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1 Functions
A function can be visualized as a machine that takes in an input x and returns an output f (x). The collection

of all possible inputs is called the domain, and the collection of all possible outputs is called the range.

This course deals with functions whose domains and ranges are R or subsets of R (this is the notation for the

real numbers).

1.1 Examples

Example

1. Polynomials, e.g. f (x) = x3 − 5x2 + x + 9. Give the domain and range of f . (See Answer 1)

2. Trigonometric functions, e.g. sin, cos, tan. Give the domain and range for each of these. (See

Answer 2)

3. The exponential function, ex . Give the domain and range for the exponential. (See Answer 3)

4. The natural logarithm function, ln x . Recall that this is the inverse of the exponential function. Give

the domain and range for ln x . (See Answer 4)

5. Is sin−1 a function? If so, why? If not, is there a way to make it into a function? (See Answer 5)

1.2 Operations on Functions

Composition

The composition of two functions, f and g, is defined to be the function that takes as its input x and returns

as its output g(x) fed into f .

f ◦ g(x) = f (g(x))

Example √
1− x2

can be thought of as the composition of two functions, f and g. If g = 1− x2, f would be the function that

takes an input g(x) and returns its square root.
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Example

Compute the composition f ◦ f , i.e. the composition of f with itself, where f (x) =
1

x + 1
. (See Answer 6)

Inverse

The inverse is the function that undoes f . If you plug f (x) into f −1, you will get x . Notice that this function

works both ways. If you plug f −1(x) into f (x), you will get back x again.

f −1(f (x)) = x

f (f −1(x)) = x

NOTE: f −1 denotes the inverse, not the reciprocal. f −1(x) 6= 1
f (x) .

Example

Let’s consider f (x) = x3. Its inverse is f −1(x) = x
1
3 .

f −1(f (x)) = (x3)
1
3 = x

f (f −1(x)) = (x
1
3 )3 = x

1.3 Classes of Functions

Polynomials

A polynomial P (x) is a function of the form

P (x) = c0 + c1x + c2x
2 + · · ·+ cnx

n

The top power n is called the degree of the polynomial. We can also write a polynomial using a summation

notation.

P (x) =

n∑
k=0

ckx
k

Rational functions

Rational functions are functions of the form
P (x)

Q(x)
where each is a polynomial.

Example

3x − 1

x2 + x − 6

is a rational function. You have to be careful of the denominator. When the denominator takes a value of

zero, the function may not be well-defined.
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Powers

Power functions are functions of the form cxn, where c and n are constant real numbers.

Other powers besides those of positive integers are useful.

Example

• What is x0 ? (See Answer 7)

• What is x−
1
2 ? (See Answer 8)

• What is x
22
7 ? (See Answer 9)

• What is xπ ? We are not yet equipped to handle this, but we will come back to it later.

Trigonometrics

You should be familiar with the basic trigonometric functions sin, cos. One fact to keep in mind is cos2 θ+sin2 θ =

1 for any θ. This is known as a Pythagorean identity, which is so named because of one of the ways to prove it:

By looking at a right triangle with hypotenuse 1 and angle θ, and labeling the adjacent and opposite sides

accordingly, one finds by using Pythagoras’ Theorem that cos2 θ + sin2 θ = 1.

Another way to think about it is to embed the above triangle into a diagram for the unit circle where we see

that cos θ and sin θ returns the x and y coordinates, respectively, of a point on the unit circle with angle θ to

the x-axis:
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That explains the nature of the formula cos2 θ + sin2 θ = 1. It comes from the equation of the unit circle

x2 + y2 = 1.

Other trigonometric functions:

• tan =
sin

cos

• cot =
cos

sin
, the reciprocal of tan

• sec =
1

cos
, the reciprocal of cos

• csc =
1

sin
, the reciprocal of sin

All four of these have vertical asymptotes at the points where the denominator goes to zero.

Inverse Trigonometrics

We often write sin−1 to denote the inverse, but this can cause confusion. Be careful that sin−1 6=
1

sin
. To avoid

the confusion, the terminology arcsin is recommended for the inverse of the sin function.

The arcsin function takes on values
[
−
π

2
,
π

2

]
and has a restricted domain [−1, 1].

The arccos function likewise has a restricted domain [−1, 1], but it takes values [0, π].

The arctan function has an unbounded domain, it is well defined for all inputs. But it has a restricted range(
−
π

2
,
π

2

)
.

Exponentials

Exponential functions are of the form cx , where c is some positive constant. The most common such function,

referred to as the exponential, is ex . This is the most common because of its nice integral and differential

properties (below).

Algebraic properties of the exponential function:

exey = ex+y

(ex)y = exy

Differential/integral properties:
d

dx
ex = ex∫

exdx = ex + C

Recall the graph of ex , plotted here alongside its inverse, ln x :
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Note that the graphs are symmetric about the line y = x (as is true of the graphs of a function and its inverse).

Before continuing, one might ask, what is e? There are several ways to define e, which will be revealed soon.

For now, it is an irrational number which is approximately 2.718281828.

1.4 Euler’s Formula

To close this lesson, we give a wonderful formula, which for now we will just take as a fact:

Euler’s Formula

e ix = cos x + i sin x

The i in the exponent is the imaginary number
√
−1. It has the properties i2 = −1. i is not a real number.

That doesn’t mean that it doesn’t exist. It just means it is not on a real number line.

Euler’s formula concerns the exponentiation of an imaginary variable. What exactly does that mean? How is

this related to trigonometric functions? This will be covered in our next lesson.

1.5 Additional Examples

Example

Find the domain of

f (x) =
1√

x2 − 3x + 2
.

(See Answer 10)
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Example

Find the domain of

f (x) = ln(x3 − 6x2 + 8x).

(See Answer 11)

1.6 Answers to Selected Examples

1. The domain is R, because we can plug in any real number into a polynomial. The range is R, which we

see by noting that this is a cubic function, so as x → −∞, f (x)→ −∞, and as x →∞, f (x)→∞.

(Return)

2. For sin and cos: domain is R; range is [−1, 1].

For tan, the domain is {x ∈ R : x 6= π
2 + kπ}; range is R.

(Return)

3. Domain is R; range is (0,∞).

(Return)

4. Domain is (0,∞); range is R. Notice how the domain and range of the exponential relate to the domain

and range of the natural logarithm.

(Return)

5. sin−1 is not a function, because one input has many outputs. For example, sin−1(0) = 0, π, 2π, . . .. By

restricting the range of sin−1 to
[
−
π

2
,
π

2

]
, one gets the function arcsin.

(Return)

6. We find that

f ◦ f (x) = f (f (x))

= f

(
1

x + 1

)
=

1

1/ (x + 1) + 1

=
x + 1

1 + x + 1

=
x + 1

x + 2
.

(Return)

7. x0 = 1

(Return)

8. Recall a fractional power denotes root. For example, x
1
2 =
√
x . The negative sign in the exponent means

that we take the reciprocal. So, x−
1
2 = 1√

x
.

(Return)
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9. One can rewrite this as
(
x22
)1/7

. That means we take x to the 22nd power and then take the 7th root

of the result. x
22
7 =

7
√
x22

(Return)

10. Note that the square root is only defined when its input is non-negative. Also, the denominator in a

rational function cannot be 0. So we find that this function is well-defined if and only if x2 − 3x + 2 > 0.

Factoring gives

(x − 2)(x − 1) > 0.

By plotting the points x = 1 and x = 2 (where the denominator equals 0) and testing points between

them, one finds that x2 − 3x + 2 > 0 when x < 1 or x > 2:

So the domain of f is x < 1 or 2 < x . In interval notation, this is (−∞, 1) ∪ (2,∞).

(Return)

11. Since ln is only defined on the positive real numbers, we must have x3 − 6x2 + 8x > 0. Factoring gives

x(x2 − 6x + 8) = x(x − 2)(x − 4) > 0

As in the above example, plotting the points where this equals 0 and then testing points, we find that the

domain is 0 < x < 2 and 4 < x . In interval notation, this is (0, 2) ∪ (4,∞).

(Return)
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2 The Exponential

This module deals with a very important function: the exponential. The first question one might ask is: what

is the exponential function ex? We know certain values of the function such as e0 = 1, but what about an

irrational input such as eπ, or an imaginary input e i? Is it possible to make sense of these values?

The following definition answers these questions.

The Exponential ex

ex = 1 + x +
x2

2!
+
x3

3!
+
x4

4!
+ · · ·

=

∞∑
k=0

xk

k!
,

where

k! = k(k − 1)(k − 2) · · · 3 · 2 · 1,

and 0! = 1.

One can now plug values for x into the above sum to compute ex . When x = 0, for instance, one finds that

e0 = 1, (since all the terms with x disappear) as expected. By plugging in x = 1, the true value of e is found

to be e = 1 + 1 + 1
2! + 1

3! + · · · .

2.1 A long polynomial

There are technical concerns when trying to add up an infinite number of things. These issues will be dealt with

later in the modules on series. For now, treat the infinite sum above as a long polynomial (the actual term is

the Taylor series about x = 0, which will be more formally dealt with in the next module). Polynomials are nice

because they are easy to integrate and differentiate. Recall the power rule for differentiating and integrating a

monomial xk , where k is a constant:

d

dx
xk = kxk−1∫

xk dx =
1

k + 1
xk+1 + C (k 6= −1)
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2.2 Properties of ex

Recall the following properties of the exponential function:

1. ex+y = exey

2. ex ·y = (ex)y = (ey )x

3. d
dx e

x = ex

4.
∫
exdx = ex + C.

Consider the last two properties in terms of the long polynomial.Taking the derivative of the long polynomial

for ex gives

d

dx
(1 + x +

x2

2!
+
x3

3!
+
x4

4!
+ · · · ) = 0 + 1 +

2x

2!
+

3x2

3!
+

4x3

4!
+ · · ·

= 1 + x +
x2

2!
+
x3

3!
+ · · · ,

which is the original long polynomial. Integrating also gives (up to the constant of integration) the original long

polynomial. This agrees with facts about the derivative and integral of ex . Thus, the long polynomial for ex

captures two of the key features of ex ; namely, ex is its own derivative and its own integral.

2.3 Euler’s formula

Recall that the imaginary number i is defined by i =
√
−1. So i2 = −1, i3 = −i , i4 = 1, and this continues

cyclically (for a review of complex/imaginary numbers, see wikipedia). Assume the following fact, known as

Euler’s formula, mentioned in the last module.

Euler’s formula

e ix = cos x + i sin x.

Consider what happens when ix is plugged into the long polynomial for ex . By simplifying the powers of i , and

grouping the result into its real and imaginary parts, one finds

e ix = 1 + ix +
(ix)2

2!
+

(ix)3

3!
+ · · ·

= 1 + ix +
i2x2

2!
+
i3x3

3!
+ · · ·

= 1 + ix −
x2

2!
− i

x3

3!
+
x4

4!
+ i

x5

5!
+ · · ·

=

(
1−

x2

2!
+
x4

4!
− · · ·

)
+ i

(
x −

x3

3!
+
x5

5!
− · · ·

)
.

If this is supposed to equal cos x + i sin x , then the real part must be cos x , and the imaginary part must be

sin x . It follows that

cos x = 1−
x2

2!
+
x4

4!
−
x6

6!
+ · · · =

∞∑
k=0

(−1)k
x2k

(2k)!

sin x = x −
x3

3!
+
x5

5!
−
x7

7!
+ · · · =

∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
.
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These formulas should be memorized, both in their long polynomial form and their more concise summation

notation form.

