
J. reine angew. Math., Ahead of Print Journal für die reine und angewandte Mathematik
DOI 10.1515/crelle-2012-0080 © De Gruyter 2012

On the blow-up of
four-dimensional Ricci flow singularities

By Davi Máximo at Austin

Abstract. In this paper we prove a conjecture by Feldman–Ilmanen–Knopf (2003) that
the gradient shrinking soliton metric they constructed on the tautological line bundle over CP1

is the uniform limit of blow-ups of a type I Ricci flow singularity on a closed manifold. We use
this result to show that limits of blow-ups of Ricci flow singularities on closed four-dimensional
manifolds do not necessarily have non-negative Ricci curvature.

1. Introduction

Suppose .M; g/ is a closed Riemannian manifold. One can evolve the metric g by

@

@t
g D �2Rc.g/;

a (weakly) parabolic system known as Ricci flow. Under certain curvature conditions on the
initial g, it is possible to prove normalized convergence to a round metric (see Hamilton [18],
Brendle–Schoen [6], Böhm–Wilking [5]) and thus say a lot about the topology ofM . But for a
large set of initial metrics the flow will become singular in finite time before converging to any
smooth limiting metric.

This happens when the curvature blows up on certain regions of the manifold and, indeed,
the standard short-time existence result for Ricci flow says that if the flow becomes singular at
some finite time T <1, then limt%T maxx2M jRm.x; t/j D 1. Actually, one can prove that
this happens if, and only if, lim supt%T maxx2M jRc.x; t/j D 1, see Šešum [26].

In order to analyze these singularities, one follows the conventional wisdom of singular
analysis from non-linear PDEs and does a blow-up at the singularity using the scaling symmetry
of the equation. Depending on how much compactness is at hand, one can extract a singularity
model from a sequence of such blow-ups, which will usually have a better geometry than the
original Ricci flow. Moreover, if one has a good knowledge about the possible singularity
models, then one is able to understand the structure of the singularity formation and see how to
perform surgery while controlling the geometry and the topology of the manifold, thus arriving
at the so-called Ricci flow with surgeries.

The above blow-up analysis in three-dimensional Ricci flow has been proved quite suc-
cessful by the work of Hamilton (e.g. see [19]) and Perelman ([24, 25]) on the Poincaré and
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Geometrization conjectures, and a lot of their theory carries on to higher dimensional settings,
which is an area of active research.

Indeed, for an n-dimensional Ricci flow g.t/ on a maximal time interval Œ0; T / with
T <1, it follows from Hamilton–Perelman’s theory that one can choose a sequence of points
pi 2M and times ti % T with

�i D jRmj.pi ; ti / D sup
x2M; t�ti

jRmj.x; t/ �!1

such that the rescaled flows

gi .t/ D �ig

�
ti C

t

�i

�
will converge (in a suitable sense and up to subsequence) to a complete Ricci flow .N; g1.t//,
which one calls singularity model. Moreover, if the singularity is of type I, i.e., the curvature
blows up like

lim sup
t%T

max
M
jRmj.T � t / <1;

by the work of Enders–Müller–Topping in [13] the above limit .N; g1.t// will be a non-flat
gradient shrinking soliton, that is a self-similar Ricci flow, where the metric g1 evolves only by
scaling and diffeomorphism. This means there will exist a time dependent function f defined
on N such that one can obtain the Ricci flow g1.t/ from pullbacks of an initial metric g1.0/
by diffeomorphisms �t of N generated by 1

T�t
rf , that is,

g1.t/ D .T � t /�
�
t g1.0/;

and one can check this is the case whenever the soliton equation

(1.1) Rc.g1/Crrf D
1

2
g1

is satisfied at some point in time (see Cao [10] for a survey on metrics satisfying the above
equation).

In dimension three, the Hamilton–Ivey pinching estimate (see [19,20]) roughly states that
if the flow has a region with very negative sectional curvature, then the most positive sectional
curvature is much larger still. This implies that limits of blow-ups of three-dimensional Ricci
flows will have non-negative sectional curvature and thus drastically constrains the singulari-
ties that can appear, making three-dimensional Ricci flow with surgeries plausible. In higher
dimensions, one has that such limits will have non-negative scalar curvature by the work of
Chen [11], but this type of estimate is lacking for more useful curvature conditions.

In this paper we prove that certain such estimates cannot exist for Ricci curvature in
dimension four, i.e., that limits of blow-ups of four-dimensional Ricci flows do not necessarily
have non-negative Ricci curvature. We achieve this by solving a question left by Feldman–
Ilmanen–Knopf in [14], which we state soon.

LetM be CP2 blown-up at one point andL be C2 blown-up at zero. We invite the reader
not familiar with these spaces to see Appendix A before reading what follows.

We will think of M as C2n¹0º with one CP1 glued at 0 (the section †0) and another
at1 (the section†1) and of L as C2n¹0º with a CP1 glued only at 0. BothM and L are line
bundles over CP1, M with line CP1 and L with line C. One can consider Kähler metrics on
these manifolds and evolve them by Ricci flow.
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Indeed, let g.t/ be a one-parameter family of Riemannian metrics on the manifold M
evolving by Ricci flow1)

(1.2)
@

@t
g D �Rc.g/:

Assume further that g.0/ is Kähler. It is a noted fact that g.t/ will remain Kähler with regard
to the same complex structure and the flow is thus called Kähler–Ricci flow, see e.g. Cao [8].
The Kähler class Œ!.t/� of the metric g.t/ will evolve by

(1.3) @t Œ!.t/� D �ŒRc.!/� D �c1.M/;

where c1.M/ is the first Chern class of the complex surface M . In particular,

(1.4) Œ!.t/� D Œ!.0/� � tc1.M/:

Moreover, on M , the cohomology classes of the divisors Œ†0� and Œ†1� span the class
H 1;1.M IR/ so any Kähler class Œ!� can be written uniquely as

Œ!� D bŒ†1� � aŒ†0�

for constants 0 < a < b, and the first Chern class satisfies c1.M/ D �Œ†0�C 3Œ†1�. This
and equation (1.4) give

(1.5) Œ!.t/� D b.t/Œ†1� � a.t/Œ†0�

for a.t/ D a.0/ � t and b.t/ D b.0/ � 3t . Thus, if initially b.0/ > 3a.0/, then a.t/! 0 as
t % T D a.0/ and the class Œ!.T /� will not be Kähler. This will mean that the CP1 of the
section Œ†0� has collapsed to a point and thus Ricci flow must have become singular at a time
no later than t D T .

