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Abstract. We prove a structural theorem that provides a precise local picture of
how a sequence of closed embedded minimal hypersurfaces with uniformly bounded
index (and volume if the ambient dimension is greater than three) in a Riemannian
manifold (Mn, g), 3 ≤ n ≤ 7, can degenerate. Loosely speaking, our results show
that embedded minimal hypersurfaces with bounded index behave qualitatively like
embedded stable minimal hypersurfaces, up to controlled errors. Several compact-
ness/finiteness theorems follows our local picture.

1. Introduction

Minimal hypersurfaces are critical points of the volume functional, and as such it is
natural to study their existence and behavior from a variational point of view. A key
invariant related to this point of view is the (Morse) index of such an object; and the
assumption of bounded index (rather than genus or total curvature as in the classical
theory) that we are concerned with in this paper is very natural. Many minimal
surfaces with bounded index are expected to arise from the variational min-max theory
of Almgren–Pitts [Pit76]. For instance, Marques–Neves [MN13] have introduced non-
trivial k-parameter sweep-outs in arbitrary three-manifolds (for any k), and the Morse
index of the corresponding minimal surface is expected (generically) to be k. Moreover,
Colding–Gabai [CG14] have recently studied sequences of index one minimal surfaces
and as they relate to the problem of classifying Heegaard splittings of three-manifolds.

In this work, we provide a precise local picture of how a sequence of embedded mini-
mal hypersurfaces with uniformly bounded index (and volume if the ambient dimension
is greater than three) in a Riemannian manifold (Mn, g), 3 ≤ n ≤ 7, can degenerate.
We may roughly describe it as follows. For the sake of exposition, we assume here that
n = 3, the surfaces are all two-sided and have uniformly bounded area, i.e., consider a
sequence of embedded two-sided minimal surfaces Σj in a closed Riemannian (M3, g)
so that index(Σj) ≤ I and areag(Σj) ≤ Λ. Given these assumptions, our results imply
that genus(Σj) is uniformly bounded:

(1) A blow-up argument allows us to extend Schoen’s curvature estimates [Sch83a]
to the case of bounded index (cf. Corollary 2.3), to see that the curvature of Σj

is bounded away from at most I points, where the index may be concentrating.
Blowing up around these points at the scale of curvature, we produce a smooth
embedded minimal surface in R3 with index at most I.

(2) By [Ros06] (see also [CM14]), this limiting surface has genus bounded linearly
above in terms of I. This can be seen as a kind of “lower semi-continuity of
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topology,” since each genus that is seen in the blow-up limit certainly con-
tributes to the genus of Σj for j sufficiently large.

(3) Furthermore, after passing to a subsequence, Σj converges to a closed minimal
surface in (M, g) smoothly away from the points of index concentration. Such
a surface has bounded genus.

These facts, by themselves, are not sufficient to conclude that the genus of Σj is uni-
formly bounded. The reason for this is that it is a priori possible that some genus is lost
to the intermediate scales, and thus does not appear in the blow-up limits, or at the
original scale. This can be illustrated by an analogy with the bubbling phenomenon for
harmonic maps; a sequence of harmonic maps may degenerate to form a bubble tree
and the key point in proving that the energy of the bubbles is the limit of the energy
of the original sequence of maps, is to show that no energy is lost in the neck regions
joining the bubbles. Hence, to prove genus bounds, we must also show:

(4) No topology is lost in the intermediate scales. The key to this is a scale-breaking
Morse theoretic argument (cf. Lemma 3.1), which allows us to show that the
intermediate regions are topologically simple (i.e., planar domains). The key
geometric input for this argument is the fact that the curvature is sufficiently
small in a scale invariant sense in the intermediate region, a fact related to the
half-space theorem for complete properly embedded minimal surfaces in R3.

This scale-breaking analysis of the intermediate regions forms the technical heart of
our work. In ambient manifolds (Mn, g) with 4 ≤ n ≤ 7, a similar argument works
given appropriate modifications. Moreover, for n = 3, we show that uniform area
bounds are unecessary for understanding the local picture of degeneration. Finally,
everything we have discussed works for one-sided surfaces as well.

1.1. Applications of the local picture of degeneration. Thanks to our under-
standing of how embedded hypersurfaces with uniformly bounded index (and volume)
can degenerate, we can prove various results along the lines of the general principle
that (when the ambient dimension satisfies 3 ≤ n ≤ 7) “embedded minimal hypersur-
faces with uniformly bounded index behave qualitatively like embedded stable minimal
hypersurfaces.” We now discuss several results along these lines.

1.1.1. Finitely many diffeomorphism types. An easy application of curvature estimates
for stable minimal hypersurfaces shows that for a closed Riemannian manifold (Mn, g),
3 ≤ n ≤ 7, there can be at most N = N(M, g,Λ) distinct diffeomorphism types in the
set of stable embedded minimal hypersurfaces with volg(Σ) ≤ Λ. To see this, suppose
that Σj is an infinite sequence of pairwise non-diffeomorphic embedded stable minimal
hypersurfaces. Using the curvature estimates1 established in [Sch83a, Ros06, SSY75,
SS81] we see that if Σj is a sequence of embedded2 stable minimal hypersurfaces, then
there is C > 0 so that |IIΣj |(x) ≤ C for all x ∈ Σj . Because volg(Σj) ≤ Λ, by passing to

1Note that the works [SSY75, SS81] only consider (embedded) two-sided stable hypersurfaces! How-
ever, using the fact that a properly embedded hypersurface in Euclidean space is two-sided, we can
extend the curvature estimates to the one-sided case as well; see the proof of Lemma 2.4.

2Strictly speaking, embeddedness is not needed for this result in dimension n = 3. Note that it will
be essential elsewhere in our work even when n = 3.



MINIMAL HYPERSURFACES WITH BOUNDED INDEX 3

a subsequence we may find Σ∞ so that Σj converges locally smoothly to Σ∞ with finite
multiplicity. Thus, for j sufficiently large we may construct a smooth covering map
Σj → Σ∞ with a uniformly bounded number of sheets. Because the Σj are assumed to
be non-diffeomorphic, this easily yields a contradiction.

To try to extend this proof to the case of uniformly bounded index, we must con-
tend with the possibility that the hypersurfaces have diverging curvature. Using our
local picture of degeneration, we can deal with this possibility and show the following
finiteness result.

Theorem 1.1. Fix (Mn, g) a closed Riemannian manifold, where 3 ≤ n ≤ 7. Then
there can be at most N = N(M, g,Λ, I) distinct diffeomorphism types in the set of
embedded minimal hypersurfaces Σ ⊂ (M, g) with index(Σ) ≤ I and volg(Σ) ≤ Λ.

In particular, for a closed three-manifold (M3, g), there is r0 = r0(M, g,Λ, I) so that
any embedded minimal surface Σ in (M3, g) with index(Σ) ≤ I and areag(Σ) ≤ Λ has
genus(Σ) ≤ r0.

In a related direction, we can partially extend Ros’s bounds [Ros06, Theorem 17]
(see also [CM14]) to higher dimensions as follows.

Theorem 1.2. For 4 ≤ n ≤ 7, there is N = N(n, I,Λ) ∈ N so that there are at most
N mutually non-diffeomorphic complete embedded minimal hypersurfaces Σn−1 ⊂ Rn
with index(Σ) ≤ I and vol(Σ ∩BR(0)) ≤ ΛRn−1 for all R > 0.

It would be interesting to understand how N depends on I and Λ.

1.1.2. Three-dimensional results. A well known compactness result for minimal sur-
faces in a fixed three-manifold is due to Choi–Schoen [CS85] who showed that for any
sequence of minimal surfaces with bounded genus and area there is a subsequence con-
verging to a smooth minimal surface (possibly with multiplicity). The convergence is
moreover smooth away from finitely many points where curvature is concentrating.

This result has several important manifestations; for example, in a hyperbolic man-
ifold, a genus bound for a minimal surface already implies an area bound by the Gauss
equation and the Gauss-Bonnet formula. Moreover, in a three-manifold with positive
Ricci curvature, the area of an embedded minimal surface can be bounded above in
terms of its genus, by work of Choi–Wang [CW83] and Yang–Yau [YY80]. This bound
and the non-existence of two-sided stable minimal hypersurfaces with ambient positive
Ricci, shows that the Choi–Schoen compactness implies that the set of closed, embed-
ded minimal surfaces with fixed genus in a three-manifold of positive Ricci curvature
is compact in the smooth topology. In a general Riemannian three-manifolds, on the
other hand, it is no longer possible to bound the area nor the index of an embedded
minimal surface by the genus, even if one assumes positive scalar curvature, as it can
be seen in examples constructed by Colding–De Lellis [CDL05].

However, we are able to show that in three-manifolds with positive scalar curvature,
uniform index bounds do imply uniform area and genus bounds. This indicates that
index bounds are not only very natural from the variational point of view, but they
actually yield more control on the minimal surface than genus bounds. That such a
result should hold follows again from our general principle that because this holds for
embedded stable minimal surfaces, it should hold for an embedded minimal surface with
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bounded index. The corresponding result in the case of stable surfaces is a consequence
of the fact that by work of Fischer-Colbrie–Schoen [FCS80] and Schoen–Yau [SY83],
two-sided stable minimal surfaces in ambient manifolds with positive scalar curvature
are S2, along with a geometric compactness argument based on the fact that S2 is
simply connected.

Theorem 1.3. Suppose that (M3, g) is a closed three-manifold with positive scalar
curvature. For I ∈ N, there is A0 = A0(M, g, I) < ∞ and r0 = r0(M, g, I) so that if
Σ ⊂ (M, g) is a connected, closed, embedded minimal surface with index(Σ) ≤ I, then
areag(Σ) ≤ A0 and genus(Σ) ≤ r0.

Remark 1.4. Unfortunately, without any extra assumption, even the space of em-
bedded stable minimal surfaces fails to be compact in general three-manifolds due to
the failure of uniform area bounds. We discuss several examples in §1.2 below. In
the converse direction, Ejiri–Micallef have shown [EM08] that for immersed minimal
surfaces in a general three-manifold, uniform bounds on their area and genus imply
uniform bounds on their index.

In a more technical direction, we remark that as a byproduct of the proof of Theorem
1.17, we obtain:

Theorem 1.5. Suppose that Σj is a sequence of embedded minimal surfaces in a three-
manifold (M, g) with uniformly bounded index, i.e., index(Σj) ≤ I for some I ∈ N.
Then, after passing to a subsequence, Σj converges to a lamination L away from at
most I singular points. The lamination can be extended across these points.

Remark 1.6. We note that the fact that the limit lamination L has removable sin-
gularities can be seen as a consequence of deep work by Meeks–Perez–Ros [MPR13],
combined with our curvature estimates for Σj , which after passing to the limit, imply3

that |IIL|(x)dg(x,B∞) ≤ C for x ∈ L. Our proof of Theorem 1.5 however does not
rely on the removable singularity results in [MPR13], and thus provides a self-contained
proof that the limit lamination of a sequence of embedded closed minimal surfaces with
bounded index has removable singularities.

Remark 1.7. We also remark that Theorem 1.17 and Corollary 1.19 provide an alter-
native approach to a recent result by Colding–Gabai, [CG14, Theorem 2.2] (cf. Remark
1.18). We will not reproduce the full statement here, but only note that it loosely says
that a degenerating sequence of index-one embedded minimal surfaces will look like a
small catenoid connected by large annular regions to the rest of the surface.

We remark that as consequence of the Theorems 1.1 and 1.3, we may easily deduce
several compactness results. By a theorem of Colding–Minicozzi [CM00], the set of
closed embedded minimal surfaces with uniformly bounded area and genus is finite in
(M3, g), as long as g is “bumpy” in the sense of White [Whi15], i.e. g has the property

3Alternatively, [LZ15, (3.1)] establishes similar curvature estimates for the limit lamination; the
exact form of estimates we establish here (before passing to the limit) are crucial for our proof of
Theorem 1.17 in several other places.
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that there are no immersed minimal submanifolds with non-zero Jacobi fields.4 Such
metrics are “generic” by the main result in [Whi15]. Thus, we have:

Corollary 1.8. Suppose that (M3, g) is a closed three-manifold with a bumpy metric
of positive scalar curvature. For I ∈ N, there are only finitely many closed, connected,
embedded minimal surfaces Σ with index(Σ) ≤ I.

Remark 1.9. A slightly different version of this corollary has recently been indepen-
dently obtained by Carlotto [Car15], assuming the ambient positive scalar curvature
metric is bumpy in the sense of [Whi91] (i.e., there is no embedded (as opposed to
immersed) minimal submanifold with a non-zero Jacobi field) but with the additional
assumption that (M3, g) contains no embedded minimal RP 2.

