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Section 1.1 Problem 12

Problem

In Example 1.1.3 of an equivalence relation given in the text, prove that the
relation defined is an equivalence relation and that there are exactly n distinct
equivalence classes, namely, cl(0), cl(1), . . . , cl(n− 1).

Solution

From Example 1.1.3 we have a ∼ b if a − b is divisible by n. So we verify the
three properties of an equivalence relation. a−a = 0 is divisible by every n ∈ Z,
so aã holds. If a ∼ b, then a− b = k · n, so b− a = (−k) · n, and so we conclude
that b ∼ a. Finally, if a ∼ b and b ∼ c, we have a − b = k · n, b − c = l · n, so
a− c = (a− b) + (b− c) = (k + l) · n, so a ∼ c. Therefore, ∼ is an equivalence
relation on the integers.

Next, we illustrate that cl(0), cl(1), . . . , cl(n− 1) are the equivalence classes
of ∼. To do this, we first verify that all n of these classes are distinct. Let a, b
be two distinct positive integers in the list 0, 1, . . . , n− 1, then 0 < |a− b| < n,
so a − b is not divisible by n. Therefore, a and b are in different equivalence
classes, so the n classes listed above are distinct. Now suppose that a ∈ Z, we
demonstrate that a is in one of these n classes. We use the division algorithm
to see that a = q · n + r, where 0 ≤ r < n is an integer, so a − r = q · n is a
multiple of n, so a ∼ r, and a ∈ cl(r). Therefore, a is in one of these classes.

This means that cl(0), cl(1), . . . , cl(n − 1) are the n distinct equivalence
classes of ∼.
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Section 1.2 Problem 1

Problem

In the following, where σ : S → T , determine whether the σ is onto and/or
one-to-one and determine the inverse image of any t ∈ T under σ.

(a) S=set of real numbers, T=set of nonnegative real numbers sσ = s2.

(b) S=set of nonnegative real numbers, T=set of nonnegative real numbers,
sσ = s2.

(c) S=set of integers, T=set of integers, sσ = s2.

(d) S=set of integers, T=set of integers, sσ = 2s.

Solution

We remark, that to show that σ is not one-to-one, it suffices to show that there
exist s1, s2 ∈ S such that s1σ = s2σ. Similarly, to show that σ is not onto, it
suffices to show that there exists t ∈ T such that there is no s ∈ S with sσ = t.

(a) sσ = s2 is onto, but not one-to-one. Observe that 1σ = 1 = (−1)σ,
therefore, σ is not one-to-one. But given t ∈ T ,

(√
t
)
σ = t, and similarly,(

−
√
t
)
σ = t, shows that σ is onto. Furthermore, for any t ∈ T , if t > 0,

the inverse image of t is {−
√
t,
√
t}; if t = 0, the inverse image of t is {0}.

(b) sσ = s2 is one-to-one and onto. Observe that the inverse image of each
t ∈ T is the unique nonnegative real number

√
t. Therefore, for each t we

have some s with sσ = t, and for any s1 there is no distinct s2 such that
s1σ = s2σ.

(c) sσ = s2 is neither one-to-one nor onto. Observe that there is no integer
s such that sσ = −1, so σ is not onto. Furthermore, (−1)σ = 1 = (1)σ,
so σ is not one-to-one. Finally, if t is in the image of σ, then the inverse
image of t is either {0} if t = 0 or {−

√
t,
√
t} if t > 0.

(d) sσ = 2s is one-to-one, but not onto. Observe that there is no integer s
such that sσ = 1, so σ is not onto. Also, if s1σ = t = s2σ, then 2s1 = 2s2,
so s1 = s2. Therefore, σ is one-to-one. If t is in the image of σ, then the
inverse image of t is {t/2}.
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Section 1.3 Problem 6

Problem

Given a, b, non applying the Euclidean algorithm successively we have

a = q0b+ r1, 0 ≤ r1 < |b|,
b = q1r1 + r2, 0 ≤ r2 < r1,

r1 = q2r2 + r3, 0 ≤ r3 < r2,

...

rk = qk+1rk+1 + rk+2, 0 ≤ rk+2 < rk+1.

Since the integers rk are decreasing and are all nonnegative, there is a first
integer n such that rn+1 = 0. Prove that rn = (a, b). (We consider, here,
r0 = |b|.)

Solution

We prove that rn = (a, b) in two steps. We first prove that rn divides both a
and b; then we show that rn = a · ln + b ·mn, and therefore, if d divides a and
b, it must divide rn.

Observe that rn−1 = qnrn, so rn divides rn−1. By induction, we assume
that rn divides rn, rn−1, . . . , rk+1, so rn must divide rk = qk+1rk+1 + rk+2.
This shows that rn divides all rj , so in particular, rn must divide r1 and r2.
Therefore, rn divides b = q1r1 + r2, and it must divide a = q0b + r1. So, rn
divides both a and b.

For the second part, we observe that r0 = |b| is either b or−b and r1 = a−q0b.
By induction, we assume that r0, r1, . . . , rk−1 are of the form ri = a · li + b ·mi,
then rk−2 = qk−1rk−1 + rk, so

rk = rk−2 − qk−1rk−1

= (alk−2 + bmk−2)− qk−1(alk−1 + bmk−1)

= a(lk−2 − qk−1lk−1) + b(mk−2 − qk−1mk−1)

has the form alk + bmk. In particular we have rn = a · ln + b ·mn, so if d divides
a and b, then d must divide rn.

Therefore, we conclude that rn = (a, b).
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