In [14], Feldman–Ilmanen–Knopf conjectured that indeed, at least for U.2/-invariant
metrics, if b.0/ > 3a.0/, then a type I singularity will develop along †0 precisely at time
t D T and the blow-up limit of such singularity is the gradient shrinking soliton they have
constructed on L, the FIK soliton.

Since their work, a lot of investigation has been done on Kähler–Ricci flow of general
Kähler manifolds. Of relevance to this paper are Tian–Zhang [33], Song–Weinkove [29], and
the more recent Song [27]. When restricted to the Kähler–Ricci flow of U.2/-invariant metrics
of M as above, [33] gives the singular time to be exactly T D a.0/, and in [29] the authors
prove, among other things, that the singularity at t D T will develop only along†0, with g.T /
being a smooth metric onMn†0. Finally, Song [27] proved that such a singularity is type I, and
using the compactness at hand, he argued that limits of blow ups of the flow will subconverge in
the Cheeger–Gromov–Hamilton sense to a complete non-flat gradient shrinking Kähler–Ricci
soliton on a manifold homeomorphic to C2 blown up at one point. Moreover, the isometry
group of this soliton contains the unitary group U.n/; but since the complex structure might
jump in the limit (see e.g. [12]), one is not able to argue using Cheeger–Gromov–Hamilton
convergence that this soliton is in fact the FIK soliton.

In this paper we complete the proof of the Feldman–Ilmanen–Knopf conjecture for a
large set of initial metrics:

1) In the context of Kähler geometry, Ricci flow appears in the literature as @tg D �Rc.g/ instead of the
usual @tg D �2Rc.g/. This only changes things by scaling.
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Theorem 1.1. Let g.t/ be metrics on the manifold M evolving by Kähler–Ricci flow
(1.2). For a large open set 2) of U.2/-invariant initial metrics g.0/ belonging to the Kähler
class b.0/Œ†1� � a.0/Œ†0� with b.0/ > 3a.0/, one has the following:

(i) the flow is smooth until it becomes singular at time T D a.0/,

(ii) at t D T the flow develops a type I singularity in the region †0 and g.T / is a smooth
Riemannian metric on Mn†0,

(iii) parabolic dilations of g.t/ converge uniformly on any parabolic neighborhood 3) of the
singular set †0 to the evolution of the FIK soliton.

As we have pointed out, part (i) follows from a now standard general result of [33] and
part (ii) is proved by putting together the results in [29] and [27]. Our proof of part (iii) is based
on comparison principle techniques applied to the evolving metric potentials, and thus gives a
Kähler limit with respect to the same original complex structure. We first prove convergence
to the FIK metric in C 0;1 topology without making any type I blow up assumptions. To prove
higher regularity without making further restrictions on the class of initial data, we then use the
type I blow up for the scalar curvature proved in [27].

We remark that comparison principle techniques have also been used on a large body of
work on yet another type of Ricci flow singularity, neckpinches, see Angenent–Knopf [3, 4],
Angenent–Caputo–Knopf [1], Angenent–Isenberg–Knopf [2], and Gu–Zhu [16].

For the reader interested in more results concerning singularity analysis of the Kähler–
Ricci flow we suggest looking also at Song–Weikove [30, 31], Song–Tian [28], Fong [15],
and the references therein. In the latter article, Fong studies singularity formation for the case
b.0/ < 3a.0/. For general Kähler–Ricci flow lecture notes see Song–Weinkove [32].

Theorem 1.1 has the following two consequences. Since the FIK soliton has Ricci curva-
ture of mixed sign near †0:

Theorem 1.2. Limits of blow-ups of Ricci flow singularities on closed four-dimensional
manifolds do not necessarily have non-negative Ricci curvature.

Moreover, after constructing a metric on M with strictly positive Ricci curvature that
satisfies the conditions of Theorem 1.1, we will have:

Corollary 1.3. Positive Ricci curvature is not preserved by Ricci flow in four dimensions
or higher.

As mentioned before, the above results shows a contrast between Ricci flow in dimen-
sions three and four. Moreover, Corollary 1.3 is related to a previous result of the author [23],
and also a result on lower bounds for Ricci curvature under the Kähler–Ricci flow by Zhang
[34], which provides other examples that imply the same result stated in the corollary.

Acknowledgement. This work is part of my PhD thesis at the University of Texas at
Austin. It could not have been done without the support and mentorship of my advisor Dan

2) See Definition 3.6 in Section 3 for a precise statement on the set of initial metrics.
3) This notion is made precise in Section 3 too. See also Remark 3.11.
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Knopf, to whom I am deeply grateful. I also wish to warmly thank Jian Song and Ben Weinkove
for hepful comments on an earlier version of this work, and to acknowledge the NSF for its
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2. U.2/-invariant Kähler metrics

In this section we consider rotationally symmetric Kähler metrics on C2n¹0º to derive
Kähler metrics on any given Kähler class of the complex surfaceM , following an ansatz intro-
duced by Calabi [7, Section 3].

Let g be a U.2/-invariant Kähler metric on C2n¹0º, the latter with complex coordinates
z D .z1; z2/. Define u D jz1j2, v D jz2j2, and w D uC v.