Combining Theorem 1.3 with the work of Choi–Schoen [CS85], we also have:

Corollary 1.10. Suppose that (M3, g) is a closed three-manifold with positive Ricci
curvature. Then, for I ∈ N, the set of closed, connected, embedded minimal surfaces Σ
with index(Σ) ≤ I is compact in the smooth topology.

In particular, combined with the recent work of Marques–Neves [MN13] we obtain

Corollary 1.11. Suppose that (M3, g) is a closed three-manifold with a bumpy metric
of strictly positive Ricci curvature. Then, there exists a sequence of closed, embedded
minimal surfaces Σj with index(Σj)→∞.

Remark 1.12. These last two corollaries have been recently proven by Li–Zhou [LZ15]
by somewhat different arguments.

1.2. Counterexamples. Several examples show that the set of closed, embedded,
stable minimal surfaces can fail to be compact, even if the metric is bumpy and even
if we restrict only to the set of such surfaces with a fixed genus. The examples below
show that the hypothesis in the applications discussed above cannot be significantly
weakened.

Example 1.13. The simplest example of non-compactness occurs in the square three-
torus T3 = R3/Z3, equipped with the flat metric, as seen by choosing positive rational
numbers θk ∈ Q converging to an irrational number θ∞ ∈ R \Q. Letting γk denote the
simple closed geodesic in the two-torus T2 = R2/Z2 with slope θk, it is easy to see that
Σk := γk × S1 is an embedded stable minimal surface with areag(Σk)→∞. Note that
the surfaces Σk limit to the lamination of T3 by a single plane γ∞ × S1 (where γ∞ is
the non-closed geodesic with slope θ∞). Of course, the flat metric on T3 is manifestly
non-bumpy, but it is relatively easy to see that for an arbitrary metric on T3, we can
minimize (by [SY79]) the g-area of immersions homotopic to the embedding of Σk into
T3 and then argue (using [BW69, FHS83] and fundamental group considerations) that
this yields a sequence of embedded, stable, minimal tori in (T3, g) with unbounded
area.

4It seems to us that in general, the notion of “bumpy” from [Whi15], rather than the notion from
[Whi91] is necessary to deal with the possibility of a one-sided limit in the proof of [CM00]. See also
[Car15, Remark 3.1].
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One might hope that the torus T3 is somehow special in the previous example.
However, the following results show that for any closed three-manifold, it is not possible
to use bumpiness (or more generally, any “generic” property which is satisfied by a C2-
dense set of metrics) to prove area bounds for embedded stable minimal surfaces (even
assuming fixed genus).

Example 1.14. Fix a Riemannian three-manifold M . Work of Colding–Minicozzi
[CM00] shows that there is a C2-open set of metrics g on M so that there is a sequence
of embedded stable minimal tori Σj with areag(Σj) → ∞. Indeed, for any domain in
M of the form Ω = S×S1 where S is a disk with three holes removed (i.e., Ω is a solid
torus with three holes removed, which obviously exists in any coordinate chart), they
show that if Ω has strictly mean convex boundary with respect to a metric g, then there
exists such a sequence of tori in Ω ⊂ (M, g). Their construction relies on an idea of
“looping” tori around the holes; see [Kra09, Figure 3.2.3] for a nice illustration. These
examples were subsequently extended by Dean [Dea03] and Kramer [Kra09] to give
examples of sequences of embedded, stable, minimal surfaces with unbounded area,
with any fixed genus.

Example 1.15. An even more extreme example similar to Example 1.14 but with
a more complicated looping scheme was given by Colding–Hingston [CH06], who in
a C2-open set of metrics on any three-manifold, construct a sequence of stable tori
with unbounded area whose limit lamination has surprising behavior, in particular
non-closed limit leaves.

In a more topological vein, we have the following examples of embedded minimal
surfaces with bounded index (in fact stable) but unbounded genus (and hence area).

Example 1.16. For Σr the closed oriented surface of genus r > 1, Jaco proved [Jac70]
that Mr := Σr × S1 admits a sequence of incompressible surfaces with unbounded
genus. For any Riemannian metric g on Mr, we may minimize area using [SY79] and
see that the resulting stable minimal surface is embedded (after passing to a one-sided
quotient, if necessary) by [FHS83]. It is clear that these minimal surfaces must have
unbounded genus.

1.3. Precise statement of degeneration and surgery results in 3-dimensions.
We now state our main results in three-dimensions.

Theorem 1.17 (Local picture of degeneration). There are functions m(I) and r(I)
with the following property. Fix a closed three-manifold (M3, g) and a natural number
I ∈ N. Then, if Σj ⊂ (M, g) is a sequence of closed embedded minimal surfaces with

index(Σj) ≤ I,
then after passing to a subsequence, there is C > 0 and a finite set of points Bj ⊂ Σj

with cardinality |Bj | ≤ I so that the curvature of Σj is uniformly bounded away from
the set Bj, i.e.,

|IIΣj |(x) min{1, dg(x,Bj)} ≤ C,
but not at Bj, i.e.,

lim inf
j→∞

min
p∈Bj
|IIΣj |(p) =∞.
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Passing to a further subsequence, the points Bj converge to a set of points B∞ and the
surfaces Σj converge locally smoothly, away from B∞, to some lamination L ⊂M \B∞.

The lamination has removable singularities, i.e., there is a smooth lamination L̃ ⊂ M

so that L = L̃ \ B∞. Moreover, there exists ε0 > 0 smaller than the injectivity radius
of (M, g) so that B∞ is 4ε0-separated and for any ε ∈ (0, ε0], taking j sufficiently large
guarantees that

(1) Writing Σ′j for the components of Σj ∩ B2ε(B∞) containing at least one point

from Bj, no component of Σ′j is a topological disk, so we call Σ′j the “neck
components.” They have the following additional properties:

(1.a) The surface Σ′j intersects ∂Bε(B∞) transversely in at most m(I) simple
closed curves.

(1.b) Each component of Σ′j is unstable.

(1.c) The genus5 of Σ′j is bounded above by r(I).

(1.d) The area of Σ′j is uniformly bounded, i.e.,

lim sup
j→∞

areag(Σ
′
j) ≤ 2πm(I)ε2(1 + o(ε))

(2) Writing Σ′′j for the components of Σj ∩B2ε(B∞) that do not contain any points

in Bj, each component of Σ′′j is a topological disk, so we call Σ′′j the “disk
components.” Moreover, we have the following additional properties

(2.a) The curvature of Σ′′j is uniformly bounded, i.e.,

lim sup
j→∞

sup
x∈Σ′′

j

|IIΣj |(x) <∞.

(2.b) Each component of Σ′′j has area uniformly bounded above by 2πε2(1 +

o(ε)).

As is clear from the proof, it would be possible to give explicit bounds for m(I) and
r(I), if one desired.

Remark 1.18. As remarked above, a similar description in the special case of index
one surfaces was recently obtained by Colding–Gabai [CG14, Theorem 2.2]. However,
our proof differs from theirs (even in the index one case) in how we transfer topological
information between scales. Additionally, the higher index case introduces serious
technical difficulties, due to the possibility of simultaneous concentration at multiple
scales.

A key application of Theorem 1.17 is a prescription for performing “surgery” on a
sequence of bounded index minimal surfaces so that their curvature remains bounded,
while only changing the topology and geometry in a controllable way.

Corollary 1.19 (Controlled surgery). There exist functions r̃(I) and m̃(I) with the
following property. Fix a closed three-manifold (M3, g) and suppose that Σj ⊂ (M3, g)

5See Definition A.2.
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is a sequence of closed embedded minimal surfaces with

index(Σj) ≤ I.

Then, after passing to a subsequence, there is a finite set of points B∞ ⊂ M with
|B∞| ≤ I and ε0 > 0 smaller than the injectivity radius of (M, g) so B∞ is 4ε0-
separated, and so that for ε ∈ (0, ε0], if we take j sufficiently large then there exists

embedded surfaces Σ̃j ⊂ (M3, g) satisfying:

(1) The new surfaces Σ̃j agree with Σj outside of Bε(B∞).

(2) The components of Σj ∩ Bε(B∞) that do not intersect the spheres ∂Bε(B∞)

transversely and those that are topological disks appear in Σ̃j without any change.

(3) The curvature of Σ̃j is uniformly bounded, i.e.

lim sup
j→∞

sup
x∈Σ̃j

|II
Σ̃j
|(x) <∞.

(4) Each component of Σ̃j ∩ Bε(B∞) which is not a component of Σj ∩ Bε(B∞) is
a topological disk of area at most 2πε2(1 + o(ε)).

(5) The genus drops in controlled manner, i.e.,

genus(Σj)− r̃(I) ≤ genus(Σ̃j) ≤ genus(Σj).

(6) The number of connected components increases in a controlled manner, i.e.,

|π0(Σj)| ≤ |π0(Σ̃j)| ≤ |π0(Σj)|+ m̃(I).

(7) While Σ̃j is not necessarily minimal, it is asymptotically minimal in the sense
that limj→∞ ‖HΣ̃j

‖
L∞(Σ̃j)

= 0.

The new surfaces Σ̃j converge locally smoothly to the smooth minimal lamination L̃
from Theorem 1.17.

Remark 1.20. The strategy we use to prove Theorem 1.17 can be extended to a
higher dimensional setting (assuming a uniform volume bound). Certain aspects of
the local structure change; in particular, due to the failure of the half-space theorem
in higher dimensions, the separation of sheets into “neck regions” and “disk regions”
does not occur in the same way as in three dimensions. As such, we will not attempt
to formulate a higher dimensional version of Theorem 1.17 or Corollary 1.19, but from
the proof of Theorems 1.1 and 1.2 it is clear that the general picture described in the
introduction holds.

1.4. Related Results. As remarked above, Li–Zhou [LZ15] have proven compactness
results for embedded minimal surfaces with bounded index in a three-manifold with a
metric of positive Ricci curvature. This was preceded by the higher dimensional (i.e.,
allowing the ambient manifold to be n-dimensional for 3 ≤ n ≤ 7) result of Sharp
[Sha15], showing that for a metric of positive Ricci curvature, the space of embedded
minimal surfaces with uniformly bounded area and index is compact.
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After this paper was completed, we were informed by Carlotto that he had inde-
pendently arrived at a proof of a slightly different version of Corollary 1.8. His paper
[Car15] appeared at essentially the same time as ours.

These works mainly focus on properties of limits of surfaces with uniformly bounded
index, rather than the way in which such surfaces degenerate. As such, their arguments
are of a rather different nature than those in this paper.

The version of this article originally posted to the arXiv only discussed the case
of ambient three manifolds. After we had completed extending our work to higher
dimensions, but before we had updated the arXiv version, we received a preprint [BS15]
from Buzano and Sharp containing an alternative approach to the topological bounds
in higher dimensions. Their work recovers Theorem 1.1 via a rather different approach.

Finally, we refer to the works of Ros [Ros95] and Traizet [Tra04] studying of how
complete embedded minimal surfaces in R3 with bounded total curvature degenerate.
Some parallels can be drawn between their results and Theorem 1.17, but our work
takes a different technical approach due to the precise behavior of the index.

1.5. Outline of the paper. In Section 2, we make several preliminary definitions
and prove curvature bounds away from finitely many points for hypersurfaces with
bounded index. Section 3 contains a key topological result allowing us to control the
topology of the “intermediate regions”, assuming a curvature bound of the appropriate
form. We establish the local picture of degeneration for in three-manifolds in Section
4 and the surgery result in Section 5. These results then allow us to establish the
three-dimensional compactness results in Section 6. Section 7 contains the proof of
the higher dimensional results. Appendix A contains a discussion of the non-orientable
genus as well as the genus of surfaces with boundary. Appendix B recalls certain
facts about finite index surfaces in R3. In Appendix C we provide proofs of several
removable singularity results. Finally, Appendix D contains examples to illustrate that
the various forms of degeneration discussed in the proof of Propositions 4.2 and 4.3 can
in fact occur.
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several helpful conversations. He was partially supported by NSF grant DMS-1512574
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2. Preliminaries

2.1. Definitions and basic notation. Let Σ be a closed embedded minimal hyper-
surface in (M, g). Recall, whether Σ is one-sided or two-sided, the Morse index of Σ,
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henceforth denoted by index(Σ), is defined as the number of negative eigenvalues of
the quadratic form associated to second variation of area:

Q(v, v) :=

ˆ
Σ
|∇⊥v|2 − |IIΣ|2|v|2 − RicM (v, v) dΣ,

where v is a section of the normal bundle of Σ in M , ∇⊥ the induced connection,
and IIΣ the second fundamental form of Σ. Whenever Σ is two-sided, the Morse
index is equal to the number of negative eigenvalues of the associated Jacobi operator
∆Σ + |IIΣ|2 + Ric(ν, ν) acting on smooth functions ϕ ∈ C∞(Σ). If Σ is one-sided,

however, we consider the orientable double cover Σ̂→ Σ and the corresponding change

of sheets involution of τ : Σ̂ → Σ̂, which must satisfy ν ◦ τ = −ν for any choice on

unit normal vector ν for Σ̂, then the Morse index of Σ is then equal to the negative
eigenvalues of the operator ∆

Σ̂
+ |II

Σ̂
|2 + Ric(ν, ν) over the space of smooth functions

ϕ ∈ C∞(Σ̂) satisfying ϕ ◦ τ = −ϕ.
We will be dealing with sequences of embedded minimal surfaces without area bounds

in three manifolds and so it will be convenient to consider minimal laminations: A
closed set L in M3 is called a minimal lamination if L is the union of pairwise disjoint,
connected, injectively immersed minimal surfaces, called leaves. For each point x ∈M3,
we require the existence of a neighborhood x ∈ Ω and a C0,α local coordinate chart
Φ : Ω → R3 under which image the leaves of L pass through in slices of the form
R2 × {t} ∩ Φ(Ω).

