Show your work to receive full credit!

1. Evaluate the following limit:

$$
\lim _{x \rightarrow 0} \frac{\cos x-\cos 5 x}{\sin x}
$$

Observe that $\lim _{x \rightarrow 0}(\cos x-\cos 5 x)=\cos (0)-\cos (0)=0$ and
$\lim _{x \rightarrow 0} \sin x=\sin (0)=0$.
Therefore, this limit is of type $\frac{0}{0}$ and we may use L'Hospital's Rule.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\cos x-\cos 5 x}{\sin x} & =\lim _{x \rightarrow 0} \frac{-\sin x+5 \sin 5 x}{\cos x} \\
& =\frac{-\sin (0)+5 \sin (0)}{\cos (0)} \\
& =\frac{0}{1}=0
\end{aligned}
$$

2. Find the derivative of $f(x)=\cosh (x) \sinh (x)$.

Method 1:

Recall that the derivative of $\cosh x$ is $\sinh x$ and the derivative of $\sinh x$ is $\cosh x$.
Using product rule, we obtain:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}[\cosh x] \sinh x+\cosh x \frac{d}{d x}[\sinh x] \\
& =\sinh ^{2} x+\cosh ^{2} x .
\end{aligned}
$$

Method 2:

Recall that $\sinh (x+y)=\sinh x \cosh y+\cosh x \sinh y$, so in particular, $\sinh (2 x)=2 \sinh x \cosh x$.
Therefore, $f(x)=\frac{1}{2} \sinh (2 x)$.
So, $f^{\prime}(x)=\frac{1}{2} 2 \cosh (2 x)=\cosh (2 x)$.