Since g is a Kähler metric and the second de Rham cohomology groupH 2.C2n¹0º/ D 0,
by the @N@-lemma one can find a global real smooth function P W C2n¹0º �! R such that

(2.1) g
˛ Ň
D

@2

@z˛@ Nzˇ
P:

The further assumption of g being rotationally symmetric allows us to write P D P.r/,
where r D logw.4) We then set '.r/ D Pr.r/ (we use a subscript for the derivative since later
P will be regarded as a function of time as well) and compute from (2.1)

(2.2) g D Œe�r'ı˛ˇ C e
�2r.'r � '/ Nz

˛zˇ �dz˛d Nzˇ ;

and5)  
g1 N1 g1 N2

g2 N1 g2 N2

!
D

1

w2

 
v' C u'r .'r � '/ Nz

1z2

.'r � '/z
1 Nz2 u' C v'r

!
:

Because det.g
˛ Ň
/ D e�2r''r , one can quickly note that a potential P on C2n¹0º gives

rise to a Kähler metric as in (2.1) if, and only if,

(2.3) ' > 0 and 'r > 0:

Given a metric as above, Calabi’s lemma [7, Section 3] tells us that g will extend to
a smooth Kähler metric on the complex surface M if ' satisfies the following asymptotic
properties � henceforth called Calabi’s conditions:

(i) There exist positive constants a0 and a1 such that ' has the expansion

(2.4) '.r/ D a0 C a1w C a2w
2
CO.jwj3/

as r ! �1.

(ii) There exists a positive constant b0 and a negative constant b1 such that ' has the expan-
sion

(2.5) '.r/ D b0 C b1w
�1
C b2w

�2
CO.jwj�3/

as r !1.

Remark 2.1. We note that 'r > 0 for r finite, but 'r D 0 for r D ˙1.
4) Depending on the purpose of the computation, one coordinate might be preferable than the other and we

will use both r and w in the rest of the paper.
5) The matrix .g/ is actually a 4 � 4 matrix: .g/ D

�
A 0
0 A

�
, where A D

� g1N1 g1N2
g2N1 g2N2

�
.
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Summarizing the above:

Lemma 2.2 (Calabi [7]). Any potential ' satisfying conditions (2.3), (2.4) and (2.5)
will give rise to a U.2/-invariant Kähler metric on M . Moreover, this metric will belong in
Kähler class b0Œ†1� � a0Œ†0�, and satisfy j†0j D �a0 and j†1j D �b0.

2.1. Curvature terms. On Kähler manifolds, the Ricci tensor is given locally by

Rc
˛ Ň
D �

@2

@z˛@ Nzˇ
log detg:

In particular, for g as in (2.2), one has globally

(2.6) Rc
˛ Ň
D e�r ı˛ˇ C e

�2r. r �  / Nz
˛zˇ

where  D �@r.log detg/ D 2 � 'r
'
�
'rr
'r

. From equations (2.2) and (2.6), we compute the
eigenvalues of the Ricci curvature endomorphism6)

�1 D
 

'
with eigenvector U D Nz2

@

@z1
C Nz1

@

@z1
;(2.7)

�2 D
 r

'r
with eigenvector V D z1

@

@z2
C z2

@

@z2
:

and, in particular, the scalar curvature

(2.8) R.r; t/ D
2

'

�
2 �

'r

'
�
'rr

'r

�
C

2

'r

��
�
'r

'

�
r

C

�
�
'rr

'r

�
r

�
:

Using Calabi’s conditions we find for r near �1

�1 D
1

a0
CO.er/;(2.9)

�2 D �
1

a0
�
2a2

a21
CO.er/;

and for r nearC1

�1 D
3

b0
CO.e�r/;(2.10)

�2 D
1

b0
C
2b2

b21
CO.e�r/:(2.11)

Moreover, for the Riemann curvature, a direct computation shows

R
˛ Ň Nı

D e�4r
�
�'rrr C 4'rr � 2'r C 2' � 4

'2r
'
C
'2rr
'r

�
Nz˛zˇ Nzzı(2.12)

C e�3r
�
'r � 'rr � ' C

'2r
'

�
. Nz˛zˇ ıı C Nz˛ıˇzı

C ı˛ˇ Nzzı C ı˛ız
ˇ
Nz /C e�2r Œ�'r C '� .ı˛ˇ ıı C ı˛ııˇ /:

6) The map Rc W TM �! TM is obtained by raising one index.
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2.2. The effect of Ricci flow. From equations (2.2) and (2.6), one can see that g.t/
evolves by Ricci flow @tg D �Rc.g/ if, and only if, ' evolves by 't D � , that is,

(2.13) 't D
'rr

'r
C
'r

'
� 2:

Remark 2.3. Equation (2.13) looks alarming from the PDE point of view, as it might
degenerate. On the other hand, we recall that for potentials ' that yield Kähler metrics on
C2n¹0º we have 'r > 0 and this condition is preserved, so (2.13) is parabolic.

The Kähler class will evolve as in (1.5) and

'.�1; t / D a.t/ D a0 � t; '.C1; t / D b.t/ D b0 � 3t;

so the flow will become singular no later than t D a.0/. In fact, a general result in Kähler–Ricci
flow, see [33], says that the Kähler–Ricci flow exists and is smooth up until the first time t D T
where the Kähler class Œw.T /� ceases to be Kähler. In our case, because b.0/ > 3a.0/, this
happens precisely at T D a.0/. Furthermore, since j†0j D �a.t/, the section †0 will vanish
when t D T and, as it turns out, g.T / is still smooth in Mn†0, see [29].

The following scale invariant estimate is an immediate consequence of the maximum
principle and will be useful later.

