Show your work to receive full credit!

1. Find the local minima and maxima, and inflection points of the function

$$
\begin{gathered}
f(x)=x^{3}-\frac{3}{2} x^{2}-12 x+5 \\
f^{\prime}(x)=3 x^{2}-3 x-12=3\left(x^{2}-x-4\right) \\
f^{\prime \prime}(x)=6 x-3=3(2 x-1)
\end{gathered}
$$

$f^{\prime}(x)=0$ when $x=\frac{1 \pm \sqrt{17}}{2}$, and $f^{\prime \prime}(x)=0$ when $x=1 / 2$.
Since $f^{\prime \prime}\left(\frac{1-\sqrt{17}}{2}\right)<0$, this point is a local maximum.
Since $f^{\prime \prime}\left(\frac{1+\sqrt{17}}{2}\right)>0$, this point is a local minimum.
Since $f^{\prime \prime}(x)$ changes sign at $x=1 / 2$, this is an inflection point.
2. For the function $f(x)$ above, find its absolute minimum and maximum on the interval $[-5,5]$. We check $f(x)$ at the endpoints and at critical numbers.

$$
\begin{aligned}
f(-5) & =-97.5 \\
f(5) & =32.5 \\
f\left(\frac{1-\sqrt{17}}{2}\right) & =\frac{17 \sqrt{7}-5}{4} \approx 16.27 \\
f\left(\frac{1+\sqrt{17}}{2}\right) & =\frac{-17 \sqrt{7}-5}{4} \approx-18.77
\end{aligned}
$$

So the maximum value is 32.5 achieved at $x=5$, and the minimum is -97.5 achieved at $x=-5$.

