x < 3 \). Must \(f \) be uniformly continuous on the open interval \(1 < x < 2 \)?

(b) Suppose instead that \(f \) is only assumed to be continuous on the open interval \(0 < x < 2 \). Must \(f \) be uniformly continuous on the open interval \(1 < x < 2 \)?

(a) Yes. Since \(f \) is continuous on \((0, 3) \) it is continuous on \([1, 2] \). And a continuous function on a closed, bounded interval is uniformly continuous on that interval. So \(f \) is uniformly continuous on \([1, 2] \) and thus on \((1, 2) \).

(b) No. The function \(f(x) = \frac{1}{2 - x} \) is a counterexample (a uniformly continuous function would be bounded).

10. Write the equivalent integral equation formulation for the initial-value problem \(y' = y, \ y(0) = 1 \). Then carry out the first few iterations of the contraction mapping proof of existence and show explicitly that they converge to the solution of the initial-value problem.

The integral formulation is

\[
y(x) = 1 + \int_0^x y(t) \, dt.
\]

So if \(y_0(x) \equiv 1 \), then

\[
y_1(x) = 1 + \int_0^x 1 \, dt = 1 + x
\]

\[
y_2(x) = 1 + \int_0^x (1 + t) \, dt = 1 + x + \frac{x^2}{2}
\]

\[
y_3(x) = 1 + \int_0^x \left(1 + t + \frac{t^2}{2}\right) \, dt = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}
\]

and you can see that (and by induction)

\[
y_n = \sum_{k=0}^{n} \frac{x^k}{k!}
\]

which is the \(n \)th partial sum of the series for \(e^x \). This series converges uniformly to \(e^x \) on any interval \(|x| \leq M \).