Show your work to receive full credit!

1. Set-up but do not evaluate left and right approximations of

$$
\int_{0}^{2} x^{3} d x
$$

with $n=10$.
In this case, $\Delta x=\frac{b-a}{n}=\frac{2-0}{10}=\frac{1}{5}=.2$.
So the intervals used are $[0,0.2],[0.2,0.4],[0.4,0.6],[0.6,0.8],[0.8,1],[1,1.2],[1.2,1.4],[1.4,1.6],[1.6,1.8],[1$.

$$
\begin{aligned}
& L_{10}=0.2\left[0^{3}+(0.2)^{3}+(0.4)^{3}+(0.6)^{3}+(0.8)^{3}+1^{3}+(1.2)^{3}+(1.4)^{3}+(1.6)^{3}+(1.8)^{3}\right] \\
& R_{10}=0.2\left[(0.2)^{3}+(0.4)^{3}+(0.6)^{3}+(0.8)^{3}+1^{3}+(1.2)^{3}+(1.4)^{3}+(1.6)^{3}+(1.8)^{3}+2^{3}\right]
\end{aligned}
$$

2. Evaluate the following integral

$$
\int_{1}^{10}\left(x^{3}+x^{2}+1\right) d x
$$

The antiderivative of $\left(x^{3}+x^{2}+1\right)$ is $x^{4} / 4+x^{3} / 3+x$.
Therefore,

$$
\begin{aligned}
\int_{1}^{10}\left(x^{3}+x^{2}+1\right) d x & =\frac{x^{4}}{4}+\frac{x^{3}}{3}+\left.x\right|_{1} ^{10} \\
& =\frac{10000}{4}+\frac{1000}{3}+10-\frac{1}{4}-\frac{1}{3}-1=2841.75
\end{aligned}
$$