Lemma 2.4. Let F D 'r
'

. Then, 0 � F.r; t/ � max¹maxF. � ; 0/; 1º:

Proof. Because of (2.3), F � 0. To prove the upper bound, let r0 be a local spatial
maximum of F , at which we must have

Frr.r0/ � 0 and Fr.r0/ D 0:

We then compute the evolution of F

Ft D
Frr

'r
C
Fr

'

�
1 �

Fr

F 2

�
C 2

F

'
.1 � F /;

and thus note that

Ft .r0/ D
1

'

�
Frr

F
C 2F.1 � F /

�
�
2

'
F.1 � F /:

So, at a local spatial maximum where F.r0/ > 1 (respectively � 1), F.x; t/ is decreasing (re-
spectively non-increasing) in time, and the lemma follows since F � 0 in the boundary points
r D �1;C1.

2.3. Soliton metrics on L and M . Following [14], consider a U.2/-invariant gradient
shrinking soliton metric on L or M , normalized such that j†0j D � . Then it must have a
potential ' satisfying

(2.14)
'rr

'r
C
'r

'
� C'r C ' � 2 D 0;

for some constant C and with lim' D 1 as r ! �1 and another asymptotic condition as
r !C1, depending on whether one is looking for a soliton on M or L.
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In the case one is looking onM , by the independent work of Koiso in [21] and Cao in [9],
C must be a constant between 1

2
and 1 and there will exist only one such potential, modulo

translations in r . This soliton has positive Ricci curvature, as Cao observed in [9], and satisfies
a0 D 1, b0 D 3.

For a soliton on L, Feldman–Ilmanen–Knopf proved that the C must be
p
2 and that

there exists only one such potential, again modulo translations in r . For our purposes, it is
relevant to note that this soliton has Ricci curvature of mixed sign: �2 < 0 for r near �1. In
fact, using the soliton equation (2.14) and the expression (2.7) for the eigenvalue one finds that
�2 D 1�

p
2'rr
'r

and since limr!�1
'rr
'r
D 1, we have that �2 is negative near the section†0.

3. Dilation variables, type I blow-up, and convergence modulo diffeomorphisms

3.1. Dilation Variables. What we know so far about the singularity formation is that it
occurs along the section†0, which shrinks to a point by [29], and that it is type I [27]. Hence it
will be useful to use parabolically dilated variables that allow us to zoom in on †0 in a type I
fashion.

Given an evolution '.r; t/ with singular time T as before, we define the dilated time
variable � D � log.T �t /, the dilated spatial variable � D rC� (which correspond to complex
coordinates � D e�=2z) and set

(3.1) �.�; �/ D e�'.r.�; �/; t.�//:

The function �.�; �/ evolves by

(3.2) �� D
���

��
C
��

�
� �� C � � 2

and is a Kähler potential on M in complex coordinates �. To see that, we note that it must
satisfy �; �� > 0 for all � , and the Calabi conditions (2.4) and (2.5) – or, alternatively, that �
represents the metric Ng.�/ onM equivalent to g.t/ scaled by e� D 1

T�t
and pulled back by the

diffeomorphism z �! e��=2z.
Now that �; � are defined, we explain what we mean by zoom in †0 in a type I fashion,

first on the level of the potential and then on the level of the metric.
For fixed �, we let t % T and thus have � % C1 and .r.�; �/; t.�//! .�1; T /. The

dilation
�.�; �/ D

1

T � t
'.� � �; t/

is then a type I (note the factor 1
T�t

) zoom in on how ' is going to zero along †0, since
'.� � �; t/! '.�1; T / D 0.

Geometrically, the metric Ng.�/ given by �.�; �/ is just 1
T�t

g.t/ modified by diffeomor-
phism, and if g.t/ has a type I singularity at t D T , Ng.�/ has bounded curvature as � % C1.
Moreover,

j†0j Ng.�/ D �;

j†1j Ng.�/ D Œ.b0 � 3a0/e
�
C 3��;

which indicates that as � %C1, †1 is being blown away and suggests that the metrics Ng.�/
on M are becoming more and more like metrics on L where j†0j D � , as one recalls from
Appendix A.
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Our goal is to prove that indeed the limit of these metrics will be modeled by the evolution
of the FIK soliton metric on L constructed in [14]. But there are major difficulties that do not
allow us to prove directly such convergence by working with �; � . One comes from the fact
that the FIK potential is not stationary in these coordinates; in fact, the soliton is still moving
by diffeomorphisms, or more precisely, it is translating in the � variable. The other is the fact
that there actually exist a whole family of FIK potentials, generated by the translations in r .
These difficulties lead us to the approach presented in the next section.

3.2. Equations in �; � variables. Let � D � log.T � t / and � D r C � be the dila-
tion variables introduced above. Because �� > 0 along the flow, we can actually write � as a
function of � at any fixed time � and thus consider the function

(3.3) y.�; �/ D ��.�; �/;

which, for any given � , is defined on the inverval Œ1; .b0 � 3a0/e� C 3�, satisfying

y.1/ D y..b0 � 3a0/e
�
C 3/ D 0

and y.�/ positive otherwise.
We next find the evolution equation of y.�; �/. First we note: since �� D y, we have

��� D y� D y�y and ���� D y��y2 C y2�y. And we then compute @�
ˇ̌
�
y, which in our no-

tation means the derivative of y with respect to � while fixing �.

@�
ˇ̌
�
y D ���

D
����

��
�

�
���

��

�2
C
���

�
�

�
��

�

�2
C �� � ���

D y��y C
y�y

�
�

�
y

�

�2
C y � y�y:

Finally, since @�
ˇ̌
�
y D @�

ˇ̌
�
y � y��� , we have

@�
ˇ̌
�
y D y��y C

y�y

�
�

�
y

�

�2
C y � y�y � y���(3.4)

D y��y C .2 � � � y�/y� C y

�
1 �

y

�2

�
:

Remark 3.1. Because of Lemma 2.4, y
�

is uniformly bounded in time.