All distance functions considered in our work will be induced by some ambient metric,
and we denote by dh the distance function induced by the metric h. Given a closed
set S, we let dh(·,S) denote the distance to S with respect to the metric h. If S is a
finite set of points, |S| will denote its cardinality, and for some δ > 0, we say that S is
δ-separated if dh(x,S \{x}) > δ for every x ∈ S. We will also consider metric balls and
write, as usual, Br(p) to denote the ball of radius r > 0 centered at p. If a finite set of
points is δ-separated and δ > r > 0, then the set of points within distance at most r
from S forms a union of disjoint balls, which we will be denote by Br(S) (Note: we are
omit the dependence of the ambient metric in our notation for Br as it should always
be clear in the context in which is being used).

2.1.1. Smooth blow-up sets. The following definition turns out to be quite convenient
in the sections to come. Suppose that (Mj , gj , 0j) is a sequence6 of complete pointed
Riemannian manifolds which are converging in the pointed Cheeger–Gromov sense to
(M∞, g∞, 0∞). Suppose that Σj is a sequence of embedded minimal hypersurfaces in
(Mj , gj). A sequence of finite sets of points Bj ⊂ Σj is said to be a sequence of smooth
blow-up sets if:

(1) The set Bj remains a finite distance from the basepoint 0j , i.e.

lim sup
j→∞

max
p∈Bj

dgj (p, 0j) <∞.

6In practice, either (Mj , gj , 0j) will be a fixed (independently of j) compact manifold or
(M∞, g∞, 0∞) will be Euclidean space.
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(2) If we set λj(p) := |IIΣj |(p) for p ∈ Bj , then the curvature of Σj blows up at
each point in Bj , i.e.,

lim inf
j→∞

min
p∈Bj

λj(p) =∞.

(3) If we choose a sequence of points pj ∈ Bj , then after passing to a subsequence,

the rescaled surfaces Σj := λj(pj)(Σj − pj) converge locally smoothly to a

complete, non-flat, embedded minimal surface Σ∞ ⊂ Rn without boundary,
satisfying

|IIΣ∞
|(x) ≤ |IIΣ∞

|(0),

for all x ∈ Rn.

(4) The blow-up points do not appear in the blow-up limit of the other points, i.e.,

lim inf
j→∞

min
p,q∈Bj
p 6=q

λj(p)dgj (p, q) =∞.

2.2. Curvature estimates and index concentration. Recall that Schoen [Sch83a]
has proven that two-sided stable minimal surfaces in a three-manifold have uniformly
bounded curvature. More recently, the two-sided hypothesis was shown to be unneces-
sary by Ros [Ros06]. In particular, we have:

Theorem 2.1 ([Sch83a, Ros06]). Fix (M3, g) a closed three-manifold. There is C =
C(M, g) so that if Σ ⊂ (M, g) is a compact stable minimal surface, then

|IIΣ|(x) min{1, dg(x, ∂Σ)} ≤ C
for all x ∈ Σ.

Here, we show that sequence of embedded minimal surfaces of bounded index have
curvature bounds away from at most finitely many points. This can be thought of as a
generalization of Schoen and Ros’s curvature estimates for stable minimal surfaces to
the case of finite Morse index. The proof by induction is most convenient if we prove
a more general bound for surfaces with boundary.

Lemma 2.2. Fix (M3, g) a closed three-manifold and I ∈ N. Suppose that Σj ⊂ (M, g)
is a sequence of compact embedded minimal surfaces with index(Σj) ≤ I. Then, after
passing to a subsequence, there exist C > 0 and a sequence of smooth blow-up sets
Bj ⊂ Σj with |Bj | ≤ I, so that

|IIΣj |(x) min{1, dg(x,Bj ∪ ∂Σj)} ≤ C.
for all x ∈ Σj.

Proof. We prove this by induction on I. When I = 0, the surface Σ is stable, so the
statement is exactly the curvature estimates discussed in Theorem 2.1.

For I > 0, consider Σj ⊂ (M, g) with index(Σj) ≤ I. By passing to a subsequence,
we may assume that

ρj := sup
x∈Σj

|IIΣj |(x) min{1, dg(x, ∂Σj)} → ∞.

If we cannot find such a subsequence, it is easy to see that the curvature estimates hold
with Bj = ∅.
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A standard point picking argument allows us to find p̃j ∈ Σj so that for λj =
|IIΣj |(p̃j)→∞, the rescaled surfaces

Σj := λj(Σj − p̃j)
converge locally smoothly, after passing to a subsequence, to an embedded7 minimal

surface in R3, Σ̂∞, of index at most I and with no boundary, so that

|II
Σ̂∞
|(x) ≤ |II

Σ̂∞
|(0) = 1.

For the reader’s convenience, we recall the point picking argument at the end of the
proof.

Because Σ̂∞ is non-flat, there is some radius R̂ > 0 so that Σ̂∞ ∩ BR̂(0) has non-

zero index, Σ̂∞ \ BR̂(0) is stable, and Σ̂∞ intersects ∂BR(0) transversely. Moreover,

taking R̂ larger if necessary, we may arrange that all of these properties are satisfied
in addition to

(2.1) |II
Σ̂∞
|(x) ≤ 1

4
.

for x ∈ Σ̂∞ \BR̂(0).

We define Σ̃j := Σj\BR̂/λj (p̃j). For j large, this ball cannot intersect the boundary of

Σj (by the choice of p̃j and because ρj →∞) and ∂B
R̂/λj

(p̃j) intersects Σj transversely.

Thus, Σ̃j is a smooth compact minimal surface with smooth, compact boundary

∂Σ̃j = ∂Σj ∪ (∂B
R̂/λj

(p̃j) ∩ Σj).

For j large, index(Σ̃j) ≤ I − 1. By the inductive hypothesis, passing to a subsequence,

there is a sequence of smooth blow-up sets B̃j ⊂ Σj with |B̃j | ≤ I − 1 and a constant

C̃ (independent of j) so that

(2.2) |II
Σ̃j
|(x) min{1, dg(x, B̃j ∪ ∂Σ̃j)} ≤ C̃.

We claim that Bj := B̃j ∪{p̃j} is a sequence of smooth blow-up sets. The only thing

we must check is that none of the points in B̃j can appear in the blow-up around p̃j
and vice versa (in particular, this guarantees that rescaling Σj around points in B̃j still
yields a smooth limit). First, suppose that

lim inf
j→∞

min
r̃∈B̃j

λjdgj (r̃, p̃j) <∞,

where we recall that λj = |IIΣj |(p̃j). Assume that for j fixed, the minimum is attained

at r̃j ∈ B̃j . By choice of R̂ (specifically (2.1)) we see that after passing to a subsequence,

ηj := |IIΣj |(r̃j) ≤
1

2
|IIΣj |(p̃j) =

1

2
λj .

Thus, we have reduced to the other possibility, i.e.

lim inf
j→∞

ηjdgj (r̃j , p̃j) <∞.

7Usually, the blow-up limit Σ̂∞ would only be injectively immersed. Here, because it has finite
index and no boundary, it is embedded by Theorem B.1.
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However, this is a contradiction, as the blow-up of Σ̃j around r̃j has no boundary.
Now, suppose that there is zj ∈ Σj so that

lim sup
j→∞

|IIΣj |(zj) min{1, dgj (zj ,Bj ∪ ∂Σj)} =∞.

Combined with (2.2) and choice of p̃j , we may pass to a subsequence with zj ∈ Σ̃j and

dgj (zj ,Bj ∪ ∂Σj) = dgj (zj , p̃j)→ 0,

dgj (zj , B̃j ∪ ∂Σ̃j) = dgj (zj , p̃j)−
R̂

λj
.

Because Σ̂∞ has bounded curvature, we see that zj cannot appear in the blow-up
around p̃j , i.e.,

lim inf
j→∞

λjdgj (zj , p̃j) =∞.

Thus,

lim sup
j→∞

|IIΣj |(zj)
R̂

λj
≤ lim sup

j→∞

C̃R̂

λjdgj (zj , B̃j ∪ ∂Σ̃j)
= 0.

Combined with (2.2), this implies that

C̃ ≥ lim sup
j→∞

|IIΣj |(zj) min{1, dgj (zj , B̃j ∪ ∂Σ̃j)} =∞,

a contradiction. This completes the proof.
Finally, we recall the point-picking argument used above to construct Σ̂∞. Choose

q̃j ∈ Σj so that

|IIΣj |(q̃j) min{1, dg(q̃j , ∂Σj)} = ρj →∞

and set rj = |IIΣj |(q̃j)−
1
2 . Then, choose p̃j ∈ Σj ∩Brj (q̃j) so that

|IIΣj |(p̃j)dg(p̃j , ∂Brj (q̃j)) = max
x∈Σj∩Brj (q̃j)

|IIΣj |(x)dg(x, ∂Brj (q̃j)).

Let Rj = dg(p̃j , ∂Brj (q̃j)). Because dg(x, ∂BRj (p̃j)) ≤ dg(x, ∂Brj (q̃j)) for x ∈ BRj (p̃j),
we find that

|IIΣj |(p̃j)dg(p̃j , ∂BRj (p̃j)) = max
x∈Σj∩BRj (p̃j)

|IIΣj |(x)dg(x, ∂BRj (p̃j)).

Note that |IIΣj |(p̃j)Rj ≥ |IIΣj |(q̃j)rj →∞. The rescaled surfaces Σj satisfy

|IIΣj
|(x)dgj (x, ∂BλjRj (0)) ≤ λjRj ,

for x ∈ Σj ∩BλjRj (0). Thus, if x ∈ Σj lies in a given compact set of R3, then

|IIΣj
|(x) ≤ λjRj

λjRj − dgj (x, 0)
→ 1 = |IIΣj

|(0)

as j → ∞. By construction, we see that dgj (0, ∂Σj) → ∞. Passing to a subsequence,

we may take a smooth limit of λj(Σj − p̃j) to find a complete, non-flat, embedded

minimal surface Σ̂∞ in R3 of index at most I and with no boundary, completing the
point picking argument. �
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Corollary 2.3. For (M3, g) and I ∈ N, if Σj ⊂ (M, g) is a sequence of closed embedded
minimal surfaces with index(Σj) ≤ I, after passing to a subsequence, there is C > 0
and a sequence smooth blow-up sets Bj ⊂ Σj with |Bj | ≤ I, so that

|IIΣj |(x)dg(x,Bj) ≤ C,
for all x ∈ Σj.

In higher dimensions, we similarly have the following curvature estimates.

Lemma 2.4. Fix, for 4 ≤ n ≤ 7, a closed n-dimensional manifold (Mn, g), as well
as Λ > 0 and I ∈ N. Suppose that Σj ⊂ (M, g) is a sequence of compact embedded
minimal hypersurfaces with volg(Σj) ≤ Λ and index(Σj) ≤ I. Then, after passing to a
subsequence, there exists C > 0 and a sequence of smooth blow-up sets Bj ⊂ Σj with
|Bj | ≤ I, so that

|IIΣj |(x) min{1, dg(x,Bj ∪ ∂Σj)} ≤ C.
for all x ∈ Σj.

Proof. The argument is similar to Lemma 2.2, so we will be brief. By [Sim68, SSY75,

SS81], if Σ̂ is an embedded, two-sided stable minimal hypersuface in Rn (for 4 ≤ n ≤
7), with Euclidean volume growth, i.e. limR→∞R

1−n vol(Σ̂ ∩ BR) < ∞, then it is a
finite union of finitely many parallel planes. Because a complete properly embedded
hypersurface in Rn is two-sided (cf. [Sam69]) and an embedded hypersurface in Rn with
bounded second fundamental form and Euclidean volume growth is easily seen to be
properly embedded, we obtain the following Bernstein-type result: if Σ̂ is an embedded
stable minimal hypersurface in Rn (for 4 ≤ n ≤ 7) with Euclidean volume growth and
bounded second fundamental form, then it is the union of finitely many parallel planes.
In particular, we do not need to assume a priori that Σ̂ is two-sided.