Example

Use Euler’s formula to show that e iπ = −1. (See Answer 1)

Example

Compute 1− π2

2! + π4

4! − · · · . (See Answer 2)

Example

Check that taking the derivative of the long polynomial for sin x gives the long polynomial for cos x (hence,

verify that d
dx sin x = cos x). (See Answer 3)

Example

Show that the long polynomial for ex satisfies the first property above, namely ex+y = exey . Hint: start

with the long polynomials for ex and ey and multiply these together, and carefully collect like terms to show

it equals the long polynomial for ex+y . (See Answer 4)

2.4 More on the long polynomial

The idea of a long polynomial is reasonable, because it actually comes from taking a sequence of polynomials

with higher and higher degree:

f0(x) = 1

f1(x) = 1 + x

f2(x) = 1 + x +
x2

2

f3(x) = 1 + x +
x2

2
+
x3

6
....

Each polynomial in the sequence is, in a sense, the best approximation possible of that degree. Put another way,

taking the first several terms of the long polynomial gives a good polynomial approximation of the function. The

more terms included, the better the approximation. This is how calculators compute the exponential function

(without having to add up infinitely many things).
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2.5 EXERCISES

• So, how good of an approximation is a polynomial truncation of ex? Use a calculator to compare how

close e is to the linear, quadratic, cubic, quartic, and quintic approximations. How many digits of accuracy

do you seem to be gaining with each additional term in the series?

• Now, do the same thing with 1/e by plugging in x = −1 into the series. Do you have the same results?

Are you surprised?

• Use the first three terms of the series for ex to approximate 10
√
e and e10. How accurate do you think

these approximations are?

• Calculate the following sum using what you know:

∞∑
n=0

(−1)n
(ln 3)n

n!

• Write out the first four terms of the following series

∞∑
n=0

(−1)n
π2n

2nn!

• Write out the following series using summation notation:

1−
2

3!
+

4

5!
−

8

7!
+ · · ·

• Estimate sin(1/2) to three digits of accuracy. How many terms in the series did this take?

• We’ve seen that i = e iπ/2 via Euler’s formula. Using this and some algebra, tell me what is i i . Isn’t that

nice? Now, tell me, what is (i i)i? Are you surprised? That’s like, unreal!

• Practice your summation notation by rewriting the sum

∞∑
n=2

(−1)n
xn−2

n3

as a sum over an index that goes from zero to infinity.
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• Use the first two nonzero terms of the Taylor series for cos(x) to approximate cos( 110).

• Use Euler’s formula to derive the double angle formulas cos(2θ) = cos2(θ) − sin2(θ) and sin(2θ) =

2 sin(θ) cos(θ).

2.6 Answers to Selected Examples

1. Setting x = π in Euler’s formula gives e iπ = cosπ + i sinπ = −1.

(Return)

2. Note that this is the long polynomial for cos x , evaluated at x = π. So the value is cosπ = −1.

(Return)

3. Computing the derivative term by term gives

d

dx
sin(x) =

d

dx

(
x −

x3

3!
+
x5

5!
− . . .

)
= 1− 3

x2

3!
+ 5

x4

5!
− . . .

= 1−
x2

2!
+
x4

4!
− . . . ,

which is the long polynomial for cos x , as desired.

(Return)

4. Beginning with ex · ey , we find

ex · ey =

(
1 + x +

x2

2!
+ · · ·

)(
1 + y +

y2

2!
+ · · ·

)
= 1 + (x + y) +

(
x2

2!
+ xy +

y2

2!

)
+ · · ·

= 1 + (x + y) +
x2 + 2xy + y2

2!
+ · · ·

= 1 + (x + y) +
(x + y)2

2!
+ · · · ,

which is the long polynomial for ex+y , as desired.

(Return)
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3 Taylor Series

The long polynomial from the last module is actually called a Taylor series about x = 0 (this is referred to as a

Maclaurin series in some textbooks, but this course will use the term Taylor series). The last module gave the

Taylor series for ex , sin x , and cos x . The logical next question is to ask whether every function has a Taylor

series.

The answer is that most reasonable functions, and almost all of the functions encountered in this course, have

a Taylor series. That is, every reasonable function f can be written as

f (x) =

∞∑
k=0

ckx
k = c0 + c1x + c2x

2 + · · · .

This module describes how to compute the coefficients ck for a given function f .

3.1 The definition of a Taylor series at x=0

The definition of the Taylor series of f at x = 0 is

Taylor series at x = 0

f (x) = f (0) +
f ′(0)

1!
x +

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · · =

∞∑
k=0

f (k)(0)

k!
xk ,

where f (k)(0) is the kth derivative of f evaluated at 0. In other words, the coefficient ck mentioned above

is given by

ck =
f (k)(0)

k!
=

1

k!
·
dk f

dxk

∣∣∣∣
0

This seems circular, since the definition uses the function, and its derivatives, to write down the function.

However, the definition only actually requires information about the function at a single point (in this case, 0).

It is best to think of the Taylor series as a way of turning a function into a polynomial.

Example

Compute the Taylor series for ex using the above definition to see that it matches the given series from the

last module. (See Answer 1)
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Example

Compute the Taylor series for f (x) = sin x using the above definition, and verify it matches the series found

using Euler’s formula. (See Answer 2)

Example

Compute the Taylor series for f (x) = x2 − 5x + 3. (See Answer 3)

3.2 Why Taylor series matter

The big idea of this module is that the Taylor series can be thought of as an operator (a machine) which turns a

function into a series. This is a useful operator because some functions are hard (or even impossible) to express

using combinations of familiar functions. Nevertheless, these functions can often be understood by computing

their Taylor series.

Example The Bessel function, denoted J0, is best defined by its Taylor series:

J0 =

∞∑
k=0

(−1)k
x2k

22k(k!)2

= 1−
1

22
x2 +

1

24(2!)2
x4 −

1

26(3!)2
x6 + · · ·

This series has only the even powers of x , and it alternates, which is reminiscent of the series for cosine. One

difference is that the denominator in the Bessel function grows more quickly than the denominator in the series

for cosine. Thus, we might expect the graph to be a wave with a decreasing amplitude, which is exactly what

we find:

It turns out that the Bessel function describes many physical phenomena, including the shape of a hanging chain

as it is rotated, and the shape of the waves formed after a stone is thrown into a pool of water.

3.3 Taylor series as polynomial approximants

The main reason Taylor series are useful is that they turn a potentially complicated function into something

simple: a polynomial. Granted, this polynomial is infinitely long in general, but in practice it is only necessary to

compute the first few terms to get a good, local approximation of the function. The more terms one includes,

the better the polynomial approximates the function.
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As an example, consider a particle on the number line with position function p(t). At time 0, say its position

is 5. Then one approximation of its position as a function of time is p0(t) = 5. Given more information, say

its velocity at time 0 is 3, the approximation becomes better. The next approximation as a function of time is

p1(t) = 5 + 3t. Now, suppose its acceleration at time 0 is −4. Then p2(t) = 5 + 3t − 4
2 t
2 = 5 + 3t − 2t2 is

an even better polynomial approximation of the position function.

3.4 EXERCISES

• What is the Taylor series of x4 − 3x3 + 2x2 + 7x − 3. This should be an easy one!

• What is the Taylor series of (x − 2)2(x − 3)? This, also, should not be *too* hard...

• Compute a few derivatives and figure out the first few terms of the Taylor series of
1

1− x . Have you seen

this series before?

• What are the first two nonzero terms in the Taylor series of 3
√

1− 2x?

• What is the coefficient of the cubic term in the Taylor series of e−3x?

• Use what you know about Taylor series to determine the third derivative of sin3(2x) cos2(3x) at x = 0.

That’s a *lot* easier than computing the derivatives!

• The ERF function is defined in terms of a difficult integral:

ERF (x) =
2√
π

∫ x

0

e−t
2

dt

• Even if you don’t remember integrals all that well, you know how to integrate a polynomial, right? So,

Taylor expand the integrand and integrate term by term to get the Taylor series for ERF.

• What is the third derivative of ERF(x) at zero?

• Why does a Taylor series have all those n! terms in the denominator? Let’s see. Compute the Taylor

series of f (x) = (1 + x)5 by (1) using the binomial theorem (or multiplication) to expand that power;

then (2) by differentiating the function and using the Taylor series formula. What do you notice when

you keep computing higher derivatives?

19



3.5 Answers to Selected Examples

1. Here, f (x) = ex , and every derivative of ex is ex . Therefore, for all k we have

f (k)(x) = ex ,

and so f (k)(0) = 1 for all k . Plugging into the Taylor series formula gives

f (x) =

∞∑
k=0

f (k)(0)

k!
xk

=

∞∑
k=0

xk

k!

= 1 + x +
x2

2!
+
x3

3!
+ · · · ,

as claimed.

(Return)

2. Computing the derivatives, and then evaluating at x = 0 gives the following table:

f (x) = sin(x) f (0) = 0

f ′(x) = cos(x) f ′(0) = 1

f ′′(x) = − sin(x) f ′′(0) = 0

f ′′′(x) = − cos(x) f ′′′(0) = −1

...

Thus,

sin(x) = 0 +
1

1!
x +

0

2!
x2 +

−1

3!
x3 + · · ·

= x −
x3

3!
+
x5

5!
− · · · ,

confirming what was found last time.

(Return)

3. Again, by directly using the definition:

f (x) = x2 − 5x + 3 f (0) = 3

f ′(x) = 2x − 5 f ′(0) = −5

f ′′(x) = 2 f ′′(0) = 2

f ′′′(x) = 0 f ′′′(0) = 0

...

So it follows that

f (x) = 3− 5x +
2

2!
x2 = 3− 5x + x2
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(since all the subsequent derivatives are 0), which is the original function. This should not be a surprise,

since the Taylor series represents a function as a long polynomial (henceforth called by its proper name:

series). If f was a polynomial to begin with, it stands to reason that the Taylor series for f should just

be f itself.

(Return)
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4 Computing Taylor Series

The previous module gave the definition of the Taylor series for an arbitrary function. It turns out that this is

not always the easiest way to compute a function’s Taylor series. Just as functions can be added, subtracted,

multiplied, and composed, so can their corresponding Taylor series.

Recall that the Taylor series for a function f is given by

f (x) =

∞∑
k=0

f (k)(0)

k!
xk = f (0) + f ′(0)x +

f ′′(0)

2!
x2 + · · · .

Using the definition of the Taylor series involves taking a lot of derivatives, which could be a lot of work,

especially if the function involves compositions and products of functions, e.g. f (x) = sin(x2)ex
3
. This module

will show how to compute the Taylor series of such functions more easily by using the Taylor series for functions

we already know.

4.1 Substitution

Our first method, substitution, allows us to plug one function into the Taylor series of another. Consider the

function

f (x) =
1

x
sin(x2).

Computing the Taylor series for f from the definition would involve the quotient rule, chain rule, and a lot of

algebra. But by taking the series for sin x and substituting x2 into this series, and then distributing the 1
x , one

finds

1

x
sin(x2) =

1

x

(
(x2)−

1

3!
(x2)3 +

1

5!
(x2)5 − · · ·

)
=

1

x

(
x2 −

1

3!
x6 +

1

5!
x10 − · · ·

)
= x −

1

3!
x5 +

1

5!
x9 − · · · .

Note that getting this many terms using the definition would involve taking nine derivatives of the original

function, which would be a lot of work! To get a more complete description of the Taylor series, one can use
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the summation notation, and again substitute to find

1

x
sin(x2) =

1

x

∞∑
k=0

(−1)k
(x2)2k+1

(2k + 1)!

=
1

x

∞∑
k=0

(−1)k
x4k+2

(2k + 1)!

=

∞∑
k=0

(−1)k
x4k+1

(2k + 1)!

Example

Find the Taylor series for ex
3

by substitution. (See Answer 1)

4.2 Combining like terms

Another way to use previous knowledge of one Taylor series to find another is by combining like terms. This

requires some careful algebra, but it is no more difficult than multiplying two polynomials together. For example,

consider the function

f (x) = cos2(x) = cos(x) · cos(x).