The advantages of these variables are two-fold. First of all, they do not see translations in
the � variable and thus the whole family of FIK potentials are represented by just one stationary
potential Y D Y.�FIK/. Secondly, the non-linearities of (3.4) are mild when compared with
(3.2), and this allow us to develop a barrier method based on the comparison principle in the
next section.

Remark 3.2. In fact, one can check that all the FIK potentials satisfy the same equation
when written using the coordinates as above

Y.�/ D �� D
�.� � 2/C

p
2.� � 1/C 1

p
2�

;

and also that @�
ˇ̌
�
Y D 0.
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3.3. Comparison and convergence modulo diffeomorphisms for a large class of po-
tentials. In this section we use techniques based on the comparison principle to prove an im-
portant step towards Theorem 1.1, which is convergence modulo diffeomorphisms for a large
class of potentials.

Notation. In what follows we will write just @� as short for @�
ˇ̌
�

. In particular, @� and
@� are commuting derivatives.

The first thing we prove is that for any initial data satisfying the conditions of Theo-
rem 1.1, one always has a C 1 bound.

Lemma 3.3. For any data y.�; �/ coming from Ricci flow as in Theorem 1.1, the deriva-
tive y� is uniformly bounded in time.

Proof. Since at the boundary y� takes values 1 or �1, we only need to deal with interior
spatial maxima and minima. We write the evolution equation for y� :

(3.5) y�� D yy��� C Œ2 � � � y� �y�� � 2
yy�

�2
C
2y2

�3
:

If y� has a negative local spatial minimum at �0, then y��.�0/ D 0, y���.�0/ � 0, and thus

y�� .�0/ D yy���.�0/ � 2
yy�

�2
.�0/C

2y2

�3
.�0/ > 0;

so y� is uniformly bounded from below.
Finally, let �0 be a local spatial maximum of y� , so that y��.�0/ D 0 and y���.�0/ � 0.

By Remark 3.1, y
�
< C for some constant C independent of time. Suppose y�.�0/ > C , then

y�� .�0/ D yy���.�0/ � 2
yy�

�2
.�0/C

2y2

�3
.�0/

� 2
y

�2

�
�y� C

y

�

�
< 0:

We hence conclude y� is uniformly bounded from above too and the lemma is proved.

Remark 3.4. The above lemma, together with Remark 3.1, says that the evolution (3.4)
has bounded coefficients on any compact interval Œ1; �0�.

Remark 3.5. Because y� D
���
��

, the lemma will be useful to prove C 2 bounds for �.

We next construct upper and lower barriers that for “most” initial data will trap the solu-
tion to evolution (3.4) and squeeze it to the FIK potential Y.�/ D �.��2/C

p
2.��1/C1

p
2�

.

Definition 3.6 (Metrics in the class C ). Let C be the class of all initial U.2/-invariant
metrics on M belonging to the Kähler class b.0/Œ†1� � a.0/Œ†0� with b.0/ > 3a.0/, and
such that, moreover, the parabolic blow up � of the potential ' satisfies, when writing �� in �
coordinates as before,

y.�; 0/ > Y.�/ �
1

5
�2:
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Let us remark that Y.�/ � 1
5
�2 will be exactly the initial barrier that we will use for the

evolution (3.4), thus we are restricting ourselves to potentials that are initially strictly above
it. This barrier is mostly negative, but is positive and small (strictly less than 0.06) on a small
neighborhood of � D 2. This implies that a large family of initial data belongs to the class C .

Proposition 3.7. For any initial data y.�; 0/ in the class C , one has that y.�; �/ re-
mains in the class C and converges uniformly on compact subsets to Y.�/ as � %1.

We note that the “elliptic” operator in (3.4)

EŒy� D y��y C .2 � � � y�/y� C y

�
1 �

y

�2

�
can be written as a linear plus a quadratic part

EŒy� D LŒy�CQŒy�;

where LŒy� D .2 � �/y� C y and QŒy� D yy�� � y
2
� �

y2

�2
. The non-linearity of EŒ � � is such

that for given functions y.�/; s.�/:

EŒy C s� D LŒy C s�CQŒy C s�

D LŒy�CLŒs�CQŒy�CQŒs�CMŒy; s�

D EŒy�C EŒs�CMŒy; s�;

where MŒy; s� D sy�� C ys�� � 2y�s� � 2
ys

�2
is bilinear in y and s. This mild non-linearity

suggests the barrier approach.

Proof of Proposition 3.7. Let

Y.�/ D
�.� � 2/C

p
2.� � 1/C 1

p
2�

be the FIK potential and consider s.�; �/ D ��.�/�2, where P� D �ı� for some ı 2 R. We
compute .@� � E/.Y C s/:

.@� � E/ŒY C s� D @�s �LŒs� �QŒs� �MŒY; s�

D �
�
ı�2 CLŒ�2� � �QŒ�2�CMŒY; �2�

�
;

and once substituting LŒ�2�;QŒ�2�, and MŒY; �2�, we have

(3.6) .@� � E/ŒY C s� D �
�
.ı C 3� � 1/�2 C 2.2 �

p
2/� � 3��1.2 �

p
2/
�
:

Let y.�; �/ be a solution coming from Ricci flow. Suppose that y.�; 0/ belongs to the
class C of initial data.

Choose �.0/ D 1=5 and let ı be a positive number smaller than 10�6 to be fixed. Then,
by (3.6) the function

y1.�; �/ D Y.�/ �
1

5
e�ı��2

satisfies .@� � E/Œy1� < 0 for all times � > 0, i.e., y1.�; �/ is a subsolution to our evolution
problem.
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By the comparison principle (Appendix B), if a solution y of .@� � E/y D 0 initially
starts above y1, then y will stay above y1 for all later times, as long as the boundary data
behave as such.