From this, we obtain the claim when I = 0. Indeed, if it were false, we could
find a sequence of compact embedded stable minimal hypersurfaces Σj ⊂ (Mn, g)
with volg(Σj) ≤ Λ. The point picking argument used above then produces a non-flat,
embedded stable minimal hypersurface in Rn with Euclidean volume growth (by the
volume bounds and monotonicity formula) and uniformly bounded second fundamental
form. This contradicts the above observation.

More generally, assume that the result fails for some fixed index bound I for a
sequence Σj . Then, as in the proof of Lemma 2.2, we may find p̃j ∈ Σj so that for
λj = |IIΣj |(p̃j), the rescaled surfaces

Σj := λj(Σj − p̃j)
converge locally smoothly, after passing to a subsequence, to an embedded stable min-

imal hypersurface Σ̂∞ in Rn with Euclidean area growth with

|II
Σ̂∞
|(x) ≤ |II

Σ̂∞
|(0) = 1.

Unlike the case when n = 3, it is possible that Σ̂∞ has multiple components.8 How-
ever, the monotonicity formula guarantees that the number of components is bounded.
Thanks to the above observation (implying that the index of Σ̂∞ is non-zero) and the

8Recall that the half-space theorem fails for n ≥ 4. For example, for n ≥ 4, a catenoid in Rn is
bounded between two parallel planes.
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fact that there are only finitely many components, we may choose R̂ exactly as in the
proof of Lemma 2.4. The rest of the proof proceeds by removing BR̂/λj (pj) from Σj

and using the inductive step, exactly as in Lemma 2.2. �

3. Annular decomposition from curvature estimates

The following lemma is a generalization of [Whi87, p. 251] (see also [MPR13, Lemma
4.1]). It will play a crucial role in later arguments, allowing us to transmit topological
information between different scales.

Lemma 3.1 (Annular decomposition). There is 0 < τ0 <
1
2 with the following property.

Assume that g is a Riemannian metric on {|x| ≤ 2} ⊂ Rn which is sufficiently smoothly
close to gRn. Suppose that Σ ⊂ B1(0) is a properly embedded hypersurface with ∂Σ ⊂
∂B1(0). Assume that for some τ ≤ τ0 and p ∈ Bτ0(0), we have:

(1) Each component of Σ intersects Bτ (p).

(2) The hypersurface Σ intersects ∂Bτ (p) transversely in m manifolds diffeomorphic
to Sn−2 with the standard smooth structure.

(3) The curvature of Σ satisfies |IIΣ|(x)dg(x, p) ≤ 1
4 for all x ∈ Σ \Bτ (p).

Then, Σ intersects ∂B1(0) transversely in m manifolds diffeomorphic to the standard

Sn−2 and each component of Σ∩
(
B1(0) \Bτ (p)

)
is diffeomorphic to Sn−2× [0, 1] with

the standard smooth structure.

Proof. As long as g is sufficiently close to gRn , working in normal coordinates around
p, a computation as in [HI01, pp. 417–8] shows that the third hypothesis implies that
the curvature of Σ with respect to gRn satisfies

|IIRnΣ |(x)dRn(x, p) ≤ 1

2
.

Hence, it is not hard to check that it is suffices to take g = gRn .
Choose χ ∈ C∞c ([0, 1)) a smooth positive cutoff function so that χ(r) ∈ [0, 1], χ(r) =

1 for r ≤ 1
4 and χ(r) = 0 for r sufficiently close to 1. We will take τ > 0 sufficiently

small based on this fixed cutoff function. Consider the function

f(x) = dRn(x, p)2χ(dRn(0, x)2) + dRn(x, 0)2(1− χ(dRn(0, x)2)).

By assuming τ > 0 is sufficiently small, we see that f(x) = dRn(x, p)2 near ∂Bτ (p) and
f(x) = dRn(x, 0)2 near ∂B1(0). Note that for any point q ∈ Rn,

∇Σ(dRn(x, q)2) = 2((x− q)− 〈x− q,N〉N)

(D2
Σ(dRn(x, q)2))x(v, v) = 2

(
|v|2 − IIΣ(x)(v, v) 〈x− q,N〉

)
,

where N is any choice of normal vector at x and v is any vector in TxΣ. Thus, we
compute

(D2
Σf)x(v, v) = 2χ

(
|v|2 − IIΣ(x)(v, v) 〈x− p,N〉

)
+ 2(1− χ)

(
|v|2 − IIΣ(x)(v, v) 〈x,N〉

)
+ 2χ′(dRn(x, p)2 − dRn(x, 0)2)

(
|v|2 − IIΣ(x)(v, v) 〈x,N〉

)
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+ 4χ′′(dRn(x, p)2 − dRn(x, 0)2) (〈x, v〉 − 〈x,N〉 〈N, v〉)2

+ 8χ′ (〈x− p, v〉 − 〈x− p,N〉 〈N, v〉) (〈x, v〉 − 〈x,N〉 〈N, v〉)

− 8χ′ (〈x, v〉 − 〈x,N〉 〈N, v〉)2

= 2
(
|v|2 − IIΣ(x)(v, v) 〈x− p,N〉

)
− 2(1− χ)IIΣ(x)(v, v) 〈p,N〉
+ 2χ′(dRn(x, p)2 − dRn(x, 0)2)

(
|v|2 − IIΣ(x)(v, v) 〈x,N〉

)
+ 4χ′′(dRn(x, p)2 − dRn(x, 0)2) (〈x, v〉 − 〈x,N〉 〈N, v〉)2

− 8χ′ (〈p, v〉 − 〈p,N〉 〈N, v〉) (〈x, v〉 − 〈x,N〉 〈N, v〉) .

Observe that for τ > 0 sufficiently small, |IIΣ|(x)| ≤ 1
2 on the supports of 1−χ, χ′ and

χ′′. In particular, it is easy to see that on Σ \Bτ (p),

(D2
Σf)x(v, v) ≥ 2

(
|v|2 − IIΣ(x)(v, v) 〈x− p,N〉

)
− CdR3(p, 0)|v|2,

for some C > 0 independent of τ . Combined with the assumed second fundamental
form bounds, we have that

(D2
Σf)x(v, v) ≥ 2

(
3

4
− CdR3(p, 0)

)
|v|2.

Thus, as long as dR3(p, 0) ≤ τ is sufficiently small, this is strictly positive.
Choosing such a τ , any critical point of f in Σ\Bτ (p) must be a strict local minimum.

The mountain pass lemma then implies that f cannot have any critical points in the
interior of Σ \Bτ (p). Thus, the result follows from standard Morse theory. �

4. Degeneration of bounded index minimal surfaces in three-manifolds

Let I be a natural number. In this section, we analyze how a sequence of embedded
minimal surfaces with index at most I in a three-manifold might degenerate and prove
Theorem 1.17. By the curvature estimates from Corollary 2.3, we will be mostly work-
ing on small scales near a finite set of at most I points so that we will frequently find
ourselves in situations where the following hypothesis, which we will call (ℵ), hold.

Suppose that gj is a sequence of metrics on {|x| ≤ 2rj} ⊂ R3 with rj →∞, so that
gj is locally smoothly converging to the Euclidean metric gR3 . Assume also that:

(1) We have Σj ⊂ Brj (0) a sequence of properly embedded minimal surfaces with
∂Σj ⊂ ∂Brj (0).

(2) The surfaces have index(Σj) ≤ I.

(3) There is a sequence of non-empty smooth blow-up sets Bj ⊂ Bτ0(0) (where τ0

is fixed in Lemma 3.1) with |Bj | ≤ I and C > 0 so that

|IIΣj |(x)dgj (x,Bj ∪ ∂Σj) ≤ C,
for x ∈ Σj .

(4) The smooth blow-up sets converge to a set of points B∞ and there is a smooth
lamination Λ ⊂ R3 \ B∞ so that Σj converges locally smoothly to Λ away from
B∞.
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Then, we will say that Σj satisfies (ℵ).
All the statements we will prove when working under hypothesis (ℵ) will turn out to

be open conditions, so the reader may think of all the metric balls to be defined using
the Euclidean distance.

It is convenient to write Σ′j for the union of components of Σj ∩B2(0) which contain

at least one point in Bj , and Σ′′j for the union of components which contain no points
in Bj . Whenever j is sufficiently large, these will represent respectively the neck and
the disk components of Σj respectively.

Lemma 4.1. The surfaces Σ′′j have uniformly bounded curvature, i.e.

lim sup
j→∞

sup
x∈Σ′′

j

|IIΣj |(x) <∞.

Proof. After passing to a subsequence, suppose that pj ∈ Σ′′j satisfies

|IIΣj |(zj) = sup
x∈Σ′′

j

|IIΣj |(x) := λ′′j →∞.

Then,
Σ′′j := λ′′j (Σ

′′
j − zj)

will converge to a complete, non-flat, properly embedded two-sided minimal surface
Σ′′∞ in R3 with finite index (cf. Theorem B.1). On the other hand, we claim that after
passing to a subsequence,

Σ′j := λ′′j (Σ
′
j − zj)

converges away from some finite set of points B∞ to a non-empty smooth lamination
Λ′ of R3 \ B∞. The reason that Λ′ is non-empty is that

lim sup
j→∞

min
p∈Bj

λ′′jdgj (zj , p) <∞

by the curvature estimates assumed in (ℵ). Thus, at least one point in the rescaled
blow-up sets must remain at a bounded distance from the origin. Corollary C.5 and
then Theorem B.1 imply that Λ′ contains either a plane or properly embedded minimal
surface with finite total curvature.

Because Σ′′∞ is non-flat, this is a contradiction (cf. Corollary B.2). �

We give an example to illustrate the behavior described in the following two propo-
sitions in Appendix D.

Proposition 4.2 (One point of curvature concentration). Suppose that Σj satisfies
(ℵ) with |Bj | = 1 for each j. Then, the lamination Λ extends across B∞ to a smooth

lamination Λ̃ ⊂ R3. Moreover, for j sufficiently large:

(1) The surfaces Σ′′j are minimal disks of uniformly bounded curvature.

(2) The surfaces Σ′j intersect ∂B1(0) transversely in at most 3
2(I + 1) circles.

(3) The surfaces Σ′j have genus at most 3
2(I + 1).

(4) The surfaces Σ′j have uniformly bounded area, i.e.,

lim sup
j→∞

area(Σ′j) <∞.
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(5) The surfaces Σ′j are two-sided.

After a rotation, Λ̃ = R2 × K for K ⊂ R closed and Σ′j ∩ B1(0) smoothly converges

away from B∞ to B1(0) ∩ (R2 × {η}) with finite multiplicity, for some |η| ≤ 1
2 .

Proof. Let us write Bj = {pj}, B∞ = {p∞} and λj := |IIΣj |(pj). By the definition of a
smooth blow-up set, after passing to a subsequence, the surfaces

Σj := λj(Σj − pj)

converge to Σ∞ ⊂ R3, a complete, non-flat, properly embedded (and thus two-sided)
minimal surface. It has index at most I. By9 [CM14], the genus g and number of ends
r of Σj are both bounded by 3

2(I + 1). Choose R > 0 so that Σ∞ intersects ∂BR(0)
transversely and

(4.1) |IIΣ∞
|(x)dR3(x, 0) <

1

4

for x ∈ Σ∞ \BR(0).
First, assume that there is δ > 0 so that for j sufficiently large,

(4.2) |IIΣj |(x)dgj (x, pj) <
1

4

for x ∈ Σj∩(Bδ(pj)\BR/λj (pj)). By Lemma 3.1, we see that for j sufficiently large, the

surface Σ′j ∩ (Bδ(pj) \ BR/λj (pj)) is topologically the union of r annuli. In particular,

because Σ∞ is two-sided, so is Σ′j ∩Bδ(pj).
Passing to a subsequence, let Λ′ ⊂ (Bδ(p∞) \ {p∞}) denote the lamination limit of

Σ′j ∩Bδ(p∞) away from p∞. Because Σ′j ∩Bδ(p∞) is two-sided and has index at most

I, we claim there exists ε ∈ (0, δ] so that each leaf in Λ′ ∩Bε(p∞) has stable universal
cover: if a leaf of Λ′∩Bδ(p∞) has the convergence to occurring with multiplicity bigger
than one, then it must have stable universal cover (cf. [MR06, Lemma A.1]). On the
other hand, if we consider a leaf Λ′ ∩ Bδ(p∞) where the convergence to occurs with
multiplicity one, then this leaf itself must have bounded index. Moreover, the sum of
the index of such leaves must be bounded above by I, or else it would violate the bound
for index(Σ′j), and in particular there are only finitely many unstable leaves. Since for

each leaf we may argue as in [FC85, Proposition 1] to find ε ∈ (0, δ] so that it is stable
in Bε(p∞) and there are only finitely many of such leaves, the claim follows. Thus, by
Proposition C.3, Λ′ ∩Bε(p∞) extends across p∞.

