Show your work to receive full credit!

1. Find the derivative of $f(x)=\frac{x^{2}-1}{x}$.

Using quotient rule we obtain:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\frac{d}{d x}\left(x^{2}-1\right) \cdot x-\frac{d}{d x}(x) \cdot\left(x^{2}-1\right)}{x^{2}} \\
& =\frac{(2 x) \cdot x-1 \cdot\left(x^{2}-1\right)}{x^{2}} \\
& =\frac{2 x^{2}-x^{2}+1}{x^{2}}=\frac{x^{2}+1}{x^{2}}
\end{aligned}
$$

2. Find the derivative of $g(x)=x \sin \left(x^{2}\right)$.

Using chain and product rules we obtain:

$$
\begin{aligned}
g^{\prime}(x) & =\frac{d}{d x}(x) \cdot \sin \left(x^{2}\right)+x \cdot \frac{d}{d x}\left(\sin \left(x^{2}\right)\right) \\
& =\sin \left(x^{2}\right)+x \cdot\left[\cos \left(x^{2}\right) \cdot \frac{d}{d x}\left(x^{2}\right)\right] \\
& =\sin \left(x^{2}\right)+x \cdot\left[\cos \left(x^{2}\right) \cdot(2 x)\right] \\
& =\sin \left(x^{2}\right)+2 x^{2} \cos \left(x^{2}\right)
\end{aligned}
$$