A general solution y that initially belongs to class C satisfies the assumption

y.�; 0/ > y1.�; 0/

and has the boundary conditions

y.1/ D y..b0 � 3a0/e
�
C 3/ D 0:

It is clear that y.1/ D 0 > y1.1/ for all times. Also

y1.�; �/ D Y �
1

5
exp.�ı�/�2 < � �

1

5
exp.�ı�/�2 < 0

if � > 5 exp.ı�/ (here we are using that Y.�/ is always below �). Because

.b0 � 3a0/e
�
C 3 > 5 exp.ı�/;

if ı is chosen to be small enough, then we have y..b0�3a0/e�C3/ D 0 > y1..b0�3a0/e�C3/.
Thus, the subsolution y1 stays below y at the boundary, and therefore everywhere, for all later
times � > 0. In particular, because � is decreasing in magnitude, this implies y.�; �/ belongs
to C for all later times.

Furthermore, for the same initial data y.�; 0/ 2 C , we choose

y2.�; �/ D Y C �0e
��=2�2

where �0 is big enough so that y2.�; 0/ D Y C �0�
2 > y.�; 0/. Moreover, by equation (3.6)

we will have that .@� � E/Œy2� > 0 for all � > 0. Moreover, one can check that the boundary
data of y2 stay above those of y for all times. Thus, again using comparison, y2 stays above y
for all later times.

Hence we have proved that

(3.7) y1.�; �/ � y.�; �/ � y2.�; �/;

and since on compact intervals for � we have y1.�; �/ % Y.�/ and y2.�; �/ & Y.�/ uni-
formly, we must have y.�; �/ converging to Y.�/ uniformly on compact subsets and the propo-
sition thus is proved.

Proposition 3.7 gives us uniform C 0-convergence for y.�/ D �� on compact subsets.
We next prove that one actually has uniform C 1;1-convergence. For that we will use the type I
blow up of the scalar curvature proved by Song in [27], i.e., there exists a constant C > 0 such
that

�C � Rg.t/ �
C

T � t
:

In particular, for the dilated flow g.�/ this implies

�Ce�� � Rg.�/ � C;

and sinceRg.�/ D 4
�

�
1 � y�

�
�2y�� , we must have y�� is uniformly bounded by Lemma 3.3.
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Proposition 3.8. For any initial data y.�; 0/ in the class C , one has that y.�; �/ con-
verges uniformly in the C 1;1 topology on compact subsets to Y.�/ as � %1.

Proof. Since we have uniform C 2 bounds for y on compact intervals, the C 1;1-con-
vergence follows from the following standard argument and Proposition 3.7. Since the spatial
derivative y�� is uniformly bounded in time, for any sequence of times, y� will converge
uniformly up to subsequence. Moreover, since the convergence is uniform, the limit of y� along
any such subsequence must be the spatial derivative Y� of the stationary state Y. Because the
latter does not depend on the subsequence, we have that y� converges uniformly in time to
the derivative Y� . Since y converges uniformly in C 1 while y�� is uniformly bounded, the
proposition is then proved.

Remark 3.9. For the reader’s convenience, we point out the relation between the Rie-
mann curvature and derivatives of y. By the rotational symmetry of Ng.�/, we reduce our anal-
ysis to a point of the form .z1; z2/ D .�; 0/, and use (2.12) to compute

jRm. Ng.�//j � 2jR1 N11 N1j C 2jR2 N22 N2j C 2jR1 N12 N2j(3.8)

� 2

ˇ̌̌̌
1

�2�

�
����� C

�2��

��

�ˇ̌̌̌
C 4

ˇ̌̌̌
��� C �

�2

ˇ̌̌̌
C 2

ˇ̌̌̌
�
���

���
C
��

�2

ˇ̌̌̌
D 2

ˇ̌̌̌
1

��

�
���

��

�
�

ˇ̌̌̌
C
4

�

ˇ̌̌̌
�
��

�
C 1

ˇ̌̌̌
C
2

�

ˇ̌̌̌
�
���

��
C
��

�

ˇ̌̌̌
:

Moreover, since Ng.�/ D 1
T�t

g.t/, we note that by Song’s [27] type I result there exists a
uniform constant C > 0 such that

jRm. Ng.�//j � C:

Recalling that ���
��
D y� , 1

��

����
��

�
�
D y�� , and also that one has ��

�
uniformly bounded by

Lemma 2.4, we see from the above that type I blow up is what one really needs to establish a
second derivative bound for y.

Combining Proposition 3.8 with Song’s type I result [27], we have the following:

Theorem 3.10. Let g.0/ be a metric on M belonging to the class C . Then the Ricci
flow (1.2) starting at g.0/ will develop a type I singularity along †0. Moreover, parabolic
dilations g.�/ of g.t/ as in (3.1) will converge, modulo diffeomorphisms and uniformly on
a corresponding time-dependent neighborhood of the singular region †0, to one of the FIK
solitons.

Proof. We let ' be in the class of initial data C and consider the dilation variables
�; � as well as the dilated potential �.�; �/. We apply the following gauge-fixing construction:
by the implicit function theorem, we can find a smooth function C.�/ such that if we define
� D � � C.�/ and then define

¥.�; �/ D �.� � C.�/; �/;

we will have ¥.0; �/ constant in time, say equal to 2. Moreover, ¥� is related to ¥ just as �� is
related to �, and thus we have by Proposition 3.8, y.¥/ converges C 1;1 uniformly to Y.¥/, so
that ¥ converges C 2;1 uniformly (in compact ¥ intervals, so in particular for �1 � � � 0) to
the unique ¥FIK that satisfies ¥FIK.0/ D 2.
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Finally, since we know that the singularity along†0 is type I [27], the Riemann curvature
Rm. Ng.�// will be bounded uniformly in the region �1 � � � 0. Shi’s local estimates for
higher derivatives of the Riemann curvature under Ricci flow then dictate that one actually has
bounds of any higher order and that thus convergence is smooth.