By Lemma 4.1, we see that Σ′′j ∩ Bε(p∞) has a smooth lamination limit. Putting
these two facts together, we see that the limit lamination of Σj away from p∞, say

Λ ⊂ R3 \ {p∞}, must extend across p∞ to a smooth lamination Λ̃ ⊂ R3. Arguing as

above, we see that Λ̃ has finite index. Thus, by Corollary B.2, Λ̃ is either a non-flat

9We remark that it is not strictly necessary to refer to [CM14] here. Indeed, one could argue in a
similar manner to the proof of Theorem 1.2 to use our blow-up strategy along with the fact [FC85]
that “a finite index surface in R3 cannot have infinite genus” to prove that there is C = C(I) so that
an embedded minimal surface in R3 with index at most I has at most C(I) genus and ends. Referring
to [CM14] allows us to avoid such a discussion (and also allows us to obtain functions m(I) and r(I)
in Theorem 1.17 that are explicitly computable).
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single properly embedded surface of finite total curvature, or else is a lamination of R3

by parallel planes.

In the first case, the convergence of Σj to Λ̃ must occur with multiplicity one (oth-

erwise Λ̃ would be stable and thus a plane; see e.g., [MR06, Lemma A.1]). In this case,

Allard’s regularity theorem [All72] would imply that Σj converged smoothly to Λ̃ near
p∞. This is not compatible with the fact that the curvature of Σj at pj is blowing up,

so we see that Λ̃ is a (non-empty) lamination of R3 by parallel planes. In particular,
(1) follows from this and Lemma 4.1.

We will rotate the coordinates so that Λ̃ = R2×K for K ⊂ R a non-empty closed set.
Hence, we see that for j large, (4.2) actually holds for all x ∈ Σj ∩ (B2(0) \BR/λj (pj)).
From this, assertions (2) through (5) follow easily from Lemma 3.1 (note that we have
assumed that Bj ⊂ Bτ0(0) and τ0 <

1
2) and the above description of Σ∞.

Now, it remains to show that we can find δ > 0 so that (4.2) holds for x ∈ Σj ∩
(Bδ(pj) \ BR/λj (pj)). If this were to fail, for j large, we can find δj → 0 so that

δj > R/λj and (4.2) holds for all x ∈ Σj ∩ (Bδj (pj) \ BR/λj (pj)), but δj is the largest
possible number with this property. Observe that this choice of δj guarantees that

(4.3) sup
z∈∂Bδj (pj)∩Σj

|IIΣj |(z)dgj (z, pj) =
1

4
.

We now consider
Σ̂j = δ−1

j (Σj − pj).
Note that the curvature of Σ̂j at the origin cannot be uniformly bounded as j → ∞,

as otherwise Σ̂j would limit to a rescaled version of Σ∞. This would contradict the

choice of R and δj , in particular (4.1). Hence, Σ̂j satisfies all of the hypothesis of the
proposition, in addition to satisfying (the rescaled version of) (4.2) on B1(0), i.e.

|IIΣ̂j
|(x)dĝj (x, 0) <

1

4

for x ∈ B1(0)∩ Σ̂j . By the above argument, Σ̂j converges subsequentially to a lamina-
tion of R3 by parallel planes. The (scale invariant) curvature estimates assumed in (ℵ)
and the assumption that |Bj | = 0 guarantee that

|IIΣ̂j
|(x)dĝj (x, 0) ≤ C

for, e.g., x ∈ B2(0) ∩ Σ̂j . Thus, the convergence of Σ̂j to the lamination by parallel
planes takes place smoothly away from {0}. In particular,

sup
z∈∂B1(0)∩Σ̂j

|IIΣ̂j
|(z)→ 0.

This contradicts (4.3), after rescaling. �

Proposition 4.3 (Multiple points of curvature concentration). There are functions
m(I) and r(I) so that the following holds. Suppose that Σj satisfies (ℵ). Then, the

lamination Λ extends across B∞ to a smooth lamination Λ̃ ⊂ R3. Moreover, for j
sufficiently large:

(1) The surfaces Σ′′j are minimal disks of uniformly bounded curvature.
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(2) The surfaces Σ′j intersect ∂B1(0) transversely in at most m(I) circles.

(3) The surfaces Σ′j have genus at most r(I).

(4) The surfaces Σ′j have uniformly bounded area, i.e.,

lim sup
j→∞

area(Σ′j) <∞.

(5) The surfaces Σ′j are two-sided.

After a rotation, Λ̃ = R2 ×K for K ⊂ R closed and Σ′j ∩ B1(0) converges to B1(0) ∩
(R2 × {η1, . . . , ηn}) with finite multiplicity for some |ηi| ≤ 1

2 .

Proof. We will induct on the index bound I in (ℵ). If I = 1, then the proposition
follows from Proposition 4.2 above. Now, assume that the proposition holds for I − 1
and that index(Σj) ≤ I.

We first consider the case that |B∞| ≥ 2. Pick δ > 0 so that B∞ is 4δ-separated. In
particular, Bδ(B∞) is a disjoint union of balls and, after passing to a subsequence, we
may assume that for any connected component B of Bδ(B∞)

index(Σj ∩B) ≥ 1.

Because we are assuming that |B∞| ≥ 2, this implies that

index(Σj ∩B) ≤ I − 1.

Now, we choose εj → 0 sufficiently slowly so that Bj ⊂ Bεjτ0/2(B∞) and

lim inf
j→∞

εj min
p∈Bj
|IIΣj |(p) =∞.

We claim that (after taking δ > 0 smaller if necessary) for j large we have

(4.4) |IIΣj |(x)dgj (x,B∞) <
1

4

for x ∈ Σj ∩ (Bδ(B∞) \ Bεj (B∞)). If this were to fail, then we may argue as in the
one point case, Proposition 4.2: choose some component B = Bδ(p∞) of Bδ(B∞) (for
some p∞ ∈ B∞), where it failed, and choose the largest δj ≥ εj so that (4.4) holds for
x ∈ Σj ∩ (Bδj (p∞) \Bεj (p∞)). Thus, the surfaces

δ−1
j (Σj ∩Bδ(p∞)− p∞)

satisfy the inductive hypothesis and so, after passing to a subsequence, they converge
to a lamination of R3 by parallel planes, contradicting the choice of δj .

Because we now know that (4.4) holds, we are able to transfer topological information
from the scale Bεj (B∞) (where we may apply the inductive hypothesis, by choice of εj)
to Bδ(B∞), using Lemma 3.1. In particular, we see that any component of Σj∩Bδ(B∞)
containing some point in Bj intersects Bδ(B∞) transversely in at most m(I−1) circles,
has genus at most r(I−1) and is is two-sided. Thus, as in the proof of Proposition 4.2,

we may use Proposition C.3 to see that Λ has removable singularities, i.e. Λ = Λ̃ \ B∞
for a smooth lamination Λ̃ ⊂ R3 with finite index. By Corollary B.2, we see that Λ̃
is a lamination by parallel planes. In particular, assertion (1) follows from this and
Lemma 4.1. Moreover, it is not hard to check that Σ′j ∩ (B1(0) \Bδ(B∞)) satisfies the
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hypothesis of Lemma A.3, which yields the asserted bounds on the genus and number

of boundary components of Σ′j . Combined with the structure of Λ̃, this also yields the

asserted area bounds, so we have that assertions (2)-(5) also hold.
Thus, it remains to consider the case that |B∞| = 1. Passing to a subsequence, we

may assume that |Bj | ≥ 2 for each j, as otherwise we could apply Proposition 4.2.
Then, we may choose pj , qj ∈ Bj so that

εjτ0/2 := dgj (pj , qj) = max
p,q∈Bj
p6=q

dgj (p, q)→ 0.

Then, consider the sequence

Σj := ε−1
j (Σj − pj)

By definition of a sequence of smooth blow-up sets (i.e., the various points cannot
appear in the blow-up of the other points), the curvature must still be blowing up at
each point in Bj = ε−1

j (Bj − pj). Thus Σj satisfies the hypothesis of the proposition

with |B∞| ≥ 2, so the conclusion of the proposition holds for Σj . At this point, we may
argue as above (cf. the analogous argument in the proof of Proposition 4.2), establishing
the curvature estimate (4.4) for x ∈ Σj ∩ (Bδ(pj) \Bεj (pj)) for some δ > 0. As before,
this allows us to remove the singularities in the limit lamination and conclude that it
must be a lamination by planes. Using this, we may readily transfer the topological
information out to the scale of B1(0) for Σj using Lemma 3.1 and as before conclude
assertions (1) through (5). �

4.1. Completing the proof of Theorem 1.17. Assume that Σj ⊂ (M3, g) is a
sequence of closed embedded minimal surfaces with

index(Σj) ≤ I.
Passing to a subsequence, Corollary 2.3 yields a sequence of smooth blow-up sets Bj
so that |Bj | ≤ I and a constant C > 0 so that

|IIΣj |(x) min{1, dg(x,Bj)} ≤ C.
Passing to a further subsequence, Bj converges to a finite set of points B∞ and Σj

converges away from B∞ to a lamination L ⊂ M \ B∞. The remaining argument is
very similar to the proof of Proposition 4.3, so we omit some of the details below.

Choose εj → 0 sufficiently slowly so that Bj ⊂ Bεjτ0/2(B∞) and

lim inf
j→∞

εj min
p∈Bj
|IIΣj |(p) =∞.

We claim that by taking ε0 > 0 sufficiently small (in particular, so that it is smaller
than the injectivity radius and so that B∞ is 4ε0-separated), for j large, we have the
improved curvature bounds

(4.5) |IIΣj |(x)dg(x,B∞) <
1

4

for x ∈ Σj ∩ (B2ε0(B∞) \ Bεj (B∞)). If not, we may pick a connected component Σj ∩
(B2ε0(B∞)\Bεj (B∞)) where it fails and rescale the largest ball in which (4.5) is satisfied
to unit scale. This rescaled sequence then satisfies the hypothesis of Proposition 4.3, so
we see that it limits to a lamination of R3 by parallel planes (away from a discrete set).
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This contradicts the fact that we chose the largest ball satisfying (4.5). Thus, we may
find some ε0 > 0 as claimed. Taking ε0 > 0 even smaller if necessary, we may arrange
that for every component B of B2ε0(B∞), the metric g restricted to B and rescaled by
by ε−1

0 around its center satisfies the hypothesis in Lemma 3.1.
Now, Propositions 4.2 and 4.3 applied to each component B of Σj ∩Bεj (B∞), after

rescaling it by ε−1
j around the center of B yields the desired topological information

at the scale of Bεj (B∞). The improved curvature estimates in (4.5) and Lemma 3.1
then allow us to transfer this information out to the scale of Bε0(B∞), exactly as in
the proof of Propositions 4.2 and 4.3. In particular, topological statements (1.a), (1.b),
(1.c) follow, and also (2.a) by Lemma 4.1. Then, each component of Σj ∩ Bε0(B∞)
either has uniformly bounded curvature, or has uniformly bounded area and is two-
sided, so we may apply Proposition C.1 to conclude that the lamination L extends to

a smooth lamination L̃ with L = L̃ \ B∞.
Finally, fix ε ∈ (0, ε0] and B = Bε0(p∞) a connected component component of

Bε0(B∞). Because L̃ is smooth in B, as ε→ 0, each leaf in ε−1(L̃ ∩B− p∞) converges
with multiplicity one to a plane in R3. Rotating a local coordinate frame, we may
assume that all such planes are of the form R2 × {t} for some t ∈ R.

Thus, by (1.a) we can see that for j sufficiently large (depending on ε) any component
of Σj ∩B2ε(p∞) must intersect Bε(p∞) \Bε2(p∞) union of at most m(I) annuli, which
converge graphically to the annulus

(
R2 × {0}

)
∩ (Bε(p∞) \Bε2(p∞)). Combined with

the monotonicity formula, the area estimate (1.d) easily follows. The argument for
(2.b) follows a similar line of reasoning, except any neck region is converging smoothly

everywhere to a leaf in L̃ ∩B, which is nearly planar on small scales.

5. Surgery for bounded index surfaces in three-manifolds

In this section, we describe how Corollary 1.19 follows from Theorem 1.17. We first
prove the following local description of the surgery operation.