Finding the series for a function multiplied by another function is the same as taking the series for each function

and multiplying them together, and then collecting like terms. This is where some algebra is required.

cos(x) · cos(x) =

(
1−

1

2!
x2 +

1

4!
x4 − · · ·

)(
1−

1

2!
x2 +

1

4!
x4 − · · ·

)
= 1 +

(
−

1

2!
−

1

2!

)
x2 +

(
1

4!
+

1

2!

1

2!
+

1

4!

)
x4 + · · ·

= 1− x2 +
1

3
x4 + · · · .

To see where the coefficient of x4 comes from, note that every x4 term comes from some term from the left

series multiplied together with some term from the right series whose powers add up to 4. There are three such

pairs: 1 on the left paired with 1
4!x
4 on the right; − 12!x

2 on the left paired with − 12!x
2 on the right; and 1

4!x
4

on the left paired with 1 on the right. This is the same algebra one would do when multiplying two polynomials

together; this is just a way of collecting like terms in a systematic way.

Example

Use the trigonometric identity

cos2 x =
1 + cos(2x)

2

and substitution to find the series for cos2 x . Try to give the series in summation notation (other than the

first term). (See Answer 2)
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4.3 Hyperbolic trigonometric functions

The hyperbolic trigonometric functions sinh(x), cosh(x), and tanh(x) are defined by

sinh(x) =
ex − e−x

2

cosh(x) =
ex + e−x

2

tanh(x) =
ex − e−x

ex + e−x
=

sinh(x)

cosh(x)
.

These hyperbolic trig functions, although graphically quite different from their traditional counterparts, have

several similar algebraic properties, which is why they are so named. For example, the Pythagorean identity for

cosine and sine has a version for hyperbolic cosine and sine:

cosh2(x)− sinh2(x) = 1.

One can verify this using the definitions and some algebra. But there is a geometric intuition for this relationship.

Recall that cosine and sine give the x and y coordinates, respectively, for a point on the unit circle x2+ y2 = 1.

The hyperbolic cosine and hyperbolic sine give the x and y coordinates, respectively, for points on the hyperbola

x2 − y2 = 1:
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Example

Using the Taylor series for ex and substitution, show that the Taylor series for cosh and sinh are

cosh(x) = 1 +
x2

2!
+
x4

4!
+ · · · =

∞∑
k=0

x2k

(2k)!

sinh(x) = x +
x3

3!
+
x5

5!
+ · · · =

∞∑
k=0

x2k+1

(2k + 1)!
.

Note that these are almost the same as the series for cosine and sine, respectively, except they do not

alternate. This gives another reason for the names of these functions. (See Answer 3)

4.4 Manipulating Taylor series

Another way of using one Taylor series to find another is through differentiation and integration. For instance,

to find the Taylor series for the derivative of f , one can differentiate the Taylor series for f term by term.

Example

By differentiating the Taylor series for sinh and cosh, show that

d

dx
sinh x = cosh x

d

dx
cosh x = sinh x.

This is yet another relationship which is similar (though not identical) to the relationship between sine and

cosine. (See Answer 4)

4.5 Higher Order Terms in Taylor Series

In some situations, it will be convenient only to write the first few terms of a Taylor series. This is particularly

true when combining or composing more than one Taylor series. Up until now, an ellipsis has been used to

indicate that there are more terms in the series that are being omitted.

There is another way, sometimes used in this course, of notating the omitted terms in a Taylor series. That is

by referring to them as Higher Order Terms (or H.O.T. for short). Having the extra HOT in a series means

that all the remaining terms in the series have a higher degree than the previous terms.

Example

The function ex can be written as

ex = 1 + x +
1

2!
x2 + HOT,

or it could also be written as

ex = 1 + x + HOT.

The point at which the higher order terms are cut-off is somewhat arbitrary and depends on the situation.

There is a more formal way of keeping track of the higher order terms, called Big-O notation, which is
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presented in orders of growth.

Example

Find the first two non-zero terms of the Taylor series for

f (x) = 1− 2xesin x
2

.

(See Answer 5)

4.6 Extra examples

Example

Compute the Taylor series (at 0) for sin2 x up to and including terms of order 6. Try to give the full Taylor

series in summation notation. (See Answer 6)

Example

Find the first three terms of the Taylor series for
√
f (x), where

f (x) = a0 + a1x + a2x
2 + a3x

3 + · · · .

(See Answer 7)

4.7 EXERCISES

• Compute the Taylor series of cos(2x) sin(3x) up to and including terms of degree 5. Don’t try computing

derivatives for this!

• Use a Taylor polynomial to give a cubic approximation to 2xe3x

• Compute the Taylor series of e1−cos t in summation notation.

• Compute the Taylor series of cos(sin(x)) to fourth order.

• Compute the Taylor series of sin(cos(x)) to forth order. What happens that makes this different than the

last problem? (Hint: cos(0) = 1 but sin(0) = 0...)

• Compute the first three nonvanishing terms in the Taylor series of e2x(sinh 3x)/x .

• Compute the Taylor series of 3x2e−x
2

sin 2x3 up to and including terms of order eight (!) Wow, that

means a lot of work, right? Think... which terms should you expand first?

• Compute the Taylor series of 1x e
−x2 sinh(2x) up to the fourth order term.

• What is the second derivative of the function ex cosh(x
2) at x = 0?

• Compute the following limit limx→0(1− ex) sin(x
2)

x3
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4.8 Answers to Selected Exercises

1. Recall the series for ex is

ex = 1 + x +
x2

2!
+
x3

3!
+ · · · =

∞∑
k=0

xk

k!

Substituting x3 into the series for ex gives

ex
3

= 1 + x3 +
(x3)2

2!
+

(x3)3

3!
+ · · ·

= 1 + x3 +
x6

2!
+
x9

3!
+ · · ·

=

∞∑
k=0

(x3)k

k!

=

∞∑
k=0

x3k

k!

(Return)

2. By the above identity,

cos2 x =
1

2
(1 + cos(2x))

=
1

2

(
1 +

(
1−

(2x)2

2!
+

(2x)4

4!
− · · ·

))
=

1

2

(
2−

4x2

2
+

16x4

24
− · · ·

)
= 1− x2 +

x4

3
− · · · .

In summation notation,

cos2 x =
1

2

(
1 +

∞∑
k=0

(−1)k
(2x)2k

(2k)!

)

=
1

2
+

1

2

∞∑
k=0

(−1)k
(2x)2k

(2k)!

=
1

2
+

∞∑
k=0

(−1)k
22k−1x2k

(2k)!

= 1 +

∞∑
k=1

(−1)k
22k−1x2k

(2k)!
.

(Return)
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3.

cosh(x) =
ex + e−x

2

=
1

2

[
(1 + x +

x2

2!
+ · · · ) + (1− x +

x2

2!
− · · · )

]
=

1

2

[
2 + 2

x2

2!
+ 2

x4

4!
+ · · ·

]
= 1 +

x2

2!
+
x4

4!
+ · · ·

=

∞∑
k=0

x2k

(2k)!
.

sinh(x) =
ex − e−x

2

=
1

2

[
(1 + x +

x2

2!
+ · · · )− (1− x +

x2

2!
− · · · )

]
=

1

2

[
2x + 2

x3

3!
+ 2

x5

5!
+ · · ·

]
= x +

x3

3!
+
x5

5!
+ · · ·

=

∞∑
k=0

x2k+1

(2k + 1)!
.

(Return)

4. Differentiating hyperbolic sine gives

d

dx
sinh x =

d

dx

∞∑
k=0

x2k+1

(2k + 1)!

=

∞∑
k=0

(2k + 1)
x2k

(2k + 1)!

=

∞∑
k=0

x2k

(2k)!

= cosh x,

as desired. Similarly, differentiating hyperbolic cosine gives
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d

dx
cosh x =

d

dx

∞∑
k=0

x2k

(2k)!

=

∞∑
k=0

(2k)
x2k−1

(2k)!

=

∞∑
k=1

x2k−1

(2k − 1)!

=

∞∑
k=0

x2k+1

(2k + 1)!
.

There was a little bit of reindexing there, but by writing out a few terms of each series, one can see that

all of the above equalities are true.

(Return)

5. Beginning with the innermost function, in this case sin x2, we find that

sin x2 = x2 −
1

3!
(x2)3 + HOT = x2 −

1

6
x6 + HOT.

Then plugging this into the series for ex gives

esin x
2

= 1 +

(
x2 −

1

6
x6 + HOT

)
+

1

2!

(
x2 + HOT

)2
+

1

3!

(
x2 + HOT

)3
+ HOT

= 1 + x2 +
1

2
x4 +

(
−

1

6
+

1

6

)
x6 + HOT

= 1 + x2 +
1

2
x4 + HOT

Then to complete the answer, plug this into the original function to find

f (x) = 1− 2x

(
1 + x2 +

1

2
x4 + HOT

)
= 1− 2x − 2x3 − x5 + HOT.

(Return)

6.

sin2 x = (x −
x3

3!
+
x5

5!
− · · · )(x −

x3

3!
+
x5

5!
− · · · )

= x2 + (−
1

3!
−

1

3!
)x4 + (

1

5!
+

1

3! · 3!
+

1

5!
)x6 + · · ·

= x2 −
1

3
x4 +

2

45
x6 − · · · .

To get the full Taylor series, one can use the identity

sin2 x =
1− cos(2x)

2
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to find that

sin2 x =
1− cos(2x)

2

=
1

2

(
1−

(
1−

(2x)2

2!
+

(2x)4

4!
− · · ·

))
=

1

2

(
(2x)2

2!
−

(2x)4

4!
+

(2x)6

6!
− · · ·

)
=

1

2

∞∑
k=1

(−1)k−1
(2x)2k

(2k)!
.

(Return)

7. Let g(x) =
√
f (x), where

g(x) = b0 + b1x + b2x
2 + b3x

3 + · · · .

Then g(x)2 = f (x), and so the same holds for the Taylor series:(
b0 + b1x + b2x

2 + b3x
3 + · · ·

)2
= a0 + a1x + a2x

2 + · · · .

Multiplying out and collecting like terms gives

b20 + (b0b1 + b1b0)x + (b0b2 + b1b1 + b2b0)x
2 + · · · = a0 + a1x + a2x

2 + · · · .

Now, equating coefficients of the monomials on the left and right gives the first few equations (of an

infinite system of equations)

b20 = a0

2b0b1 = a1

2b0b2 + b21 = a2.

Solving these equations gives the first three coefficients of g:

b0 =
√
a0

b1 =
a1

2
√
a0

b2 =
1

2
√
a0

(
a2 −

a21
4a0

)
.

Thus, √
a0 + a1x + a2x2 + · · · =

√
a0 +

a1
2
√
a0
x +

1

2
√
a0

(
a2 −

a21
4a0

)
x2 + · · · .

(Return)
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5 Convergence

A Taylor series can be thought of as an infinite polynomial. Up until now, we have not worried about the issues

that come up when adding up infinitely many things. This module deals with two main issues:

1. A function may not have a Taylor series at all;

2. A function’s Taylor series may not converge everywhere, even within the function’s domain.

5.1 Functions without a Taylor series

The first problem is that some functions cannot be expressed in the form

f (x) =

∞∑
k=0

ckx
k = c0 + c1x + c2x

2 + · · ·

Examples include tan, which has vertical asymptotes, and ln, which is not defined for x ≤ 0. Polynomials are

not able to capture these sorts of discontinuities and asymptotes.