A few remarks are now in order.

Remark 3.11. For any fixed � 2 R, consider the parabolic neighborhood

N.�/ D ¹z 2 C2
W �.z/ � �º D ¹z 2 C2

W jzj2 � e�.T � t /º:

Theorem 3.10 says that for metrics of the class C , there exist diffeomorphisms‰� (correspond-
ing precisely to the C.�/ change of gauge) such that as � %1

‰�� Ng.�/ �! gFIK

uniformly on the neighborhood ‰�1� .N.�//. In the next section, we will prove that the diffeo-
morphisms‰�1� correspond to the one-parameter family of diffeomorphisms by which the FIK
solitons move under Ricci flow, i.e., we will prove that for large � one has asymptotically

C.�/ D .
p
2 � 1/� ˙ constant:

This will conclude the proof of Theorem 1.1 that parabolic dilations Ng.�/ of g.t/ converge to
the flow of an FIK soliton uniformly on any parabolic neighborhood N.�/.

Remark 3.12. If we write ' in non-logarithmic coordinates as '.r; t/ D f .w; t/, where
w D er , and expand ¥.�; �/ D �.��C.�/; �/ D e�'.��C.�/� �; t/ around w D 0 we get

¥.�; �/ D e�f .e��C.�/�� ; t /

D 1C e�e�C.�/fw.0; t/C � � � :

Because ¥ must converge smoothly to FIK for fixed �, we must have that7)

fw.0; t/ � e
C.�/:

Remark 3.13. Finally, we note that by Theorem 3.10 the scalar curvature at the singular
region †0 must blow up like

(3.9) Rg.t/
ˇ̌
†0
D
4 � 2

p
2

T � t
CO

�
.T � t /˛�1

�
;

for some ˛ > 0. In fact, by the barrier argument in Proposition 3.7, there must exist positive
constants C0 and ı0 such that jy � Yj � C0e

�ı0� holds uniformly in time on a fixed interval
of the form Œ1; �0�, and by Theorem 3.10, the higher derivatives of y are uniformly bounded in
time on Œ1; �0�. Moreover, we can use an interpolation inequality of the form (e.g., [22, Corol-
lary 7.21])

(3.10) k@�.y � Y/kp � �k@��.y � Y/kp C
C

�
ky � Ykp;

7) This notation means that there exist constants 0 < C1 < C2 such that

C1e
C.�/��

� fw .0; t/ � C2e
C.�/��

as � %1, et cetera.
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on Œ1; �0�, where p > 1, k � kp is the usual (spatial) Lp-norm, � is any positive number, and
C is a universal constant that does not depend on y;Y; �, or p, and we can thus argue that
whenever k@��.y � Y/k

1=2
p ¤ 0, by setting

� D
ky � Yk

1=2
p

k@��.y � Y/k
1=2
p

in (3.10), one has

k@�.y � Y/kp � .1C C/ky � Yk1=2p j@��.y � Y/k1=2p ;

and if k@��.y�Y/k
1=2
p D 0, what we want follows directly from (3.10). Furthermore, because

Œ1; �0� has finite measure, we can send p to infinity and pass the above inequality to the limit:

(3.11) k@�.y � Y/k1 � .1C C/ky � Yk1=21 j@��.y � Y/k1=21 ;

and since k@��.y�Y/k
1=2
1 is uniformly bounded in time and ky�Yk1 � C0e

�ı0� in Œ1; �0�,
we find positive constants C1; ı1 such that

ky� � Y�k1 � C1e
�ı1� :

Moreover, by bootstrapping the argument above, we can also find positive constants ı2; C2
such that on Œ1; �0�:

ky�� � Y��k1 � C2e
�ı2� :

Finally, since
.T � t /Rg.t/

ˇ̌
†0
D Rg.�/

ˇ̌
†0
D �2y��.1; �/;

and Y��.1/ D
p
2 � 2, e�� D T � t , (3.9) follows for ˛ D ı2 > 0.

4. End of proof of Theorem 1.1

In this section, we finish the proof of Theorem 1.1. This is done by using Theorem 3.10
and the remarks following it.

Let '.r; t/ be a potential belonging to the class C , �.�; �/ its corresponding dilated po-
tential as in (3.1), and ¥.�; �/ and C.�/ as in Theorem 3.10. By Remark 3.11, and since
(unnormalized) FIK potentials move under Ricci flow by the diffeomorphisms

z �! e�
p
2�=2z;

it is enough to prove that asymptotically for large � one has

(4.1) C.�/ D .
p
2 � 1/� ˙ constant:

Note that Remark 3.12 tells us that if we write ' in non-logarithmic coordinates as
'.r; t/ D f .w; t/, we must have then

fw.0; t/ � e
C.�/:

This allows us to use estimate (3.9) on the blow-up of the scalar curvature along †0 to
study C.�/ for large � . In fact, recalling the Ricci eigenvalues,

Rg.t/
ˇ̌
†0
D 2�1

ˇ̌
†0
.t/C 2�2

ˇ̌
†0
.t/;
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where �1
ˇ̌
†0
.t/ D 1

T�t
, estimate (3.9) tells us that the eigenvalue �2

ˇ̌
†0
.t/ must blow up like

(4.2) �2
ˇ̌
†0
.t/ D

1 �
p
2

T � t
CO

�
.T � t /˛�1

�
;

for some ˛ > 0. Moreover, we can compute �2
ˇ̌
†0
.t/ directly from (2.7) in the coordinate w

and find

(4.3) �2
ˇ̌
†0
.t/ D �

fwt .0; t/

fw.0; t/
:

Integrating (4.3) and using (4.2), we find that

(4.4) fw.0; t/ � .T � t /
1�
p
2
D e.

p
2�1/� ;

and this gives (4.1) by Remark 3.12. Theorem 1.1 is then proved.