Proposition 5.1 (Local picture of surgery). Suppose that Γj is a sequence of embedded
surfaces in B3(0) with ∂Γj ⊂ ∂B3(0), and so that:

(1) The surfaces Γj \ B1(0) converge smoothly, with finite multiplicity, to the flat

annulus A(3, 1) :=
(
B3(0) \B1(0)

)
∩ {x3 = 0} as j →∞.

(2) The set of components of Γj which are topological disks converge smoothly to
the flat disk D(3) := B3(0) ∩ {x3 = 0} as j →∞.

Then, for j sufficiently large, we may construct embedded surfaces Γ̃j with ∂Γ̃j ⊂
∂B3(0), and so that:

(1) The surfaces Γ̃j agree with the Γj near ∂B3(0).

(2) Any component of Γj which is topologically a disk is unchanged.

(3) The surfaces Γ̃j converge smoothly, with finite multiplicity, to the flat disk D(3)
as j →∞.



MINIMAL HYPERSURFACES WITH BOUNDED INDEX 23

Proof. Fix a smooth cutoff function χ : R2 → [0, 1], with χ(x) ≡ 1 for |x| ≥ 7
4 and

χ(x) ≡ 0 for |x| ≤ 5
4 .

We define the cylinder and annular cylinder

C(r) := {(x1, x2, x3 : (x1)2 + (x2)2 < r2}, r > 0,

C(r1, r2) := C(r1) \ C(r2), r1 > r2 > 0.

Taking j sufficiently large, each component of Γj ∩ C(2, 1) is graphical over the flat
annulus A(2, 1), and the topological disk components of Γj ∩ C(2) are graphical over
the flat disk D(2).

For now, we assume at most two of the components of Γj are topological disks,
and each of the disk components, if they exist, is either the topmost component or
bottommost component. Choose a smooth function wj : D(2)→ R so that

(1) The graph of wj is contained in B3(0).

(2) The graph of wj lies strictly above (resp. below) the bottommost (resp. upper-
most) disk if it exists.

(3) The function wj converges smoothly to 0 as j →∞.

For example, when Γj contains both an uppermost and bottommost disk, then we may
take the average of their respective graphs. We additionally choose real numbers ηj → 0
so that the graph of wj + η satisfies the above properties as well for all η ∈ (0, ηj).

We may find functions uj,1, . . . , uj,n(j) : A(2, 1)→ R so that any non-disk component
of Γj is the graph of the uj,l in C(2, 1). By assumption, for all k,

sup
l∈{1,...,n(j)}

‖uj,l‖Ck(A(2,1)) → 0

as j →∞. By embeddedness of Γj , we may arrange that

uj,1(x) < uj,2(x) < · · · < uj,n(j)(x)

for x ∈ A(2, 1).
Now, we define

ũj,l(x) = χ(x)uj,l(x) + (1− χ(x))

(
wj(x) +

l

n(j)
ηj

)
We now define a surface Γ̃j which agrees with Γj in B3(0) \ C(2) and which is defined
inside of C(2) to be the union of the graphs of the ũj,l along with the disk components

in Γj , if they exist. It is easy to check that Γ̃j satisfies the asserted properties.
Finally, we may easily reduce the case of general Γj to the above case by considering

contiguous subsets of the components of Γj which are in the above form and applying
the argument above to the maximal such subsets. This choice will preserve embedded-
ness, because we have chosen them so that there will at least be a disk separating the
non-disk components of different subsets. �

Now, we may complete the proof of the surgery result. Consider Σj a sequence of
compact embedded minimal surfaces in (M3, g) with index(Σj) ≤ I. We pass to a
subsequence so that the conclusion of Theorem 1.17 applies. In particular, there is a
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finite set of points B∞ ⊂ M with |B∞| ≤ I and a smooth lamination L̃ of M so that

Σj converges to L = L̃ \ B∞ away from B∞.
Take ε0 as in Theorem 1.17 and choose ε ∈ (0, ε0]. Pick any p ∈ B∞; we will show

how to perform the surgery in Bε(p). Write L for the leaf of L̃ ∩ Bε(p) that passes
through p. We may fix a diffeomorphism of Ψ : Bε(p) → B3(0) ⊂ R3 so that Ψ
maps Bε/3(0) difeomorphically onto B1(0) and L onto the flat disk D(3) ⊂ R3 as in
Proposition 5.1.

Consider the connected components of Σj ∩ Bε(pi) which are converging smoothly

to L in the annulus Bε(p) \ Bε/3(p) (by Theorem 1.17, this includes all of the neck
components, i.e., all of the components of Σj ∩ Bε(p) containing some point in Bj).
Using the maximum principle, the area bounds and curvature estimates for the disk
components show that they converge smoothly to L (although they might do so with
infinite multiplicity). Now, we define Γj to be the union of all of the neck components
of Σj ∩Bε(p), as well as all of the disc components which are directly adjacent (either
above or below) to a neck component.

It is not hard to see that if the uppermost (resp. lowermost) component of Γj is a
neck component, we may simply add in a disk which is above (resp. below) all of the
components of Γj , but which is below (resp. above) all of the disk components not
converging to L.

Now we apply Proposition 5.1 to Γj (and then removing the extra disks on top
and bottom, if we had to add them) and replace Σj ∩ Bε(p) by the resulting surface.

Repeating this for each p ∈ B∞ yields Σ̃j . The asserted properties of Σ̃j follow easily
from Proposition 5.1 and Theorem 1.17.

6. Proofs of the three-dimensional compactness results

Proof of Theorem 1.1 for n = 3. Fix I ∈ N, A < ∞, and a closed Riemannian three-
manifold (M, g). Suppose that Σj ⊂ (M, g) is a sequence of connected, embedded,
closed minimal surfaces with index(Σj) ≤ I and area(Σj) ≤ A but genus(Σj) → ∞.

By10 Corollary 1.19, we may find Σ̃j with uniformly bounded area and curvature, but
so that

genus(Σ̃j) ≥ genus(Σj)− r̃(I)→∞.

This is a contradiction: after passing to a subsequence, the surfaces Σ̃j must converge

smoothly and with finite multiplicity to some closed, embedded minimal surface Σ̃∞
(which must have finite genus). �

Proof Theorem 1.3. Fix I ∈ N and (M, g) a closed Riemannian three-manifold with
positive scalar curvature. We only need to prove the area bound, since the genus bound
would immediately follow from Theorem 1.1 (the case n = 3 is proven above). Suppose
that Σj ⊂ (M, g) is a sequence of connected, closed, embedded minimal surfaces with
index(Σj) ≤ I and areag(Σj)→∞.

10Note that the full statement Corollary 1.19 is not really needed to prove this, one may directly use
the description from Theorem 1.17 to prove the claim, somewhat like Theorems 1.1 or 1.2. However,
the argument using Corollary 1.19 is very short, which is why we have presented the proof in this form.
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After passing to a subsequence, by Theorem 1.17, there is a finite set of points B∞
and a lamination L̃ ⊂ M so that Σj converges locally to the lamination L := L̃ \ B∞
away from B∞. Because the area of Σj is diverging, passing to a further subsequence,
there is p ∈M \ B∞ so that

lim inf
j→∞

areag(Σj ∩Br(p)) =∞.

for all r > 0. A standard argument along the lines of [MR05, Lemma 1.1], [MR06,
Lemma A.1], and [CCE15, Proposition 2.1] shows that there is a leaf p ∈ L ⊂ L with
stable universal cover and so that for r > 0 fixed sufficiently small, Σj ∩Br(p) consists
of n(j)→∞ sheets, which are all smoothly graphically converging to L ∩Br(p).

Because L = L̃\B∞ has removable singularities, there is a smooth complete minimal

surface L̃ so that L = L̃ \ B∞. The log-cutoff trick shows that stability extends across

isolated points, so L̃ has stable universal cover L̂. We think of L̂ as an immersed stable

minimal surface in M . If we consider a disk D ⊂ L̂ and if x is any point in the interior
of D, by Schoen-Yau [SY82, SY83], the intrinsic distance to the boundary must satisfy:

dD(x, ∂D) ≤ 2π
√

2√
3κ0

,

where κ0 > 0 is the infimum of the scalar curvature of M . This implies that L̂ must

be compact, since D is arbitrary. By [FCS80, Theorem 3], L̂ is a two-sphere.
We choose ε > 0 smaller than ε0 from the surgery theorem and small enough so

that p 6∈ B2ε(B∞). Let Σ̃j denote the surfaces resulting from a surgery at scale ε, as
constructed in Corollary 1.19. Because the original surfaces Σj are connected, Corol-

lary 1.19 implies that the number of components of Σ̃j is uniformly bounded above,

|π0(Σ̃j)| ≤ m(I) + 1.

Putting these facts together, we may find a connected component Σ̂j ⊂ Σ̃j so that

areag(Σ̂j) → ∞ and so that Σ̂j ∩ Bε(p) is smoothly converging to L ∩ Bε(p). The

maximum principle then implies that Σ̂j converges locally smoothly to L̃. In particular,

the universal cover of Σ̂j converges in the sense of immersions to L̂, which we have seen

is a topological sphere. This implies that the area of Σ̂j is uniformly bounded, a
contradiction. �

7. Bounded diffeomorphism type in higher dimensions

Here, we discuss the 4 ≤ n ≤ 7 case of Theorems 1.1 and 1.2. Motivated by the
three-dimensional case, we define the hypothesis (i) as follows.

Fix 4 ≤ n ≤ 7 and suppose that gj is a sequence of metrics on {|x| ≤ 2rj} ⊂ Rn that
is locally smoothly converging to gRn . Assume that:

(1) We have Σj ⊂ Brj (0) ⊂ Rn a sequence of properly embedded minimal hyper-
surfaces with ∂Σj ⊂ ∂Brj (0).

(2) The surfaces Σj are connected.

(3) The hypersurfaces have index(Σj) ≤ I.
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(4) The hypersurfaces satisfy vol(Σj) ≤ Λrn−1
j .

(5) There is a sequence of non-empty smooth blow-up sets Bj ⊂ Bτ0(0) (where τ0

is fixed in Lemma 3.1) with |Bj | ≤ I and C > 0 so that

|IIΣj |(x)dgj (x,Bj ∪ ∂Σj) ≤ C,

for x ∈ Σj .

(6) The smooth blow-up sets converge to a set of points B∞ and for any r > 0, the
hypersurfaces Σj∩Br(0) converge in sense of varifolds to a disk with multiplicity
k ∈ N, i.e.

[Σj ∩Br(0)] ⇀ k[{xn = 0} ∩Br(0)].

Then, we say that Σj satisfies (i).
Let us briefly note that the main difference between hypothesis (i) and the hypoth-

esis (ℵ) used in three dimensions is the assumption that the surfaces are connected (in
addition to the assumption that they satisfy a uniform area bound). The connected-
ness assumption is useful to compensate for the fact that the half-space theorem fails
in higher dimensions. To exploit this assumption, we will work “big to small,” rather
than11 “inside out,” when proving the crucial curvature estimates, e.g., (7.1).

Proposition 7.1. Given a sequence Σj satisfying (i) that intersect ∂B1(0) trans-
versely, we may pass to a subsequence so that all of the Σj ∩B1(0) are diffeomorphic.

Proof. We prove this by induction on I. For I = 0 this trivially follows from the
curvature estimates.

We first consider the one point of concentration, i.e. |Bj | = 1. We write Bj = {pj}
and B∞ = {p∞} and λj = |IIΣj |(pj). By passing to a subsequence, we have that

Σj := λj(Σj − pj)

converges to Σ∞ ⊂ Rn a complete, non-flat, properly embedded minimal surface with
index at most I and vol(Σ∞∩Br(0)) ≤ Λrn−1 (by the monotonicity formula). Because
of these properties, Σ∞ must be “regular at infinity” in the sense that outside of a
large compact set, it is the finite union of a graphs, all over the same fixed plane, of
functions with nice asymptotic behavior, see [Sch83b, Tys89]. In particular, we may
take R > 0 so that Σ∞ intersects ∂BR(0) transversely and

|IIΣ∞
|(x)dRn(x, 0) <

1

4

for x ∈ Σ∞ \BR(0).
We claim that for j sufficiently large,

(7.1) |IIΣj |(x)dgj (x, pj) <
1

4

11In three dimensions, we worked “small to big” to guarantee that any singular points of a limit
lamination at the given scale must be the limit of two-sided surfaces. This allowed us to apply Propo-
sition C.3 to remove the singularities. Thanks to the volume estimates assumed here, we do not need
to know a priori that the singularities of a limit surface are two-sided to remove its singularities, see
Proposition C.6.
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for x ∈ Σj ∩
(
B2(0) \BR/λj (pj)

)
. If this holds, then Lemma 3.1 easily is seen to imply

that for j sufficiently large, all of the hypersurfaces Σj ∩B1(0) are diffeomorphic (here,
we have used the obvious fact that “regular ends” are diffeomorphic to Sn−2 × (0, 1)
with the standard smooth structure).