The geometric series

The geometric series is an example of a Taylor series which is well behaved for some values of x and nonsensical

for other values of x . The claim is that

1 + x + x2 + x3 + x4 + · · · =
1

1− x ,

for |x | < 1. (See Justiification 1)

Example

Compute the Taylor series for f (x) = 1
1−x directly from the definition. (See Answer 2)

Note The geometric series only holds when |x | < 1. This makes sense, because if |x | > 1, the powers of

x are getting bigger and bigger and so the series should not converge. If x = 1, then the series is adding 1

infinitely many times, which diverges. If x = −1, then the series oscillates between 1 and 0, and hence does

not converge.

The takeaway is that every Taylor series has a convergence domain where the series is well-behaved, and outside

that domain the series will not converge. For many functions, the domain is the whole real number line (e.g.
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the series for ex , sin, cos, cosh, and sinh all converge everywhere), but be aware that there are functions

whose Taylor series do not converge everywhere. This will be covered more formally in Series Convergence And

Divergence.

Example

A beam of light of intensity L hits a pane of glass. Half of the light is reflected, and a third of the light is

transmitted; the rest is absorbed. When a beam of light of intensity L hits two parallel panes with an air

gap between them, how much light is transmitted through both panes? (The following figure shows how

the light gets reflected and rereflected. The first transmitted and reflected beams of light are labeled with

their respective intensities. The question asks for the total of the beams of light emerging on the right side

of the right pane of glass).

(See Answer 3)

Example

Use the Taylor series of 1
1−x to derive the Taylor series of ln(1 + x). Hint: recall that ln(1 + x) =

∫
1
1+x dx .

(See Answer 4)

Example

Use the fact that

arctan x =

∫
1

1 + x2
dx

to find the Taylor series for arctan x . (See Answer 5)
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Example

Another important function is the binomial series (1 + x)α, where α is some constant. Show that

(1 + x)α = 1 + αx +
α(α− 1)

2!
x2 +

α(α− 1)(α− 2)

3!
x3 + · · ·

=

∞∑
k=0

(
α

k

)
xk ,

where (
α

k

)
=
α(α− 1)(α− 2) · · · (α− k + 1)

k!
.

This series also only holds for |x | < 1. (See Answer 6)

5.2 Summary

Here are all the series we have found so far. The following hold for all x :

ex =

∞∑
k=0

xk

k!

cos x =

∞∑
k=0

(−1)k
x2k

(2k)!

sin x =

∞∑
k=0

(−1)k
x2k+1

(2k + 1)!

cosh x =

∞∑
k=0

x2k

(2k)!

sinh x =

∞∑
k=0

x2k+1

(2k + 1)!
.

The following hold for |x | < 1:

1

1− x =

∞∑
k=0

xk

ln(1 + x) =

∞∑
k=1

(−1)k+1
xk

k

arctan x =

∞∑
k=0

(−1)k
x2k+1

2k + 1

(1 + x)α =

∞∑
k=0

(
α

k

)
xk .
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5.3 Electrostatics example

Here we use the geometric series and the binomial series from above in an example from electrostatics. An

electric dipole is a pair of equally and oppositely charged particles separated by a short distance. One question

of interest in electrostatics is the electrostatic potential, which is the sum of the point charge potentials from

each pole.

The point charge potential from a single particle with charge q, at a distance d from the particle, is

V =
kq

d
,

where k is a constant called the Coulomb constant. Then a dipole with particles of charge q and −q has net

electrostatic potential

V =
kq

d+
−
kq

d−
,

where d+ is the distance to the positively charged particle, and d− is the distance to the negatively charged

particle:

We will calculate the first order term for the electrostatic potential at two different locations: p1 and p2:

First consider p1, located directly above and distance d from the positive particle. Let r be the distance between

the charged particles. Then d+ = d , and by the Pythagorean theorem, d− =
√
d2 + r2. It follows that the

electrostatic potential is

V =
kq

d+
−
kq

d−

=
kq

d
−

kq√
d2 + r2

.
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Now, factoring out kq
d , and applying the binomial series with α = − 12 , we find

V =
kq

d

[
1−

1√
1 + (r/d)2

]

=
kq

d

[
1−

(
1 + (r/d)2

)−1/2]
=
kq

d

[
1−

(
1−

1

2
(r/d)2 + HOT

)]
=

1

2

kqr2

d3
+ HOT.

At position p2, which is directly left of and distance d from the positive particle, we have d+ = d , and d− = d+r ,

so we find that the electrostatic potential at p2 is

V =
kq

d+
−
kq

d−

=
kq

d
−

kq

d + r
.

Again, factoring out kq
d and expanding using the geometric series gives

V =
kq

d

(
1−

1

1 + r
d

)
=
kq

d

(
1−

(
1−

r

d
+ HOT

))
=
kqr

d2
+ HOT.

5.4 EXERCISES

• Consider a snowman built from solid snowballs of radius 2−n, for n = 0, 1, 2, . . ., all stacked on top of one

another. How many units tall is the snowman? How many cubic units of snow was required to build it?

• Compute the Taylor series about zero of

ln
1 + 3x

1− 3x

• Compute the Taylor series about zero of

1√
1− x2

• Using your answer to the previous problem, compute the Taylor series about zero of arcsin x , using

termwise integration and the fact that

arcsin x =

∫
dx√

1− x2

• For which values z is the Taylor series of 4
√

3− 2z2 guaranteed to converge?
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• Use the binomial series to give the Taylor expansion of (1 + x)3. Now, do it with your head: easier, right?

Recall, we have said that the binomial series only converges when |x < 1|, but, clearly, that cannot be a

*sharp* constraint, since (1 + x)3 is good for all x , right? Well, Horatio, there are more things... By the

end of this course, we will learn when and how to bend some of these restrictions.

• Build a cylinder with radius 1 and height 3. Build a second cylinder with radius 1/2 and height 9, a third

cylinder with radius 1/4, height 27, a fourth cylinder with radius 1/8 and height 81, and so on. What is

the total volume of the cylinders?

• For which values of x does the Taylor series of ( 14 − 3x2)1/4 converge?

5.5 Answers to Selected Examples

1. Note This is not a formal proof, which would require a few tools and definitions we have not yet learned.

Let y = 1 + x + x2 + x3 + · · · . Multiplying both sides by x gives

y = 1 + x + x2 + x3 + · · ·
xy = x + x2 + x3 + x4 + · · ·

Now, subtracting the second equation from the first, all the terms other than 1 cancel on the right, leaving

us with

y(1− x) = 1.

Dividing by 1− x gives y = 1
1−x .

(Return)

2.

f (x) =
1

1− x f (0) = 1

f ′(x) =
1

(1− x)2
f ′(0) = 1

f ′′(x) =
2

(1− x)3
f ′′(0) = 2

f ′′′(x) =
6

(1− x)4
f ′′′(0) = 6.

Notice the pattern that

f (k)(x) =
k!

(1− x)k+1
,

at least for the first few k . To see that the pattern continues, assume it holds for some k , and show that

it holds for k + 1 (this is a proof technique known as mathematical induction). If f (k)(x) = k!
(1−x)k+1 , then

f (k+1)(x) =
(k + 1)k!

(1− x)k+2
=

(k + 1)!

(1− x)k+2
,

as desired. Then f (k)(0) = k!, so according to the definition of Taylor series, it follows that

1

1− x = 0! + 1!x +
2!

2!
x2 +

3!

3!
x3 + · · ·

= 1 + x + x2 + x3 + · · · ,
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which agrees with the above.

(Return)

3. By labeling more of the transmitted and reflected beams of light, a pattern emerges among the beams of

light on the right side of the right pane:

1
9 ,
1
36 ,

1
144 , . . .. Note that each beam is 14 the previous beam. Thus, the total light emerging on the right

side of the right pane of glass is

L

9
+
L

36
+

L

144
+ · · · =

L

9

(
1 +

1

4
+

1

16
+ · · ·

)
=
L

9

(
1

1− 1/4

)
=
L

9

4

3

=
4L

27
,

by using the formula for the geometric series.

(Return)

4. Note that

1

1 + x
=

1

1− (−x)

= 1− x + x2 − x3 + x4 − · · · .

Now, integrating gives
∫

dx
1+x = ln(1 + x) + C on the one hand, and∫

(1− x + x2 − x3 + x4 − · · · )dx = x −
x2

2
+
x3

3
− · · ·

=

∞∑
k=1

(−1)k−1
xk

k
,

37



on the other hand. Plugging in x = 0 shows that C = 0, and so

ln(1 + x) = x −
x2

2
+
x3

3
− · · ·

=

∞∑
k=1

(−1)k+1
xk

k
. (|x | < 1)

Note that because this relied on the geometric series, which only holds for |x | < 1, the same restriction

holds for the Taylor series for ln(1 + x).

(Return)

5. Using the fact, and the geometric series, we find that

arctan(x) =

∫
1

1 + x2
dx

=

∫
1

1− (−x2) dx

=

∫ (
1− x2 + x4 − x6 + · · ·

)
dx (|x | < 1)

= x −
x3

3
+
x5

5
−
x7

7
+ · · ·+ C.

Plugging in x = 0 gives that C = 0, since arctan 0 = 0. Thus,

arctan(x) = x −
x3

3
+
x5

5
− · · ·

=

∞∑
k=0

(−1)k
x2k+1

2k + 1
(|x | < 1).

So even though arctan is defined for all x , its Taylor series only converges for |x | < 1.

(Return)

6. For fixed α we have f (x) = (1 + x)α. Then proceeding from the definition of the Taylor series, one

computes

f (x) = (1 + x)α f (0) = 1

f ′(x) = α(1 + x)α−1 f ′(0) = α

f ′′(x) = α(α− 1)(1 + x)α−2 f ′′(0) = α(α− 1)

f ′′′(x) = α(α− 1)(α− 2)(1 + x)α−3 f ′′′(0) = α(α− 1)(α− 2)

...
...

One finds that, in general, f (k)(0) = α(α − 1)(α − 2) · · · (α − k + 1). Thus, the Taylor expansion for

(1 + x)α is

(1 + x)α = 1 + αx +
α(α− 1)

2!
x2 +

α(α− 1)(α− 2)

3!
x3 + · · ·

= 1 +

(
α

1

)
x +

(
α

2

)
x2 +

(
α

3

)
x3 + · · · =

∞∑
k=0

(
α

k

)
xk ,

as claimed.

(Return)
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6 Expansion Points

Up until now, Taylor series expansions have all been at x = 0. The Taylor series at x = 0 gives a good

approximation to the function near 0. But what if we want a good approximation to the function near a

different point a? That is the topic of this module.

6.1 Expansion points

A function f has a Taylor series expansion about any point x = a provided that f and all its derivatives exist at

a. The definition of the Taylor series for f about x = a is

f (x) = f (a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 + · · ·

=

∞∑
k=0

f (k)(a)

k!
(x − a)k .

We say this is a series in (x − a). A different way to view this series is by making the change of variables

x = a + h. After cancellation, this yields

f (a + h) = f (a) + f ′(a)h +
f ′′(a)

2!
h2 + · · ·

=

∞∑
k=0

f (k)(a)

k!
hk .

6.2 Taylor polynomial for approximation

Recall that the first few terms of the Taylor series for f about x = 0 gives a polynomial (the Taylor polynomial)

which is a good approximation for f near 0. Similarly, the Taylor polynomial for f about x = a gives a polynomial

which is a good approximation of f near x = a. Note, however, that as the input gets further away from the

expansion point a, the approximation gets worse.

Example

Find the Taylor series for f (x) = 3x2 − x + 4 about x = 2. (See Answer 1)
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Example

Compute the Taylor series expansion for ln(x) about x = 1. (See Answer 2)

Note that the Taylor polynomial is only a good approximation to the function on the domain of convergence.

