
Math 425 Dr. DeTurck
Hints and Solutions to Practice Midterm 1 February 2010

1. Suppose f is a function of one variable that has a continuous second derivative. Show that
for any constants a and b, the function

u(x, y) = f(ax+ by)

is a solution of the PDE
uxxuyy − u2

xy = 0.

This is an exercise in using the chain rule. For instance, ux(x, y) = af ′(ax + by), uxx =
a2f ′′(ax+ by), etc., so eventually:

uxxuyy − u2
xy = a2b2(f ′′(ax+ by))2 − (ab)2(f ′′(ax+ by))2 = 0.

2. Give an example that shows why solutions of the wave equation utt = uxx do not necessarily
satisfy the maximum principle (i.e., give an example of an explicit solution of the equation
for which the maximum principle does not hold).

For this, we need a solution to the wave equation for x ∈ (0, L) and for t ∈ (0, T ) for
which the maximum occurs in the interior of the rectangle. For instance, the function
u(x, t) = sinx sin t satisfies the wave equation, but the maximum of u = 1 occurs when
x = t = π/2, in the interior of the rectangle [0, π] × [0, π] (where u = 0 identically on the
boundary of the rectangle).

3. Find the function u(x, t) that satisfies

ut = 2uxx

for (x, t) ∈ (0, 3)× (0,∞), together with the initial condition

u(x, 0) = sin
πx

6
+ 4 sin

5πx
6

for x ∈ [0, 3], and the boundary conditions:

u(0, t) = 0 ux(3, t) = 0

for all t > 0. (Hint: Look for “separated” solutions.)

A separated solution is of the form u(x, t) = X(x)T (t), and we would need X(0) = 0
and X ′(3) = 0 to satisfy the boundary conditions. For u of this form, the heat equation
becomes:

X(x)T ′(t) = 2X ′′(x)T (t).

Divide both sides by 2X(x)T (t) and get

T ′(t)
2T (t)

=
X ′′(x)
X(x)

.



Since the left side is a function of t alone, and the right side is a function of x alone, both
sides must be constant, λ. Work on X first:

We have X ′′ = λX, and either λ > 0, λ = 0 or λ < 0. If λ > 0, say λ = k2, then
X(x) = c1e

kx + c2e
−kx. The condition X(0) = 0 implies that c1 = −c2. Next, X ′(3) = 0

means kc1e3k − kc2e−3k = 0, in other words kc1(e3k + e−3k) = 0. But this implies c1 = 0,
so there’s no non-zero solution of this form.

If λ = 0, then X(x) = c1 + c2x, and then F (0) = 0 implies c1 = 0 and F ′(3) = 0 implies
that c2 = 0, so no non-zero solution here either.

Finally, if λ < 0, say λ = −k2, then X(x) = c1 sin(kx) + c2 cos(kx). X(0) = 0 implies
c2 = 0, and X ′(3) = 0 means kc1 cos(3k) = 0, which is satisfied for k = π/6, π/2, 5π/6, . . ..
This is what we need.

If we use k = π/6 (so λ = −π2/36), then we have X(x) = sin(πx/6) and T (t) should satisfy
T ′ = −π2T/18. So T is a constant times e−π

2t/18. Therefore, the separated solution

u1(x, t) = e−π
2t/18 sin(πx/6)

satisfies the heat equation, the boundary conditions, and has initial data equal to the first
term of the given initial data.

We can do the same thing with the second term and get that

u2(x, t) = 4e−25π2t/18 sin(5π/6)

works for that. And the sum u(x, t) = u1(x, t) + u2(x, t) will be the solution of the whole
problem

4. Find the closed form (similar to d’Alembert’s formula) of the solution u(x, t) of the initial-
boundary value problem for the semi-infinite string:

utt − c2uxx = 0 for x, t > 0

where u(x, 0) = f(x) for x > 0, and ut(x, 0) = 0 for x > 0, and u(0, t) = α(t) for t ≥ 0,
where f and α are C2 functions and satisfy f(0) = α(0), α′(0) = 0 and α′′(0) = c2f ′′(0).
Verify that the solution is C2 for all x, t > 0.

We’ll solve two separate problems here. First, we’ll find v(x, t) that satisfies everything
except that v(0, t) = 0 instead of α(t). Then we’ll find w(x, t) that satisfies everything
except that v(x, 0) = 0 instead of f(x). Then it’ll be the case that u(x, t) = v(x, t)+w(x, t)
is the solution of the whole problem.

First, for v(x, t), start with the d’Alembert form v(x, t) = F (x+ ct) +G(x− ct). We need
to know values of F (z) for z > 0, and of G(z) for both positive and negative values of z.
We have to reconcile this with v(x, 0) = f(x) for x > 0, vt(x, 0) = 0 and v(0, t) = 0 for
t > 0. These conditions tell us:

F (x) +G(x) = f(x) and F ′(x)−G′(x) = 0

for x > 0, and
G(−t) = G(t)



for t > 0. But from this it’s clear that we should take F (x) = G(x) = 1
2f(x) for x > 0, and

G(s) = − 1
2f(−s) if x < 0. This gives us:

v(x, t) =


1
2f(x+ ct) + 1

2f(x− ct) if x− ct > 0

1
2f(x+ ct)− 1

2f(ct− x) if x− ct < 0

The interpretation of this is that the signal “bounces off” the fixed end of the string at
x = 0 and is reflected back in “inverted” form.

Next, for w(x, t), start with v(x, t) = F (x + ct) + G(x − ct) as usual, where this time we
need w(x, 0) = 0 and wt(x, 0) = 0 for x > 0 and w(0, t) = α(t) for t > 0. These conditions
tell us:

F (x) +G(x) = 0 and F ′(x)−G′(x) = 0

for x > 0, so choose F (x) = G(x) = 0 for x > 0, and

G(−ct) = α(t)

for t > 0, i.e., G(s) = α(−s/c) for s < 0. This gives us

w(x, t) =

 0 if x− ct > 0

α(t− x/c) if x− ct < 0

So altogether:

u(x, t) =


1
2f(x+ ct) + 1

2f(x− ct) if x− ct > 0

1
2f(x+ ct)− 1

2f(ct− x) + α(t− x/c) if x− ct < 0

That’s it.