On the other hand, if (7.1) does not hold, we may choose δj to be the smallest12

radius greater than R/λj so that

|IIΣj |(x)dgj (x, pj) <
1

4

holds for x ∈ Σj ∩
(
B2(0) \Bδj (pj)

)
. Note that for j sufficiently large, such a δj exists

and moreover δj → 0. This follows from fact that Σj converges smoothly to {xn = 0}
away from p∞.

Define

Σ̂j := δ−1
j (Σj − pj).

Passing to a subsequence, there is Σ̂∞ ⊂ Rn so that Σ̂j converges locally smoothly with

finite multiplicity to Σ̂∞ away from {0}, and converges in the sense of varifolds in B1(0).

Because Σ̂∞ has finite index, we may apply Proposition C.6 to see that the singularity at
{0} is removable. In particular (after relabeling the hypersurface), Σ̂∞ is an embedded

minimal hypersurface in Rn with index(Σ̂∞) ≤ I and vol(Σ̂∞ ∩ Br(0)) ≤ Λrn−1. In
particular, it is regular at infinity and has finitely many components. Hence, we may
choose γ ≥ 1 so that ∂Bγ(0) intersects each component transversely, and Σ̂∞ ∩ ∂Bγ(0)
is the disjoint union of finitely many manifolds diffeomorphic to Sn−2 with the standard
smooth structure.

By choice of δj , the curvature estimates (7.1) hold for x ∈ Σj ∩
(
B2(0) \Bγδj (pj)

)
.

Applying Lemma 3.1, we see that Σj ∩
(
B2(0) \Bγδj (pj)

)
is diffeomorphic to the union

of annular regions. In particular, Σj ∩ Bγδj (pj) must be connected (because we have

assumed that Σj is connected in (i)). From this, we see that Σ̂∞ is connected. Observe

that the convergence of Σ̂j to Σ̂∞ cannot be smooth at {0} by choice of R and the

assumption that R/λj ≤ δj . In particular, the convergence of Σ̂j to Σ̂∞ must occur

with multiplicity at least two, so Σ̂∞ is (two-sided) stable and thus a plane; note that

this uses the fact that Σ̂∞ is connected.13 The convergence of Σ̂j to Σ̂∞ occurs smoothly
near ∂B1(0). This contradicts the choice of δj (namely that (7.1) fails at some point
in Σj ∩ ∂Bδj (pj)). This completes the proof in the case that |Bj | = 1.

Now, we consider the case of |B∞| ≥ 2. Pick δ > 0 so that B∞ is 4δ-separated. In
particular, if B is a component of Bδ(B∞), then for j sufficiently large, we see that

index(Σj ∩B) ≤ I − 1.

12Again, we emphasize that δj is not chosen in the same way here as in three dimensions, e.g., the
proof of Proposition 4.2. Here, we are proving the estimate (7.1) by working from big to small scales,
rather than small to big.

13If we did not arrange for Σ̂∞ to be connected, then we could only conclude that it contained a
plane through the origin but it could have other non-flat components.
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We may choose εj → 0 sufficiently slowly so that Bj ⊂ Bεj/j(B∞),

lim inf
j→∞

εj min
p∈Bj
|IIΣj |(p) =∞

and so that every connected component of Σj ∩ Bδ(B∞) intersects Bεj (B∞). That
we can find εj satisfying final condition is easily justified by combining the smooth
convergence away from B∞ to {xn = 0} with the varifold convergence.

Consider Σ′j a connected component of Σj ∩ Bδ(p∞) for some p∞ ∈ B∞. We claim
that for j sufficiently large,

(7.2) |IIΣj |(x)dgj (x, p∞) <
1

4

for x ∈ Σ′j ∩
(
Bδ(p∞) \Bεj (p∞)

)
. Suppose that we have proven (7.2) for each compo-

nent. By the monotonicity formula and the uniform volume bound in (i), there must
be a bounded number of such components. Thus, by taking j sufficiently large, we
have that

|IIΣj |(x)dgj (x, p∞) <
1

4
for x ∈ Σj ∩

(
Bδ(p∞) \Bεj (p∞)

)
. The inductive step (it is not hard to see that it is

applicable to each connected component of Σj ∩ Bεj (p∞), by how we chose εj), along
with Lemma 3.1 and these bounds easily show that after passing to a subsequence
each hypersurface Σj ∩ Bδ(p∞) is diffeomorphic. Passing to a further subsequence,
we may arrange that each hypersurface Σj ∩ Bδ(B∞) is diffeomorphic. Now, since
Σj \ Bδ/2(B∞) converges smoothly (with finite multiplicity) to {xn = 0} \ Bδ/2(B∞),
there are only a finite number of ways that the hypersurfaces Σj ∩ Bδ(B∞) could join
up with Σj ∩ (B1(0) \Bδ(B∞)), which is diffeomorphic to a disjoint union of finitely
many copies of the “planar region” {xn = 0} ∩

(
B1(0) \Bδ/2(B∞)

)
. Hence, as usual it

remains to prove (7.2) for each connected component Σ′j .

The argument is similar to the one point of concentration above. If (7.2) failed,
then we could choose δj ≥ εj to be the smallest number so that (7.2) held for x ∈
Σ′j ∩

(
Bδ(p∞) \Bδj (p∞)

)
. The surface

Σ̂′j := δ−1
j (Σ′j − p∞)

converges after passing to a subsequence to Σ̂′∞. Now, we may argue exactly as in

the one point case to choose γ ≥ 1 so that each component of Σ̂′∞ intersects ∂Bγ(0)
transversely in spheres. Lemma 3.1 implies that Σ′j ∩

(
Bδ(p∞) \Bγδj (p∞)

)
is the union

of annular regions. This implies that Σ̂′∞ is connected, and is thus a plane through
the origin. This contradicts the choice of δj by the same argument as before. This
completes the proof in the case that |B∞| ≥ 2.

Finally, in the case that |B∞| = 1 and |Bj | ≥ 2, we can rescale by the distance
between the furthest two points of concentration. The proof proceeds just as in Propo-
sition 4.3, as long as we prove the crucial curvature estimates from the large to small
scale, as we have done above. We omit the details. �

Now, to finish the proof of Theorem 1.2, we first observe that it is not restrictive
to assume that the hypersurfaces are connected (the volume bounds and monotonicity
formula imply that there can be at most a bounded number of connected components).
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If Σj was a sequence of pairwise non-diffeomorphic connected, embedded, minimal
hypersurfaces in Rn with vol(Σ ∩ BR(0)) ≤ ΛR1−n and index(Σ) ≤ I, then because
such surfaces are “regular at infinity,” we may rescale and rotate the Σj so that outside
of Bτ0/2(0), the Σj are graphical over {xn = 0}. This guarantees that in particular
the Σj ∩ B1(0) are pairwise non-diffeomorphic as well. It is not hard to show that
Σj ∩Brj (0) satisfies (i), so the proof follows from the previous proposition.

The proof of Theorem 1.1 also follows easily from the above proposition: for Σj ⊂
(Mn, g) as in the statement of Theorem 1.1, pairwise non-diffeomorphic, their curvature
cannot be bounded. Combining the previous proposition with the usual Morse theory
argument, we see that after passing to a subsequence, the Σj are all diffeomorphic in
small fixed balls containing the points of curvature blow-up. The other portion of Σj

converges smoothly, and there are only finitely many ways to connect the regions of
large curvature to the regions of bounded curvature.

Appendix A. The genus of a surface

Definition A.1. For Σ a non-orientable closed surface, we define the (non-orientable)
genus of Σ to be

genus(Σ) =
1

2
genus(Σ̂)

where Σ̂ is the oriented double cover.

Definition A.2. For a compact surface Σ with boundary ∂Σ consisting of one or more
closed curves, we define genus(Σ) to be the genus of the closed surface formed by gluing
disks to each boundary component.

Suppose that Σ1,Σ2 are two oriented surfaces with boundary. If we form an oriented
surface Σ by gluing together b boundary components, then from the well known formula
χ(Σ) = χ(Σ1) + χ(Σ2), we find that

genus(Σ) = genus(Σ1) + genus(Σ2) + b− 1.

The reader should keep in mind the example of a torus thought of as a sphere with
two disks removed, glued to an annulus (along the two boundary components); neither
component has any genus in the sense of Definition A.2, but obviously the torus is a
genus one surface.

As a consequence of this, we find

Lemma A.3. Suppose that Σ is a properly embedded surface in B2(0) ⊂ R3 so that
there is a finite set of points B ⊂ B1/2(0) which are 3ε-separated for some ε ∈ (0, 1/4)
having the following properties:

(1) The surface Σ intersects ∂Bε(B) and ∂B1(0) transversely.

(2) The surface Σ \ Bε(B) is topologically the union of finitely many components,
each of which is topologically a disk with finitely many holes removed.

(3) The surface Σ ∩Bε(B) is two-sided.

(4) For each p ∈ B, we have an upper bound r(p) on the genus of Σ∩Bε(p) and an
upper bound m(p) on the number of boundary circles Σ ∩ ∂Bε(p).
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Then, the genus of Σ is bounded by

genus(Σ) ≤
∑
p∈B

(r(p) +m(p)− 1)

and the number of boundary circles of Σ ∩B1(0) is bounded by

|π0(Σ ∩ ∂B1(0))| ≤
∑
p∈B

m(p).

Appendix B. Finite index surfaces in R3

The following theorem is a consequence of results due to Osserman [Oss64] and
Fischer-Colbrie [FC85] in the two-sided case. The one sided case is due to Ros [Ros06].

Theorem B.1. Suppose that Σ ↪→ R3 is a complete minimal injective immersion in
R3 with finite index. Then Σ is two-sided, has finite total curvature, and is properly
embedded.

Proof. By [FC85, Theorem 2] and [Ros06, Theorem 17], finite index is equivalent to
finite total curvature for a complete minimal immersion in R3. Using [Oss64], we
have that Σ is conformally diffeomorphic to a punctured Riemann surface. Hence, so
is the orientable double cover—this shows the orientable double cover has finite total
curvature. By [Sch83c], we find that Σ is a proper embedding and is thus two-sided. �

This, along with the half-space theorem for minimal surfaces of finite total curvature
(which is a trivial consequence of [Sch83c]) implies.

Corollary B.2. Suppose that Λ is a smooth lamination of R3 with finite index. Then,
it is either a single properly embedded surface of finite total curvature or else it consists
only of parallel planes, i.e. after a rotation Λ = R2 ×K for K ⊂ R closed.

Appendix C. Removable singularity results

The following result is well known, but we indicate the proof for completeness.

Proposition C.1 (Properly embedded surfaces with curvature bounds). Suppose that
(M, g) is a complete Riemannian three-manifold and p ∈ M . Suppose that for ε > 0,
Σ ⊂ Bε(p) \ {p} is a properly embedded minimal surface with

|IIΣ|(x)dg(x, p) ≤ C.

Then, Σ smoothly extends across p, i.e. there is Σ̃ ⊂ Bε(p) with Σ = Σ̃ \ {p}.

Proof. Because Σ is proper it has finite area in Bε(p) \ {p}. Hence, the monotonicity
formula is applicable and we may consider a tangent cone to Σ at p (the tangent cone
may not be unique). The assumed curvature estimate imples that any tangent cone is
smooth away from {0}, so it is a single plane (possibly with multiplicity) through the
origin, and blow-ups of Σ converge smoothly away from 0 to any such tangent cone.
Combined with a blow-up argument, this shows that there is δ ∈ (0, ε) so that

|IIΣ|(x)dg(x, p) <
1

4
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for all x ∈ Σ ∩Bδ(p). A Morse theory argument analogous to Lemma 3.1 implies that
Σ ∩ Bδ(p) is the union of topological planes and annuli. Hence, it has finite Euler
characteristic. A properly embedded minimal surface with finite Euler characteristic is
well known to extend across a point singularity, cf. [CS85, Proposition 1]. �

We will make use of the following Bernstein-type result due to Gulliver–Lawson
[GL86]; see also [MPR13, Lemma 3.3] and [CM15, Lemma A.26].

Theorem C.2 (Gulliver–Lawson’s Bernstein theorem). Suppose that ϕ : Σ→ R3 \{0}
is a non-empty two-sided stable minimal immersion which is complete away from {0}.
Then the trace of ϕ is a plane.

Using this, we show the following removable singularity result for two-sided stable
laminations. The fundamental strategy is somewhat similar to [MPR13], but thanks
to the stability hypothesis (which is considerably stronger than the assumptions in
[MPR13]), we are able to give a relatively short argument, inspired by ideas in [CCE15].