For functions whose domain of convergence is the entire number line, this is not a concern. But for functions

such as ln x , the Taylor polynomials will only be a good approximation within the domain of convergence, which

is 0 < x < 2. Outside of that domain, the Taylor polynomials diverge wildly from ln x , as shown here:

Even within a function’s domain of convergence, a Taylor polynomial’s approximation gets worse as the input

gets further away from a. One way to improve an approximation is to include more and more terms of the

Taylor series in the Taylor polynomial. However, this involves computing more and more derivatives. Another

way to improve the approximation for f (x) is to choose an expansion point a which is close to x .

Example

Use the Taylor polynomial of degree 2 for f (x) =
√
x about x = 1 to approximate

√
10. Then repeat the

process about x = 9 and compare the results. (See Answer 3)

6.3 Caveat for compositions

When computing the Taylor expansion for the composition f ◦ g about x = a, one must be careful of expansion

points. In particular, one cannot simply take the series for g at x = a and plug it into the series for f at x = a.

Example

Consider the expansion for ecos(x) about x = 0. Although cos(x) = 1− x2

2! + · · · , and ex = 1 + x + x2

2! + · · · ,
one will run into trouble trying to write

ecos(x) = 1 + (1−
x2

2!
+ · · · ) +

1

2
(1−

x2

2!
+ · · · )2 + · · · .
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The trouble is that collecting like terms requires adding up infinitely many things. For instance, the constant

term above is 1 + 1 + 1
2 + · · · . The reason this is a problem is that Taylor series are supposed to give a good

polynomial approximation of a function without requiring too much computation or information about the

function.

Remember that ex = 1 + x + x2

2 + · · · is a good approximation when x is near 0. However, when x is near 0,

cos(x) is near 1. So plugging the series for cos(x) into the series for ex does not give a good approximation.

To avoid this problem when computing the Taylor series for the composition f ◦ g at x = a, one should plug

the Taylor expansion of g about x = a into the expansion of f about x = g(a). In the above example, the

expansion of ex about x = 1 is

ex = e + e(x − 1) +
e

2!
(x − 1)2 + · · · ,

so

ecos(x) = e + e

[(
1−

x2

2!
+ · · ·

)
− 1

]
+
e

2!

[(
1−

x2

2!
+ · · ·

)
− 1

]2
+ · · ·

= e + e(−
x2

2
+ · · · ) +

e

2
(−
x2

2
+ · · · )2 + · · ·

= e −
e

2
x2 + · · · .

6.4 EXERCISES:

• Without using a calculator, find a decimal approximation to
√

83 by Taylor-expanding
√
x about a = 81

and using the zero-th and first order terms.

• Without using a calculator, find a decimal approximation to 3
√

124 using linear approximation. How close

was your answer to truth?

• Without using a calculator, find a decimal approximation to cos(1) [in radians!] using linear approximation.

How close was your answer to truth? (Hint: π/3 ≈ 1...)

• Taylor expand sin x about x = π and compute all the terms. Does what you get make sense?

• Use completing the square and the geometric series to get the Taylor expansion about x = 2 of 1
x2+4x+3

• Approximate 10041/3 using the zeroth and first order terms of the Taylor series.

6.5 Answers to Selected Examples

1. Computing the derivatives, and evaluating at x = 2, one finds

f (x) = 3x2 − x + 4 f (2) = 14

f ′(x) = 6x − 1 f ′(2) = 11

f ′′(x) = 6 f ′′(2) = 6

f ′′′(x) = 0 f ′′′(2) = 0.
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And all the subsequent derivatives are 0. So from the definition, one finds that

f (x) = 14 + 11(x − 2) +
6

2!
(x − 2)2

= 14 + 11(x − 2) + 3(x − 2)2.

This appears to be different than the polynomial f with which we began. If one multiplies out this

polynomial and collects like terms, however, the result is the original polynomial. This should not be

surprising, since the best polynomial approximation to a polynomial is the polynomial itself, even factored

into a slightly different form.

(Return)

2. Begin by computing the first few derivatives and evaluating at x = 1:

f (x) = ln(x) f (1) = 0

f ′(x) = x−1 f ′(1) = 1

f ′′(x) = −x−2 f ′′(1) = −1

f ′′′(x) = 2x−3 f ′′′(1) = 2.

The pattern that emerges is f (k)(x) = (−1)k−1(k − 1)!x−k . To see that the pattern holds, check that

f (k+1)(x) = (−1)k−1(−k)(k − 1)!x−k−1 = (−1)kk!x−(k+1),

as desired. So by induction, the pattern holds. It follows that f (k)(1) = (−1)k−1(k − 1)! for k ≥ 1.

Plugging in to the formula, one finds that

ln(x) =

∞∑
k=1

(−1)k−1(k − 1)!

k!
(x − 1)k

=

∞∑
k=1

(−1)k−1
(x − 1)k

k

= (x − 1)−
(x − 1)2

2
+

(x − 1)3

3
−

(x − 1)4

4
+ · · · .

Note that with the change of variables h = x − 1 (and hence x = h + 1, we find that

ln(1 + h) = h −
h2

2
+
h3

3
−
h4

4
+ · · · ,

which is the same series we found earlier for ln(1 + x).

(Return)

3. Using the definition, one finds

f (x) =
√
x f (1) = 1 f (9) = 3

f ′(x) =
1

2
√
x

f ′(1) =
1

2
f ′(9) =

1

6

f ′′(x) = −
1

4x3/2
f ′′(1) = −

1

4
f ′′(9) = −

1

108
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Thus, the Taylor polynomial about x = 1 is

√
x ≈ 1 +

1

2
(x − 1)−

1/4

2!
(x − 1)2

= 1 +
1

2
(x − 1)−

1

8
(x − 1)2.

And the corresponding approximation is

√
10 ≈ 1 +

1

2
· 9−

1

8
· 92

≈ −4.6,

which is obviously quite far off the mark. On the other hand, the Taylor polynomial about x = 9 is

√
x ≈ 3 +

1

6
(x − 9)−

1/108

2!
(x − 9)2

= 3 +
1

6
(x − 9)−

1

216
(x − 9)2.

And the corresponding approximation is

√
10 ≈ 3 +

1

6
· 1−

1

216
· 12

≈ 3.1620,

which is quite a good approximation of
√

10 ≈ 3.1623.

(Return)
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7 Limits
Having concluded our study of Taylor series, we now move on to limits. Some of the major topics of calculus

(continuity, differentiation, and integration) can all be expressed using limits.

7.1 Definition of the limit

The limit formalizes the behavior of a function as its input approaches some value. The formal definition of the

limit is

Limit

lim
x→a

f (x) = L if and only if for every ε > 0 there exists δ > 0 such that |f (x)−L| < ε whenever 0 < |x−a| < δ.

If there is no such L, then the limit does not exist.

In words, this says that the limit of a function exists if, when the input to f is very close to a (but not equal to

a), the output from f is very close to L. This can also be thought of in terms of tolerances: given a certain

ε tolerance for the output (seen as the band around L in the graph below), one can find a tolerance δ on the

input (the band around a) so that for inputs within the tolerance, the corresponding outputs stays within ε of

the desired output:
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No matter how small ε is made, there must be some δ, which must depend on ε, generally. Actually finding δ

often requires a little bit of work.

Example

Using the definition of the limit, show that lim
x→3

x2 = 9. (See Answer 1)

7.2 When limits may not exist

There are a few ways a limit might not exist:

1. A discontinuity, or jump, in the graph of the function. In this case, the limit does not exist because the

limit from the left and the limit from the right are not equal.

2. A blow-up, when the function has a vertical asymptote.

3. An oscillation, where the graph of the function oscillates infinitely up and down as the input approaches

a certain value.

Most functions in this course will be well-behaved and will not have the above problems. The formal term for

a well-behaved function is continuous.

7.3 Continuous functions

A function is continuous at the point a if the limit limx→a f (x) exists and limx→a f (x) = f (a). Intuitively, this

says that there are no holes or jumps in the graph of f at a.

Finally, a function is continuous if it is continuous at every point in its domain.

7.4 Rules for limits

There are rules for adding, multiplying, dividing, and composing limits. Suppose that lim
x→a

f (x) and lim
x→a

g(x)

exist. Then

1. (Sum) lim
x→a

(f + g)(x) = lim
x→a

f (x) + lim
x→a

g(x).
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2. (Product) lim
x→a

(f · g)(x) =
(

lim
x→a

f (x)
)(

lim
x→a

g(x)
)

.

3. (Quotient) lim
x→a

(
f

g

)
(x) =

limx→a f (x)

limx→a g(x)
, provided that lim

x→a
g(x) 6= 0.

4. (Chain) lim
x→a

(f ◦ g)(x) = f
(

lim
x→a

g(x)
)

, if f is continuous.

Almost all the functions encountered in this course are continuous, and so limits in most cases can be evaluated

by simply plugging in the limiting input value into the function. The one case that sometimes gets complicated

is the Quotient rule above when the limit of the denominator is 0.

Example

Show that lim
x→0

sin(x)

x
= 1. (See Answer 2)

Example

Find lim
x→0

1− cos x

x
. (See Answer 3)

Example

Compute lim
x→0

cos(x)− sin(x)− 1

ex − 1
. (See Answer 4)

Example

Compute lim
x→0

3
√

1 + 4x − 1
5
√

1 + 3x − 1
. (See Answer 5)

There are other methods for computing these types of limits, including memorization, algebraic tricks, and

l’Hopital’s rule (more on that in the next module). However, in many cases, these different methods can all be

replaced by a simple application of Taylor series.

7.5 EXERCISES

Compute the following limits:

lim
q→1

q2 + q + 1

q + 3

lim
x→−2

x2 − 4

x + 2

lim
x→0

sec x tan x

sin x

lim
x→+∞

6x2 − 3x + 1

3x2 + 4

lim
x→+∞

x2 + x + 1

x4 − 3x2 + 2
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lim
y→0

ln(1 + 2y) sin y

y2 cos 2y

lim
x→1

ln x

x2

lim
t→0

(3t2 + 4t) cot(t)

lim
z→0

z cos(sin(z))

sin(2z)

lim
x→0

ln(x + 1) arctan x

x2

lim
x→0

ln2(cos x)

2x4 − x5

lim
s→0

ess sin s

1− cos 2s

lim
x→0+

sin(arctan(sin x))√
x sin 3x + x2 + arctan 5x

lim
x→0

sin x − cos x − 1

6xe2x

lim
x→0

arctan x − 3 sin x + 2x

3x3

lim
p→0

1− p − cos 3p

p3

lim
x→∞

x1/x

7.6 Answers to Selected Examples

1. Note This is rather technical, and is only a demonstration of the process required to prove a limit exists

from the definition. This course deals almost exclusively with continuous functions, where such proofs

are not necessary.

We must show that for any given ε > 0, there exists δ (which depends on ε) such that 0 < |x − 3| < δ

implies |x2 − 9| < ε.

Let ε > 0 be given. A little bit of algebra shows that

|x2 − 9| = |x − 3| · |x + 3|.

We get to control |x − 3| with δ. We also have (by using the triangle inequality) that

|x + 3| = |x − 3 + 6| ≤ |x − 3|+ 6 < δ + 6.

Thus,

|x2 − 9| = |x − 3| · |x + 3| < δ · (δ + 6).

Now, if we pick δ to be the minimum of 1 and ε
7 , then we simultaneously guarantee that δ ≤ ε

7 and

δ + 6 ≤ 7, and so we find

|x2 − 9| < δ · (δ + 6) ≤
ε

7
· 7 = ε,

as desired.

(Return)
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2. There are several proofs of this limit (e.g. memorization, l’Hospital’s rule), but the simplest method is to

use the Taylor series. Because x is near 0, the Taylor series expansion for sin x applies, and so

lim
x→0

sin(x)

x
= lim

x→0

x − x3

3! + · · ·
x

= lim
x→0

x
(

1− x2

3! + · · ·
)

x

= lim
x→0

1−
x2

3!
+ · · ·

= 1.

