Solutions to Select Problems of HW \#1

Dmytro Yeroshkin

September 20, 2013

Section 1.1 Problem 12

Problem

In Example 1.1.3 of an equivalence relation given in the text, prove that the relation defined is an equivalence relation and that there are exactly n distinct equivalence classes, namely, $\operatorname{cl}(0), \operatorname{cl}(1), \ldots, \operatorname{cl}(n-1)$.

Solution

From Example 1.1.3 we have $a \sim b$ if $a-b$ is divisible by n. So we verify the three properties of an equivalence relation. $a-a=0$ is divisible by every $n \in \mathbb{Z}$, so $a \tilde{a}$ holds. If $a \sim b$, then $a-b=k \cdot n$, so $b-a=(-k) \cdot n$, and so we conclude that $b \sim a$. Finally, if $a \sim b$ and $b \sim c$, we have $a-b=k \cdot n, b-c=l \cdot n$, so $a-c=(a-b)+(b-c)=(k+l) \cdot n$, so $a \sim c$. Therefore, \sim is an equivalence relation on the integers.

Next, we illustrate that $\operatorname{cl}(0), \operatorname{cl}(1), \ldots, \operatorname{cl}(n-1)$ are the equivalence classes of \sim. To do this, we first verify that all n of these classes are distinct. Let a, b be two distinct positive integers in the list $0,1, \ldots, n-1$, then $0<|a-b|<n$, so $a-b$ is not divisible by n. Therefore, a and b are in different equivalence classes, so the n classes listed above are distinct. Now suppose that $a \in \mathbb{Z}$, we demonstrate that a is in one of these n classes. We use the division algorithm to see that $a=q \cdot n+r$, where $0 \leq r<n$ is an integer, so $a-r=q \cdot n$ is a multiple of n, so $a \sim r$, and $a \in \operatorname{cl}(r)$. Therefore, a is in one of these classes.

This means that $\operatorname{cl}(0), \operatorname{cl}(1), \ldots, \operatorname{cl}(n-1)$ are the n distinct equivalence classes of \sim.

Section 1.2 Problem 1

Problem

In the following, where $\sigma: S \rightarrow T$, determine whether the σ is onto and/or one-to-one and determine the inverse image of any $t \in T$ under σ.
(a) $S=$ set of real numbers, $T=$ set of nonnegative real numbers $s \sigma=s^{2}$.
(b) $S=$ set of nonnegative real numbers, $T=$ set of nonnegative real numbers, $s \sigma=s^{2}$.
(c) $S=$ set of integers, $T=$ set of integers, $s \sigma=s^{2}$.
(d) $S=$ set of integers, $T=$ set of integers, $s \sigma=2 s$.

Solution

We remark, that to show that σ is not one-to-one, it suffices to show that there exist $s_{1}, s_{2} \in S$ such that $s_{1} \sigma=s_{2} \sigma$. Similarly, to show that σ is not onto, it suffices to show that there exists $t \in T$ such that there is no $s \in S$ with $s \sigma=t$.
(a) $s \sigma=s^{2}$ is onto, but not one-to-one. Observe that $1 \sigma=1=(-1) \sigma$, therefore, σ is not one-to-one. But given $t \in T,(\sqrt{t}) \sigma=t$, and similarly, $(-\sqrt{t}) \sigma=t$, shows that σ is onto. Furthermore, for any $t \in T$, if $t>0$, the inverse image of t is $\{-\sqrt{t}, \sqrt{t}\}$; if $t=0$, the inverse image of t is $\{0\}$.
(b) $s \sigma=s^{2}$ is one-to-one and onto. Observe that the inverse image of each $t \in T$ is the unique nonnegative real number \sqrt{t}. Therefore, for each t we have some s with $s \sigma=t$, and for any s_{1} there is no distinct s_{2} such that $s_{1} \sigma=s_{2} \sigma$.
(c) $s \sigma=s^{2}$ is neither one-to-one nor onto. Observe that there is no integer s such that $s \sigma=-1$, so σ is not onto. Furthermore, $(-1) \sigma=1=(1) \sigma$, so σ is not one-to-one. Finally, if t is in the image of σ, then the inverse image of t is either $\{0\}$ if $t=0$ or $\{-\sqrt{t}, \sqrt{t}\}$ if $t>0$.
(d) $s \sigma=2 s$ is one-to-one, but not onto. Observe that there is no integer s such that $s \sigma=1$, so σ is not onto. Also, if $s_{1} \sigma=t=s_{2} \sigma$, then $2 s_{1}=2 s_{2}$, so $s_{1}=s_{2}$. Therefore, σ is one-to-one. If t is in the image of σ, then the inverse image of t is $\{t / 2\}$.

Section 1.3 Problem 6

Problem

Given a, b, non applying the Euclidean algorithm successively we have

$$
\begin{array}{rlrl}
a & =q_{0} b+r_{1}, & & 0 \leq r_{1}<|b| \\
b & =q_{1} r_{1}+r_{2}, & & 0 \leq r_{2}<r_{1} \\
r_{1} & =q_{2} r_{2}+r_{3}, & & 0 \leq r_{3}<r_{2} \\
\vdots & & \\
r_{k} & =q_{k+1} r_{k+1}+r_{k+2}, & & 0 \leq r_{k+2}<r_{k+1} .
\end{array}
$$

Since the integers r_{k} are decreasing and are all nonnegative, there is a first integer n such that $r_{n+1}=0$. Prove that $r_{n}=(a, b)$. (We consider, here, $r_{0}=|b|$.)

Solution

We prove that $r_{n}=(a, b)$ in two steps. We first prove that r_{n} divides both a and b; then we show that $r_{n}=a \cdot l_{n}+b \cdot m_{n}$, and therefore, if d divides a and b, it must divide r_{n}.

Observe that $r_{n-1}=q_{n} r_{n}$, so r_{n} divides r_{n-1}. By induction, we assume that r_{n} divides $r_{n}, r_{n-1}, \ldots, r_{k+1}$, so r_{n} must divide $r_{k}=q_{k+1} r_{k+1}+r_{k+2}$. This shows that r_{n} divides all r_{j}, so in particular, r_{n} must divide r_{1} and r_{2}. Therefore, r_{n} divides $b=q_{1} r_{1}+r_{2}$, and it must divide $a=q_{0} b+r_{1}$. So, r_{n} divides both a and b.

For the second part, we observe that $r_{0}=|b|$ is either b or $-b$ and $r_{1}=a-q_{0} b$. By induction, we assume that $r_{0}, r_{1}, \ldots, r_{k-1}$ are of the form $r_{i}=a \cdot l_{i}+b \cdot m_{i}$, then $r_{k-2}=q_{k-1} r_{k-1}+r_{k}$, so

$$
\begin{aligned}
r_{k} & =r_{k-2}-q_{k-1} r_{k-1} \\
& =\left(a l_{k-2}+b m_{k-2}\right)-q_{k-1}\left(a l_{k-1}+b m_{k-1}\right) \\
& =a\left(l_{k-2}-q_{k-1} l_{k-1}\right)+b\left(m_{k-2}-q_{k-1} m_{k-1}\right)
\end{aligned}
$$

has the form $a l_{k}+b m_{k}$. In particular we have $r_{n}=a \cdot l_{n}+b \cdot m_{n}$, so if d divides a and b, then d must divide r_{n}.

Therefore, we conclude that $r_{n}=(a, b)$.