Proposition C.3 (Removable singularities for two-sided stable laminations). Suppose
that (M, g) is a complete Riemannian three-manifold and p ∈ M . Suppose that for
some ε > 0, L ⊂ Bε(p) \ {p} is a minimal lamination with the property that any leaf

L ⊂ L has stable universal cover. Then, there is a smooth lamination L̃ ⊂ Bε(p) so

that L = L̃ \ {p}.

Proof. Because the claim is purely local, at several points we will replace L with its
intersection with some smaller ball Bε′(p). For simplicity, we will not relabel the
resulting immersion or ball. Furthermore, we will always work in a normal coordinate
system around p (where we can assume the metric to be sufficiently close to Euclidean,
by taking ε > 0 sufficiently small).

Observe that, taking ε smaller if necessary, by Schoen’s curvature estimates [Sch83a],
there is C > 0 so that |IIL|(x)dg(x, p) ≤ C for all x ∈ L. Hence, for any ρj → ∞,
passing to a subsequence, the laminations ρj(Lj − p) converge to a smooth lamination
L∞ of R3 \{0} away from {0}. Moreover each leaf in L∞ has stable universal cover and
is complete away from {0}. Hence by Theorem C.2, after rotating, L∞ = (R2×K)\{0}
for some closed set K ⊂ R.

Thus, taking ε > 0 sufficiently small, we may guarantee that

(C.1) |IIL|(x)dg(x, p) <
1

4

for all x ∈ L.
Now, pick any leaf L ⊂ L so that p is in the (set-theoretic) closure of L. We claim

that for any ρj → 0, passing to a subsequence and rotating the coordinate chart, the
surfaces Lj := ρjL converge to the lamination (R2 × {0}) \ {0} ⊂ R3 \ {0}. To prove
this, by our above argument, it is sufficient to show that there is not another plane
Π = R2×{z} in the lamination limit of ρjL. If such a plane did exist, then by curvature
estimates, we would have locally smooth convergence to Π (because 0 6∈ Π). At the
scale of L, this would imply that there was some δ ∈ (0, ε) sufficiently small, so that
L ∩ Bδ(p) \ {p} contains a properly embedded component D diffeomorphic to a disk,
intersecting ∂Bδ(p) transversely.
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Now, by the curvature estimates (C.1), we claim that a Morse theory argument along
the lines of Lemma 3.1 shows that L \Bδ(p) contains an annular region connecting the
disk D to ∂Bε(0). Given this, because L is connected (by definition) we see that it
must be the union of D with this annular region. This implies that p cannot be in the
closure of L, a contradiction. We emphasize that L is not assumed to be proper, so we
cannot simply apply Lemma 3.1. However, the given curvature estimates and resulting
compactness properties of the leaves are sufficient to handle the lack of properness in
the proof of the mountain pass lemma; this has been carried out in detail in [CCE15,
Appendix E] in a completely analogous situation.

Thus, we may take δ ∈ (0, ε/3) sufficiently small so that after rotating the normal
coordinate system, L∩ (B3δ(p) \Bδ(p)) intersects ∂B2δ(p) transversely, is contained in
a δ/10 neighborhood of the coordinate plane R2 × {0}, and is a multigraph over this
plane (cf. [CCE15, Lemma 4.1]). Hence, the intersection L ∩ ∂B2δ(p) is the union of
simple closed curves and injectively immersed curves which “spiral near the equator”
of the sphere ∂B2δ(p). First, assume that L ∩ ∂B2δ(p) contains a simple closed curve.
Then, by the curvature estimate (C.1) and the Morse theory argument used above, we
see that L∩∂B3δ(p) is a properly embedded annulus in B3δ(p)\{p}. Hence, L extends
across {p} by Proposition C.1.

Thus, it remains to consider the case that L ∩ ∂B2δ(p) consists of one or more
spiraling curves. Our argument here is analogous to the technique of passing to the
top sheet in [CCE15, Proposition 4.2]. We have seen that L ∩ ∂B2δ(p) is contained
in an δ/10 neighborhood of the equator (R2 × {0} ∩ ∂B2δ(p). Taking a sequence of
points wj ∈ L ∩ ∂B2δ(p) with x3(wj) approaching supw∈L∩B2δ(p)

x3(w), after passing

to a subsequence, the points wj converge to w′, which lies in a “top sheet” L′ ⊂ L.
By construction, L′ ∩ ∂B2δ(p) will contain a simple closed curve, and thus the Morse
theory argument guarantees that it L′∩B3δ(p) is a properly embedded topological disk
or annulus and thus, by Proposition C.1, L′ extends across {p}. Similarly, we may pass
to the bottom sheet to find a properly embedded L′′ ⊂ L which extends across {p}.
Note that by construction L′ 6= L′′ (otherwise, there could not be any spiraling).

Note that by the maximum principle, it cannot happen that both L′ and L′′ contain
p (because they are smoothly, properly embedded in B3δ(p)), so we assume that p 6∈ L′.
However, this leads to a contradiction as follows: by construction and the curvature
estimates, we can find a sufficiently small tubular neighborhood U of L′ ∩ B3δ(p) so
that L ∩ U is a multigraph over L′ ∩ B3δ(p). Because L′ ∩ B3δ(p) is a disk (and thus
is simply connected), this shows that at least one component of L ∩ U must be a disk,
contradicting the assumed spiraling behavior of L. �

Remark C.4. We remark that by combining the curvature estimates [Sch83a, Ros06]
with the removable singularity result [MPR13], the following strengthened version of
Proposition C.3 holds: suppose that L ⊂ Bε(p) \ {p} is a lamination so that every leaf
has a cover that is stable. Then, L extends smoothly across {p}. Note that that this
version is compatible with one-sided stability of leaves, while Proposition C.6 requires
two-sided stability.14

14We emphasize that one-sided stability does not necessarily imply that the universal cover is stable;
consider RP 2 in RP 3.
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We have not been able to find a self contained proof of this strengthened assertion,
due to the fact that we do not know if the one-sided version of Theorem C.2 holds.
It would thus be interesting to know if there can be a non-flat, one-sided stable im-
mersion in R3 that is complete away from the origin. Note that the surface cannot be
injectively immersed, because then by the curvature estimates [Ros06], one could take
the lamination closure away from {0} and then apply [MPR13].

Fortunately, for our purposes, the removable singularity result contained in Propo-
sition C.3 is sufficient, as we prove that two-sidedness “propagates outwards” in the
event of index concentration (cf., Proposition 4.2).

Corollary C.5. Suppose that B ⊂ R3 is a finite set of points and Λ ⊂ R3 \ B is a
smooth lamination of R3 \ B so that

|IIΛ|(x)dR3(x,B) ≤ C.
Then, either Λ extends smoothly across the points B or it contains a plane.

Proof. If each leaf is properly embedded in R3 \B, then Proposition C.1 implies that Λ
extends across B. Otherwise, Λ contains some limit leaf L, which has stable universal
cover by standard arguments (cf. [MR06, Lemma A.1]). Then the closure of L in
Λ is a non-empty lamination consisting entirely of leaves with stable universal cover.
Proposition C.3 then guarantees that the closure of L extends smoothly across B.
Hence, we see that L must be a plane, by [FCS80, dCP79, Pog81]. �

Finally, we need the following removable singularity result valid in higher dimensions.

Proposition C.6. Suppose that (Mn, g) is a complete Riemannian n-dimensional
manifold, for 4 ≤ n ≤ 7 and for some ε > 0, Σ ⊂ Bε(p) \ {p} is a properly embedded
stable minimal hypersurface. Then, Σ smoothly extends across p.

Proof. Stability of the hypersurface implies that |IIΣ|(x)dg(x, p) ≤ C. This follows
from a blow-up argument as in Lemma 2.4, based on [SSY75, SS81] and the fact that
a properly embedded hypersuface in Rn is two-sided (cf. [Sam69]).

As usual, the claim is purely local, so there is no harm with assuming that ε > 0 is
sufficiently small. The curvature estimates and properness guarantee that volg(Σ) <∞.
Thus, the monotonicity formula allows us to consider the tangent cones to (the varifold
closure of) Σ at p. The curvature estimates guarantee all of the tangent cones have
smooth, compact, connected, cross section in Sn−1. It is well known that (by Alexander
duality, cf. [Sam69]) compact embedded hypersurfaces separate Sn−1, and are thus two-
sided. Thus, the tangent cones themselves are two-sided. Because the rescalings of Σj

converge smoothly away from the origin to the tangent cones, we may see that the cones
are stable precisely in the sense needed to apply [Sim68]. This allows us to conclude
that all tangent cones to Σ at p are hyperplanes (possibly with multiplicity).

In particular, taking ε > 0 smaller if necessary, we may arrange that

|IIΣ|(x)dg(x, p) ≤
1

4
.

Then, using a Morse theoretic argument along the lines of Lemma 2.4 (and taking ε > 0
smaller if necessary), we may arrange that each of the (bounded number of) components
of Σ is diffeomorphic to Sn−2×(0, 1) and each component intersects ∂Bs(p) transversely
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in a connected submanifold for s ≤ ε. From this, it is not hard to see that any tangent

cone to (the varifold closure of) the hypersurface Σ̃ at p is a multiplicity one plane.

Thus, by Allard’s theorem [All72], Σ̃ extends smoothly across p. Using the maximum
principle, we thus see that there can be only one component of Σ whose closure includes
p. This completes the proof. �

Appendix D. Examples of degeneration

We give examples to illustrate the “one point of concentration” and “multiple points
of concentration” discussed in Propositions 4.2 and 4.3. Recall that (see [Cos84, HM85,

HK97]) the Costa surface Σ(1) ⊂ R3 is an embedded minimal surface with genus one
and three ends (one flat end, and two catenoidal ends) Furthermore, Hoffman–Meeks
have shown that it is possible to deform the flat end of Σ1 into a catenoidal end,
producing a family Σ(t) for t ≥ 1 of embedded genus three embedded minimal surfaces
with three catenoidal ends. As t → ∞, the logarithmic growth of middle catenoidal
end approaches that of the other end pointing in the same direction. See [HK97, Figure
3.2] or Figure 1 for an illustration of the deformation family for t large.

The exact index of Σ(t) seems to be unknown for t > 1 (note that index(Σ(1)) = 5

by [Nay93]). However, because the family Σ(t) has uniformly bounded total curvature,

the main result of [Tys87] implies that index(Σ(t)) ≤ I for some I ∈ N. We will always
assume that Σt is scaled so that the second fundamental form’s maximal norm is equal
to 1 and so that the line {x1 = x2 = 0} is the intersection of the two planes of reflection
symmetry.

Figure 1. This depicts the Hoffman–Meeks deformation Σ(t) of the
Costa surface for t large. The surface looks like three planes joined by
three catenoidal necks. The marked points are the points of curvature
concentration, and at the scale of curvature around any of them, Σ(t) is
geometrically close to a catenoid. By choosing the scaling appropriately,
one may arrange that the point of concentration stay at a bounded
distance, or all converge to the origin.

First, to illustrate the case of one point of concentration simply consider

Σj =

(
1

j
Σ(1)

)
∩Brj (0)
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for some rj → ∞. As r → ∞, this converges smoothly away from the origin to
the plane R2 × {0} with multiplicity 3. Clearly this satisfies (ℵ) with one point of
curvature concentration pj converging to 0 as j → ∞. Rescaling the sequence at the
scale of curvature around pj simply finds Σ1.

Second, to illustrate the various possibilities for multiple points of concentration, we
must describe the behavior of Σ(t) as t → ∞ more precisely. One may show that for
ρj → 0 sufficiently quickly,

Σj :=
(
ρjΣ

(j)
)
∩Brj (0)

looks like three nearby disks, with the middle disk jointed to the bottom disk by
two catenoidal necks in equal and opposite directions from the origin and the middle
disk joined to the top disk by a single catenoidal neck near the origin. This is well
illustrated in [HK97, Figure 3.2]; see also Figure 1. To establish this picture rigorously,
one may appeal to [Ros95, Theorem 2] and the fact that the catenoid is the only non-

flat embedded minimal surface Σ̂ ⊂ R3 with total curvature
´

Σ̂ κ > −12π (cf. [HK97,
Theorem 3.1]).

In particular, the blow-up set Bj has |Bj | = 3 and rescaling around any such point is
a catenoid. However, if we chose ρj → 0 sufficiently quickly, Bj converges to B∞ = {0}
as j → ∞. On the other hand, if ρj → 0 at precisely the correct rate, it is clear
that (after a rotation) Bj converges to {(0, 0, 0), (±1, 0, 0)} ⊂ R3. This example, and
considerably more refined examples are discussed in great detail in [Tra02].
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