This works because all the terms involving x go to 0 as x goes to 0.

(Return)

3. Replacing cos with its Taylor series (again, since x is near 0), we find

lim
x→0

1− cos x

x
= lim

x→0

1−
(

1− 1
2!x
2 + 1

4!x
4 − · · ·

)
x

= lim
x→0

1
2!x
2 − 1

4!x
4 + · · ·

x

= lim
x→0

1

2!
x −

1

4!
x3 + · · ·

= 0.

(Return)

4. Again, use the Taylor series (about x = 0) for each function:

lim
x→0

cos(x)− sin(x)− 1

ex − 1
= lim

x→0

(1− x2

2! + · · · )− (x − x3

3! + · · · )− 1

(1 + x + x2

2! + · · · )− 1

= lim
x→0

−x − x2

2! + · · ·
x + · · ·

= lim
x→0

x(−1− · · · )
x(1 + · · · )

= lim
x→0

−1− · · ·
1 + · · ·

= −1.

(Return)
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5. Here, we use the binomial series with α = 1
3 in the numerator, and α = 1

5 in the denominator. We find

lim
x→0

(1 + 4x)1/3 − 1

(1 + 3x)1/5 − 1
= lim

x→0

(
1 + 1

3(4x) + HOT
)
− 1(

1 + 1
5(3x) + HOT

)
− 1

= lim
x→0

4
3x + HOT
3
5x + HOT

= lim
x→0

4
3 + HOT
3
5 + HOT

=
4
3
3
5

=
20

9

(Return)
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8 l’Hôpital’s Rule

In previous modules, we saw that Taylor series are useful for computing certain limits of ratios. But sometimes,

a fact known as l’Hôpital’s rule is easier to use than Taylor series. While l’Hôpital’s rule is commonly taught in

a first calculus course, the justification for why it works is not usually taught. This module gives a justification

for l’Hôpital’s rule, using Taylor series.

8.1 l’Hôpital’s rule

There are some limit situations where Taylor series are not particularly easy to use. For example, if the limit is

being taken at a point about which the Taylor expansion is not already known, or the limit is at infinity, then

using Taylor series is usually more work than it is worth. These are the situations where l’Hôpital’s rule can be

helpful.

l’Hôpital’s Rule, 00 case

If f and g are continuous functions such that lim
x→a

f (x) = 0 and lim
x→a

g(x) = 0, then lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g′(x)
,

provided this limit exists. If this is still of the form 0
0 , then derivatives may be taken again, and so on.

(See Justification 1)

Example

Using l’Hôpital’s rule, compute two of the limits from the last module:

lim
x→0

sin x

x

lim
x→0

1− cos x

x
.

(See Answer 2)

Example

Compute lim
x→0

tan x

arcsin x
. (See Answer 3)

Depending on the situation, it still might be easier to use Taylor series, especially if there are compositions and
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products of functions (assuming we know all the relevant Taylor series).

Example

Compute lim
x→0

x2 ln(cos x)

sin2(3x2)
. (See Answer 4)

Example

Use l’Hopital’s rule to compute lim
x→π

sin(x)

ex cos(x/2)
. (See Answer 5)

l’Hôpital’s Rule, ∞∞ case

If lim
x→a

f (x) = lim
x→a

g(x) =∞, then lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g′(x)
, again provided this limit exists.

Example

Compute lim
x→0

ln x
1
x2

. (See Answer 6)

8.2 Other indeterminate forms

Some limits do not initially look like cases where l’Hôpital’s rule applies, but with some algebra they can be

rearranged into one of the applicable cases. These are called indeterminate forms.

Case: ∞−∞

First, consider lim
x→a

f (x) − g(x), where lim
x→a

f (x) = lim
x→a

g(x) = ∞. Usually, one or both of f and g are ratios

of other functions. In this case, getting a common denominator usually transforms the limit into one where

l’Hospital’s rule or a Taylor series approach applies.

Example

Compute lim
x→0

1

sin2 x
−

1

x2
. (See Answer 7)

Case: ∞ · 0

Next, consider lim
x→a

f (x)g(x) where lim
x→a

f (x) =∞ and lim
x→a

g(x) = 0. Since ∞ · 0 is not defined, it is not clear

what this limit is. However, the product can be turned into one of the following ratios where l’Hôpital’s rule

applies:

lim
x→a

f (x)g(x) = lim
x→a

g(x)

1/f (x)
lim
x→a

f (x)g(x) = lim
x→a

f (x)

1/g(x)

51



since dividing by the reciprocal of a number is the same as multiplying. Now, note that lim
x→a

1/f (x) = 0, since

lim
x→a

f (x) =∞. Thus, lim
x→a

g(x)

1/f (x)
is now in the 00 case of l’Hôpital’s rule.

Similarly, lim
x→a

f (x)

1/g(x)
is in the ∞∞ form of l’Hôpital’s rule, and so it can be applied here too.

Deciding which of the above forms to use depends on the situation, but in many situations either form will work.

Example

Compute lim
x→0+

x ln x . (Here we use the one-sided limit x → 0+ becuase ln is only defined on the positive

real numbers). (See Answer 8)

Case: ∞0

Another indeterminate form arises when raising one function of x to a power which involves another function

of x . Suppose lim
x→a

f (x) =∞ and lim
x→a

g(x) = 0. Then what is lim
x→a

f (x)g(x)?

On the one hand, it seems that raising ∞ to any power should be ∞. On the other hand, raising anything to

the 0th power should be 1. To find what the answer actually is, let

y = lim
x→a

f (x)g(x),

and take the ln of both sides. Now, recall that ln is a continuous function. Therefore, from the rules of limits

in the last module, taking ln of a limit is the same as the limit of the ln:

ln(y) = ln
(

lim
x→a

f (x)g(x)
)

= lim
x→a

ln
(
f (x)g(x)

)
= lim

x→a
g(x) ln(f (x))

(the last step uses the fact that ln(ab) = b ln(a)). Now, this is of the form 0·∞, which was covered above. Note

that when this limit is computed, it is ln(y) which has been found, and so the answer must be exponentiated

to find y , the original limit.

Example

Compute lim
x→∞

x1/x . (See Answer 9)

Case: 00

Consider the limit f (x)g(x), where lim
x→a

f (x) = 0 and lim
x→a

g(x) = 0. Because 00 is not defined, this is another

indeterminate form. It can be dealt with as the ∞0 case, by first taking ln, computing the resulting limit, and

then exponentiating.
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Example

Compute lim
x→0+

xx . (See Answer 10)

8.3 Limits going to infinity

l’Hôpital also works with limits going to infinity; the same hypothesis and conclusions hold. Before doing some

examples, what does it mean for lim
x→∞

f (x) = L?

Limit at infinity

lim
x→∞

f (x) = L if and only if for every ε > 0 there exists M > 0 such that |f (x)− L| < ε whenever x > M.

If there is no such L, then the limit does not exist.

Example

Compute lim
x→∞

ln x√
x

. (See Answer 11)

Example

Compute lim
x→∞

ex

x2
. (See Answer 12)

While l’Hopital often works, there are situations where it fails to give an answer, and a little extra thought must

be employed.

Example

Compute lim
x→∞

tanh x . (See Answer 13)

Example

Compute lim
x→∞

x ln x

ln(cosh x)
. (See Answer 14)

It is also possible to deal with limits going to infinity using Taylor series, but it involves some algebra. The idea

is to use a substitution to turn the limit going to infinity into a limit going to zero. Symbolically, if x →∞, then

let z = 1/x . It follows that z → 0 as x →∞, and by replacing x with 1/z throughout, the limit is transformed.

lim
x→∞

f (x) = lim
z→0

f (1/z).

This process works when the limit at 0 exists. A more general technique would only look at the one-sided limit

from the right-hand side:

lim
x→∞

f (x) = lim
z→0+

f (1/z).

53



Example

Compute lim
x→∞

sin(1/x)

1/x
. (See Answer 15)

8.4 EXERCISES

Compute the following limits. Should you use l’Hôpital’s rule or Taylor expansion?

lim
x→2

x3 + 2x2 − 4x − 8

x − 2

lim
x→π/3

1− 2 cos x

π − 3x

lim
x→π

4 sin x cos x

π − x

lim
x→9

2x − 18√
x − 3

lim
x→0

ex − sin x − 1

x2 − x3

lim
x→1

cos(πx/2)

1−
√
x

lim
x→4

3−
√

5 + x

1−
√

5− x

lim
x→0

(
1

x
−

1

ln(x + 1)

)
lim

x→π/2

sin x cos x

ex cos 3x

lim
x→+∞

ln x

ex

lim
x→+∞

x ln

(
1 +

3

x

)
lim

x→+∞

(ln x)(sinh x)

(x − 1)ex

8.5 Answers to Selected Examples

1. The Taylor series for f and g about a are given by

f (x) = f (a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 + · · ·

g(x) = g(a) + g′(a)(x − a) +
g(a)

2!
(x − a)2 + · · · .
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Since, by hypothesis, f (a) = g(a) = 0, it follows that

lim
x→a

f (x)

g(x)
= lim

x→a

f (a) + f ′(a)(x − a) + 1
2 f
′′(a)(x − a)2 + · · ·

g(a) + g′(a)(x − a) + 1
2g(a)(x − a)2 + · · ·

= lim
x→a

f ′(a)(x − a) + (1/2)f ′′(a)(x − a)2 + · · ·
g′(a)(x − a) + (1/2)g(a)(x − a)2 + · · ·

= lim
x→a

(x − a) [f ′(a) + (1/2)f ′′(a)(x − a) + · · · ]
(x − a) [g′(a) + (1/2)g(a)(x − a) + · · · ]

= lim
x→a

f ′(a) + (1/2)f ′′(a)(x − a) + · · ·
g′(a) + (1/2)g(a)(x − a) + · · · .

Now, as x → a, all the terms with x − a go to 0, which leaves f ′(a)
g′(a) . If this fraction is still 0/0, then

l’Hôpital’s rule says to take the derivative of the numerator and the denominator again. In terms of the

Taylor series, this moves to the next leading terms in the numerator and denominator.

(Return)

2. These are both in the 00 case, so differentiating numerator and denominator gives

lim
x→0

sin x

x
= lim

x→0

cos x

1

= 1.

lim
x→0

1− cos x

x
= lim

x→0

sin x

1

= 0.

(Return)

3. Since tan 0 = arcsin 0 = 0, we are in the 00 case of l’Hôpital’s rule. Recall that

d

dx
tan x = sec2 x

d

dx
arcsin x =

1√
1− x2

.

Thus, applying l’Hôpital’s rule gives

lim
x→0

tan x

arcsin x
= lim

x→0

sec2 x
1√
1−x2

=
1

1

= 1.

(Return)

4. We know all the relevant Taylor series for the functions in this problem, so that should be an easier
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method. We find

lim
x→0

x2 ln(cos x)

sin2(3x2)
= lim

x→0

x2 ln
(

1− x2

2! + HOT
)

(3x2 + HOT)2

= lim
x→0

x2
(
− x22 − HOT

)
9x4 + HOT

= lim
x→0

− x42 + HOT

9x4 + HOT

= −
1

18
.

Using l’Hôpital here would be quite a lot of work. It turns out that we would have to apply the rule four

times, which involves a lot of product and chain rule.

(Return)

5. Since sin, cos, exp are all continuous functions, and sin(π) = eπ cos(π/2) = 0, the hypotheses for

l’Hôpital’s rule are met. So it follows that

lim
x→π

sin(x)

ex cos(x/2)
= lim

x→π

[sin(x)]′

[ex cos(x/2)]′

= lim
x→π

cos(x)

ex cos(x/2)− (1/2)ex sin(x/2)

=
−1

0− (1/2)eπ sin(π/2)

= 2e−π.

