Math 114-004

Quiz 6

Name: _____________________________ Section: ________

Instructions: Please show all of your work. No calculators, notes, or talking.

1. Find the equation of the normal line to the surface
 \[2(x - 2)^2 + (y - 1)^2 + (z - 3)^2 = 0 \] at the point (3, 3, 5).
 The normal line is in the direction perpendicular to the surface at
 (3, 3, 5). Since the surface is given by
 \[f(x, y, z) = 2(x - 2)^2 + (y - 1)^2 + (z - 3)^2 = 0, \]
 a normal direction is \(\nabla f(3, 3, 5) = (4, 4, 4) \). Thus the line is
 \[(3, 3, 5) + t(4, 4, 4). \]

2. Find the points on the cone \(z^2 = x^2 + y^2 \) that are closest to the point
 (4, 2, 0).
 We need to minimize \((x - 4)^2 + (y - 2)^2 + z^2 \). Since we are on the
 cone, we have \(z^2 = x^2 + y^2 \) so plugging this in, we need to minimize
 the function \(f(x, y) = (x - 4)^2 + (y - 2)^2 + x^2 + y^2 \). To do this we
 need to find where \(\nabla f = 0 \). We have
 \[\nabla f = (2(x - 4) + 2x, 2(y - 2) + 2y) = (4x - 8, 4y - 4), \]
 which is zero at (2, 1). Plugging this into the equation for the cone we get \(z^2 = 5 \) so
 that \(z = \pm \sqrt{5} \). Thus the points \((2, 1, \pm \sqrt{5}) \) are the closest to (4, 2, 0).