5. The cone of metrics with non-negative Ricci curvature

In this section we prove Corollary 1.3 by constructing a metric on M with strictly pos-
itive Ricci curvature and belonging to the class C . We recall that by (2.10) one has for the
eigenvalues of Ricci and r nearC1 that

�1 D
3

b0
CO.e�r/;

�2 D
1

b0
C
2b2

b21
CO.e�r/:

Let 'KC be the potential for the Cao–Koiso soliton, which has positive Ricci curvature every-
where. The metric 'KC is not the metric we are looking for only because b0 D 3a0. In fact, one
can check explicitly that the Cao–Koiso metric is above the barrier as required in Definition 3.6.
Thus we can perturb 'KC by a small amount near r D C1, to obtain a metric potential ' with
b0 > 3a0. Since the perturbation is only made near r D C1, where the above expansion for
the eigenvalues holds, ' will still have strictly positive Ricci curvature everywhere, and also
belong to the class C .

Remark 5.1. The construction above provides explicit examples of solutions demon-
strating the linear instability of the Cao-Koiso soliton that was proved by Hall–Murphy [17].

A. Line bundles over CP1

On the complex projective space CP1 with projective coordinates Œz1 W z2�, let

'1 W U1 D ¹Œz1 W z2� 2 CP1 W z1 ¤ 0º �! C

and
'2 W U2 D ¹Œz1 W z2� 2 CP1 W z2 ¤ 0º �! C

denote its usual charts given by '1.Œz1 W z2�/ D z2=z1 and '2.Œz1 W z2�/ D z1=z2.
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We consider two topologically distinct line bundles over CP1 denoted by L and M
described as follows. The bundle L has the complex line C as fibers:

L D Œ.U1 �C/ t .U2 �C/� quotient by �

where U1 �C 3 .Œz1 W z2�I �/ � .Œy1 W y2�; �/ 2 U2 �C if, and only if,

Œz1 W z2� D Œy1 W y2� and � D

�
y2

z1

�
�:

The manifold M has fibers C [ ¹1º:

M D
�
.U1 �CP1/ t .U2 �CP1/

�
=�

where U1 �CP1 3 .Œz1 W z2�I �/ � .Œy1 W y2�; �/ 2 U2 �CP1 if, and only if,

Œz1 W z2� D Œy1 W y2� and � D

�
y2

z1

�
�:

For our geometric purposes, we think of L and M in the following alternative manner.
On M , consider the global sections †0 D ¹Œz1 W z2�I 0º and †1 D ¹Œz1 W z2�I1º and define a
map ‰ W C2n¹0º �!cM , where cM DMn.†0 [†1/, given as

‰ W .z1; z2/ 7! .Œz1 W z2�I z˛/

if z˛ ¤ 0. Because .Œz1 W z2�I z˛/ � .Œz1 W z2�I zˇ /whenever z˛ ¤ 0 and zˇ ¤ 0,‰ is well de-
fined. Moreover, one can check that‰ is biholomorphism. We then think ofM as C2n¹0ºwith
one CP1 glued at 0 (the section †0) and another at1 (the section †1) and of L DcM [†0
as C2n¹0º with a CP1 glued at 0.

B. Comparison principle

The comparison principle used in Section 3 for equation (3.4) is similar in spirit to
[1, Lemma 3]. For the reader’s convenience, we outline the proof in what follows.

Since the evolving function y in Section 3 is non-negative for all times, any point of
contact between y and one of the barriers must be a point where the barrier is non-negative.
Moreover, one can check that the barriers used have spatial second derivative bounded in time.
We can then reduce our analysis to the following:

Proposition B.1. Let y�.�; �/ and yC.�; �/ be non-negative sub- and super-solutions,
respectively, of .@� � E/Œ � � on the interval Œ1; .b0 � 3a0/e� C 3�. Suppose that either yC or
y� satisfy the uniform bound y�� < C for some constant C <1 on a compact space-time set
Œ1; .b0 � 3a0/e

� C 3� � Œ0; ��. Moreover, assume that

(i) yC.�; 0/ > y�.�; 0/ in .1; b0 � 3a0 C 3/,

(ii) yC.1; �/ � y�.1; �/ and yC..b0 � 3a0/e� C 3; �/ � y�..b0 � 3a0/e� C 3; �/, for any
� 2 Œ0; ��.

Then, one must have yC.�; �/ � y�.�; �/ in .1; .b0 � 3a0/e� C 3/ � Œ0; ��.



18 Máximo, Blow-up of 4-d Ricci flow singularities

Proof. Suppose first that yC�� < C . For some � > 0 to be chosen later and any ˛ > 0,
define

(B.1) w D e��� .yC � y�/C ˛:

Then w > 0 on the parabolic boundary of our evolution. We will prove w is also positive in
the interior of our domain and the lemma will follow by letting ˛ & 0.

Assuming the contrary, there must be an interior point �0 and a first time �0 such that
w.�0; �0/ D 0. Then w� .�0; �0/ � 0, and at .�0; �0/:

yC D y� � ˛e��0 ; yC� D y
�
� ; yC�� � y

�
�� :

Thus, at that point, we have 0 � e��w� and

e��w� D y
C
� � y

�
� � �.y

C
� y�/

D y�.yC�� � y
�
��/C .y

�
� yC/

�
� � yC�� � 1C

yC C y�

�2

�
:

But if we use the uniform bound yC�� < C , we have

0 � w� > ˛e
��

�
� � C � 1C

yC C y�

�2

�
;

and, since
yC C y�

�2
� 0;

this is a contradiction for any � > C C 1. The result then follows in the case yC�� < C .
To prove the lemma in the case that the subsolution y� satisfies the uniform bound

y��� < C;

one uses the fact that at a first interior zero .�0; �0/ of w one has

e��w� D y
C.yC�� � y

�
��/C .y

�
� yC/

�
� � y��� � 1C

yC C y�

�2

�
:
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