Note that although we know the Taylor series for these functions at x = 0, the limit here is as x → π.

Thus, we cannot use the Taylor series approach, because a Taylor series about x = 0 does not give a

good approximation when x is not close to 0.

(Return)

6. Note that ln x → −∞ as x → 0, and 1
x2 →∞ as x → 0. Therefore, the ∞∞ case of l’Hôpital’s rule applies.

Applying the rule,

lim
x→0

ln x

x−2
= lim

x→0

1
x

−2x−3

= lim
x→0

x2

−2

= 0.

(Return)
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7. Getting a common denominator, and then Taylor expanding gives

lim
x→0

1

sin2 x
−

1

x2
= lim

x→0

x2 − sin2 x

x2 sin2 x

= lim
x→0

x2 −
(
x − 1

3!x
3 + · · ·

)2
x2
(
x − 1

3!x
3 + · · ·

)2
= lim

x→0

x2 −
(
x2 − 2

3!x
4 + · · ·

)
x2
(
x2 − 2

3!x
3 + · · ·

)
= lim

x→0

2
6x
4 + · · ·

x4 + · · ·

=
1

3
.

(Return)

8. This is of the form 0 · (−∞). In this case, it is easier to flip x into the denominator, because it is easier

to take the derivative of x−1 than it is to take the derivative of (ln x)−1. So, we find

lim
x→0+

x ln x = lim
x→0+

ln x

x−1
,

which is of the form −∞
∞ , so applying l’Hôpital’s rule gives

lim
x→0+

ln x

x−1
= lim

x→0+
x−1

−x−2
= lim

x→0+
−x

= 0.

(Return)

9. This is of the ∞0 form. Let y = lim
x→∞

x1/x . Then taking ln gives

ln(y) = lim
x→∞

ln
(
x1/x

)
= lim

x→∞

1

x
ln(x)

= lim
x→∞

ln x

x

= lim
x→∞

1/x

1

= 0

(l’Hôpital’s rule was used in the second to last step). So ln(y) = 0, and so y = 1 is the answer.

(Return)

10. Letting y = lim
x→0+

xx , and taking logarithms gives

ln y = lim
x→0+

x ln x

= 0,
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by an example above. Thus y = e0 = 1.

(Return)

11. Both the numerator and denominator go to ∞ as x →∞, so applying l’Hôpital’s rule gives

lim
x→∞

ln x√
x

= lim
x→∞

x−1

1
2x
−1/2

= lim
x→∞

2√
x

= 0.

(Return)

12. The numerator and denominator both go to ∞ as x → ∞, so this is the ∞∞ case of l’Hôpital’s rule. It

follows that

lim
x→∞

ex

x2
= lim

x→∞

[ex ]′

[x2]′

= lim
x→∞

ex

2x

= lim
x→∞

ex

2

=∞.

Note that l’Hôpital’s rule was used twice here since limx→∞
ex

2x is still the ∞∞ case.

(Return)

13. Recall that tanh x = sinh x
cosh x . Both sinh x → ∞ and cosh x → ∞ as x → ∞. But applying l’Hôpital’s rule

(and then applying it again) gives

lim
x→∞

tanh x = lim
x→∞

sinh x

cosh x

= lim
x→∞

cosh x

sinh x

= lim
x→∞

sinh x

cosh x
,

so l’Hôpital’s rule clearly will not give us an answer here. Instead, writing out the definition of tanh x and

doing a little algebra, we find

lim
x→∞

tanh x = lim
x→∞

ex − e−x

ex + e−x

= lim
x→∞

ex(1− e−2x

ex(1 + e−2x)

= 1.

(Return)
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14. Using l’Hôpital’s rule, we find

lim
x→∞

x ln x

ln(cosh x)
= lim

x→∞

x
x + 1 · ln x
sinh x
cosh x

= lim
x→∞

1 + ln x

tanh x

=∞,

since the denominator goes to 1 (from the previous example) and the numerator goes to infinity.

(Return)

15. Using the substitution z = 1/x , the limit becomes

lim
x→∞

sin(1/x)

1/x
= lim

z→0

sin(z)

z

= 1,

as was shown in the last module.

(Return)
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9 Orders of Growth
When dealing with limits as x → 0, it is the lowest order term (i.e. the term with the smallest power) which

matters the most, since higher powers of x are very small when x is close to 0. On the other hand, as x →∞,

what is known as the asymptotic growth of a function. In this case, it is the highest order term which matters

the most. This module deals with limits of both types and provides a more formal notion of how quickly a

function grows or shrinks.

9.1 Hierarchy of functions going to infinity

First, consider the monomial xn, where n is a fixed, positive integer. Looking at the graphs of these monomials,

it becomes clear that as x →∞, xn+1 > xn:

What happens when the functions involved are not polynomials? For example, how does the growth of the

exponential compare to a polynomial? Or factorial and exponential?

In general, one can compare the asymptotic growth of the functions f and g by considering the limit limx→∞
f (x)
g(x) .

If this limit is ∞, then f dominates. If the limit is 0, then g dominates. And if the limit is a constant, then f

and g are considered equal (asymptotically).
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Example

Compare exponential growth and polynomial growth. (See Answer 1)

Example

Compare the asymptotic behavior of lnn x (for some fixed integer n) and x . (See Answer 2)

Example

Compare the asymptotic growth of the factorial and the exponential. (See Answer 3)

Thus we have the following hierarchy of growth, from greatest to smallest:

1. Factorial: x! = x(x − 1)(x − 2) · · · 3 · 2 · 1.

2. Exponential: cx for any c > 1 (usually c = e).

3. Polynomial: xk for any k > 0.

4. Logarithmic: ln(x) and other related functions.

When a pair of functions are of a similar type, such as ex and 3
√
x , one must compare these using the limit of

the ratio of the functions, as above.

9.2 Hierarchy of functions going to 0

As above, first consider monomials xn. As x → 0, the inequality for monomials is the reverse of what it was for

x →∞. That is, as x → 0, we find that xn > xn+1. Intuitively, small numbers become even smaller when you

raise them to higher powers.

It is important to keep track of whether a limit is going to 0 or∞, since in the first case, the lowest order terms

dominate, and in the second case the highest order terms dominate.

Example

Compute lim
x→0

2x3 − x2 + x

x3 + 2x
and lim

x→∞

2x3 − x2 + x + 1

x3 + 2x + 2
. (See Answer 4)
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9.3 Big-O notation

When dealing with limits as x → 0 or x →∞, it is best to have a formal notation for the approximations which

result from dropping higher or lower order terms. Big-O notation, pronounced “big oh”, provides this formality.

Big-O notation, x → 0

The function f (x) is in O(xn), as x → 0 if

|f (x)| < C|x |n

for some constant C and all x sufficiently close to 0. Put another way, a function f (x) is in O(xn), for x

close to 0, if f (x) approaches 0 at least as fast as a constant multiple of xn.

More generally, a function f (x) is in O(g(x)), as x → 0 if

|f (x)| < C|g(x)|,

for some constant C and x sufficiently close to 0.

Big-O notation, as x → 0, can be thought of as a more specific way of saying higher order terms. Just as Taylor

series could include a different number of terms before indicating the rest is higher order terms (depending on

the situation), the same is true for big-O.

Example

Express arctan(x) using big-O notation as x → 0. (See Answer 5)

The definition for big-O as x → ∞ is almost identical, except the bound needs to apply for all x sufficiently

large.

Big-O notation, x →∞

The function f (x) is in O(xn), as x →∞ if

|f (x)| < C|x |n

for some constant C and all x sufficiently large. In other words, a function f (x) is in O(xn), as x → ∞, if

f (x) approaches infinity no faster than a constant multiple of xn.

More generally, f (x) is in O(g(x)), as x →∞ if

|f (x)| < C|g(x)|

for some constant C and all x sufficiently large.

Example

The monomial xn is in O(ex) as x →∞ for any (fixed) n. This is a restatement of the above fact that the

exponential dominates polynomials as x →∞.
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Example

Show that x
√
x2 + 3x + 5 = x2 + 3

2x +O(1) as x →∞. Hint: use the binomial series. (See Answer 6)

Example

Justify the following statements as x → 0:

1. 5x + 3x2 is in O(x) but is not in O(x2).

2. sin x is in O(x) but is not in O(x2).

3. ln(1 + x)− x is in O(x2) but is not in O(x3).

4. 1− cos(x2) is in O(x4) but is not in O(x5).

5.
√
x is not in O(xn) for any n ≥ 1.

6. e−1/x
2

is in O(xn) for all n.

(See Answer 7)

Example

Justify the following statements as x →∞:

1. arctan x is in O(1) as well as O(xn) for any n ≥ 0.

2. x
√

1 + x2 is in O(x2) but is not in O(x3/2).

3. ln sinh x is in O(x) but is not in O(ln x).

4. cosh x is in O(ex) but is not in O(xn) for any n ≥ 0.

5. ln(x5) is in O(ln x) as well as O(xn) for all n.

6. xx is in O(ex
n

) for all n > 1.

(See Answer 8)

9.4 Application: Error Analysis

When approximating a function by the first few terms of its Taylor series, there is a trade-off between convenience

(the ease of the computation) and accuracy. Big-O notation can help keep track of this error.

Example

Consider the approximation, for x close to 0,

sin(x2)ex =
(
x2 +O(x6)

)
(1 +O(x))

= x2 + x2 ·O(x) +O(x6) +O(x6) ·O(x)

= x2 +O(x3).
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So the error of approximating sin(x2)ex ≈ x2 can be bounded by Cx3, for some C when x is small. Deter-

mining a good C, in general, is tricky, and there is more on error bounds in Taylor Remainder Theorem.

9.5 Application: Computational Complexity

In computer science, an algorithm is a sequence of steps used to solve a problem. For example, there are

algorithms to sort a list of numbers and algorithms to find the prime factorization of a number. Computational

complexity is a measure of how efficient an algorithm is. Basically, a computer scientist wants to know roughly

how the number of computations carried out by the computer will grow as the input (e.g. the length of the list

to be sorted, or the size of the number to be factored) gets larger.

Example: Multiplication

Consider how much work is required to multiply two n-digit numbers using the usual grade-school method.

There are two phases to working out the product: multiplication and addition.

First, multiply the first number by each of the digits of the second number. For each digit in the second number

this requires n basic operations (multiplication of single digits) plus perhaps some “carries”, so say a total of

2n operations for each digit in the second number. This means that the multiplication phase requires n · (2n)

basic operations.

The addition phase requires repeatedly adding n digit numbers together a total of n− 1 times. If each addition

requires at most 2n operations (including the carries), and there are n − 1 additions that must be made, it

comes to a total of (2n)(n − 1) operations in the addition phase.

Adding these totals up gives about 4n2 total operations. Thus, the total number of basic operations that must

be performed in multiplying two n digit numbers is in O(n2) (since the constant coefficient does not matter).

The reason the constant coefficient does not really matter when thinking about computational complexity, is

that a faster computer can only improve the speed of a computation by a constant factor. The only way to

significantly improve a computation is to somehow drastically cut the number of operations required to perform

the operation. The next example shows an example of how important algorithmic improvements can be on

computational complexity.

Example: Sorting

In sorting algorithms, the most basic operation is the comparison. For a sorting algorithm, one wants to know

how many comparisons of two numbers will be made, on average.

One common sorting algorithm, which is used by most people who are sorting items by hand, is called Insertion

Sort. It turns out that the number of comparisons for Insertion Sort, on average, is O(n2) as n →∞, where n

is the length of the list of numbers to be sorted.

A more sophisticated sorting algorithm, called Mergesort, uses O(n ln(n)) comparisons on average. This may

not seem like a significant improvement over Insertion Sort, but consider the number of comparisons used to sort

a list of 1000000 integers: Insertion Sort would use on the order of 10000002 = 1012 comparisons on average,

where as Mergesort uses on the order of 13× 106 comparisons. To put that in perspective, if Mergesort took

a half second to complete the computation, Insertion Sort would take over ten hours!
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9.6 Big O in Other Areas of Mathematics

Stirling’s formula

Stirling’s formula gives an asymptotic approximation for x!:

ln(x!) = x ln x − x +O(ln x).

In a slightly more precise form, it can be written

x! =
√

2πx
(x
e

)x (
1 +O

(
1

x

))
.

Prime number theorem

In number theory, one very important function, π(x), is defined to be the number of primes less than or equal

to x . The Prime Number Theorem says that

π(x) = number of primes ≤ x

=
x

ln x

(
1 +O

(
1

ln x

))
.

9.7 EXERCISES

• Compute the following limits.

lim
x→+∞

e2x

x3 + 3x2 + 4

lim
x→+∞

e3x

ex
2

lim
x→+∞

ex(x − 1)!

x!

lim
x→+∞

(

x

2

− 3)(x2 + 3)2x4 − 2x2 + 1

lim
x→+∞

2x + 1

(x + 1)!

lim
x→+∞

(3 ln x)n

(2x)n

• Simplify the following asymptotic expression as x → 0

f (x) =
(
x − x2 +O(x3)

)
·
(

1 + 2x +O(x3)
)

• Simplify the following asymptotic expression as x →∞

f (x) =
(
x3 + 2x2 +O(x)

)
·
(

1 +
1

x
+O

(
1

x2

))
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• Here are some rules for positive functions with x →∞:

O(f (x)) +O(g(x)) = O(f (x) + g(x))

O(f (x)) ·O(g(x)) = O(f (x) · g(x))

Using these, show that

O

(
5

x

)
+O

(
ln(x2)

4x

)
simplifies to

O

(
ln x

x

)
• Which of the following are in O(x2) as x → 0?

x ln(1 + x)

5x2 + 6x + 1

1− e−x

x
√
x2 + 4x3 + 5x6

x sinh2(3x)

x2

ln(1 + x)

9.8 Answers to Selected Examples

1. Fix an integer n, and compute the limit (using l’Hopital repeatedly):

lim
x→∞

xn

ex
= lim

x→∞

nxn−1

ex

= lim
x→∞

n(n − 1)xn−2

ex

=
...

= lim
x→∞

n!

ex

= 0

(note that n is fixed, so n! is a constant). Thus, the exponential dominates the monomial xn (and thus

any polynomial as well).

(Return)
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2. Again, using L’Hopital’s rule repeatedly gives

lim
x→∞

lnn x

x
= lim

x→∞

n lnn−1 x 1x
1

= lim
x→∞

n lnn−1 x

x

=
...

= lim
x→∞

n!

x

= 0,

since n! is a constant here. This shows any polynomial beats any constant power of logarithm.

(Return)

3. First, when x is not an integer, the factorial is defined by

x! =

∫ ∞
t=0

txe−t dt.

This definition shares properties with the traditional definition of factorial: x! = x · (x − 1)!, and 0! = 1,

and they coincide when x is an integer. It is not critical to know this integral definition, but know that

n! = n(n − 1)(n − 2) · · · 3 · 2 · 1 for an integer n.

When x is an integer, note that ex is e multiplied with itself x times. On the other hand, x! has x factors,

most of which are bigger than e (at least when x is bigger than, say, 5). So as x increases to x + 1, ex

only gains another factor of e, but x! gains a factor of x + 1. This explains why x! grows faster than ex

(and similarly for any exponential function).

(Return)

4. As x → 0, the higher powers of x go to 0 quickly, leaving the lowest order terms x
2x = 1

2 in the limit.

As x →∞, it is the highest order terms (the x3 terms) which dominate, so ignoring the lower order terms

leaves 2x
3

x3 = 2 in the limit.

(Return)

5. By taking the Taylor series for arctan(x), we find that

arctan(x) = x −
x3

3
+O(x5)

as x → 0.

We could also say

arctan(x) = x −O(x3)

as x → 0.

(Return)

6. Recall that the binomial series

(1 + x)α = 1 + αx +
α(α− 1)

2!
x2 + . . .
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requires that |x | < 1. So we must do a little algebra to get the square root to be of this form. Factoring

out a x2 will do the trick:

x
√
x2 + 3x + 5 = x

√
x2
(

1 +
3

x
+

5

x2

)

= x2
(

1 +
3

x
+

5

x2

)1/2
= x2

(
1 +

1

2

(
3

x
+

5

x2

)
+O

(
1

x2

))
= x2 +

3

2
x +O(1),

since all the terms involving 1
x2 become constants when multiplied by x2.

(Return)

7. The first four of these can be justified by looking at the Taylor series and then finding the monomial of

the lowest power (remember that as x → 0, the dominant term is that of the lowest power).

To see that
√
x is not in O(xn) for any n ≥ 1, we must show that given any constant C and ε > 0, there

exists some x < ε such that √
x > Cxn

(this is the negation of the definition of big oh). Solving the above inequality for x , one finds that if

x <

(
1

C

)2/(2n−1)
,

then
√
x > Cxn, and so

√
x is not in O(xn) for any n.

Finally, to see that e−1/x
2

is in O(xn), it suffices to show that

e−1/x
2

< |x |n

for all x sufficiently small. Taking natural log of both sides (this preserves the inequality since log is an

increasing function) gives

−
1

x2
− n ln |x |.

But recall from a previous module that x ln x → 0 as x → 0+. This ensures that no matter the (fixed)

value of n, for sufficiently small x we will have

1

n
> −x2 ln |x |,

and hence

e−1/x
2

< |x |n,

as desired.

(Return)

8. (a) Note that as x →∞, arctan x → π
2 . Thus arctan x is bounded, and so it is in O(1).
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(b) Using the binomial series, as in a previous example, shows that

x
√

1 + x2 = x

(
x2
(

1 +
1

x2

))1/2
= x2

(
1 +

1

x2

)1/2
= x2

(
1 +

1

2

1

x2
+O

(
1

x4

))
= x2 +O(1).

Thus, x
√

1 + x2 is in O(x2), but no power smaller than x2.

(a) For large x , e−x is very small, and so sinh x ≈ ex

2 . Therefore,

ln sinh x ≈ ln
ex

2
= x − ln 2.

is in O(x) but not in O(ln x), since logarithms are smaller than polynomials.

(a) Similarly, cosh x ≈ ex

2 for large x . Hence cosh is in O(ex) but cannot be bounded by any polynomial.

(b) A handy property of logarithms tells us that

ln(x5) = 5 ln x,

which is in O(ln x) since it is itself a multiple of ln x .

(a) Fix n > 1. It suffices to show that for large enough x , we have

xx < ex
n

.

Taking the logarithm of both sides gives

x ln x < xn ⇔ ln x < xn−1.

We saw earlier that any positive power of x beats the logarithm for large values of x . So (since n > 1)

this inequality holds for large x , and so xx is in O(ex
n

).

(Return)
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10 Derivatives
There are several definitions of the derivative of a function f (x) at x = a. These definitions are all equivalent,

but they are all important because they emphasize different aspects of the derivative.

Derivative (first definition)

f ′(a) =
df

dx

∣∣∣∣
x=a

= lim
x→a

f (x)− f (a)

x − a .

If the limit does not exist, then the derivative is not defined at a.

This first definition emphasizes that the derivative is the rate of change of the output with respect to the input.

The next definition is similar.

Derivative (second definition)

f ′(a) =
df

dx

∣∣∣∣
x=a

= lim
h→0

f (a + h)− f (a)

h
.

If the limit does not exist, then the derivative is not defined at a.

This definition can be interpreted as the change in output divided by the change in input, as the change in input

goes to 0. One can see this is equivalent to the first definition by making the substitution h = x − a. The third

definition looks quite different from the first two.

Derivative (third definition)

The derivative of f (x) at x = a, f ′(a), is the constant C such that for any variation to the input h, the

following holds.

f (a + h) = f (a) + Ch +O(h2).

That is, f ′(a) is the first-order variation of the output. If no such C exists, then the derivative does not

exist.

To show the equivalence, one can do a little algebra to see that

f (a + h)− f (a)

h
= C +O(h).

Then taking the limit on both sides as h → 0 shows that C = f ′(a).
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Example

Using the second and third definitions above, compute the derivative of f (x) = xn, where n is a positive

integer. (See Answer 1)

Example

Find the derivative of ex using the third definition. (See Answer 2)

Example

Find the derivative of cos x using the third definition. Hint: use the identity

cos(a + h) = cos(a) cos(h)− sin(a) sin(h).

(See Answer 3)

Example

Find the derivative of f (x) =
√
x using the third definition. (See Answer 4)

10.1 Notation

There are several different notations for the derivative of y = f (x). The best options are

df

dx
or

dy

dx
,

because they make it clear that the input is x and the output is f (x) or y , respectively.

The next tier of options are fair, and have the advantage of requiring less writing, but they lose the benefit of

knowing what the input variable is:

f ′ or ẏ or df .

The third option, df , is known as differential notation, which will be covered more in a later module.

Do not try to cancel the d’s in the derivative. Do not write the d’s in cursive, or replace the d’s with ∆’s (those

notations have a different meaning).

10.2 Interpretations

The derivative is commonly interpreted as the slope of the tangent line to the graph of the function. This is

fine when the function has one input and one output. But what happens in the (more realistic) situation of a

function with more than one input and more than one output? How does one graph such a function? And if

the units of the input and output are different, what is the unit of slope?

A better interpretation for the derivative is as the rate of change of output with respect to input. This

interpretation makes sense with functions of many inputs and outputs. However, that will be covered in the

multivariable sequel to this course.
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10.3 Examples with respect to time

The most common use of the derivative is with respect to time. Here are several such examples from different

areas.

Physics

Velocity v(t) is the derivative of position x(t), with respect to time. Similarly, acceleration a(t) is the derivative

of velocity with respect to time:

v =
dx

dt
and a =

dv

dt

Electromagnetism

Electric current, I, in a circuit is the rate of change of charge, Q, with respect to time:

I =
dQ

dt
.

Chemistry

The reaction rate for the product P , denoted rP , in a chemical reaction is proportional to the rate of change of

the concentration of P , denoted [P ], with respect to time:

rP = k
d [P ]

dt
.

10.4 Examples with respect to other variables

Spring constant

The spring constant k for a spring is the derivative of force with respect to deflection:

k =
d(force)

d(deflection)
.

Elasticity

The elasticity modulus λ of a material is the rate of change of stress with respect to strain:

λ =
d(stress)

d(strain)
.

Viscosity

The viscosity of a fluid µ is related to the shear stress by the equation

shear stress = µ
d(velocity)

d(height)
.
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Tax rates

The marginal tax rate is the rate of change of tax with respect to income:

marginal tax rate =
d(tax)

d(income)
.

10.5 EXERCISES

• A rock is dropped from the top of a 320-foot building. The height of the rock at time t is given as

s(t) = −8t2 + 320, where t is measured in seconds. Find the speed (that is, the absolute value of the

velocity) of the rock when it hits the ground in feet per second. Round your answer to one decimal place.

• A very rough model of population size P for an ant species is P (t) = 2 ln(t + 2), where t is time. What

is the rate of change of the population at time t = 2?

• A particle’s position, p, as a function of time, t, is represented by p(t) =
1

3
t3 − 3t2 + 9t. When is the

particle at rest?

• Hooke’s law states that the force F exerted by an “ideal” spring displaced a distance x from its equilibrium

point is given by F (x) = −kx , where the constant k is called the “spring constant” and varies from one

spring to another. In real life, many springs are nearly ideal for small displacements; however, for large

displacements, they might deviate from what Hooke’s law predicts. Much of the confusion between nearly-

ideal and non-ideal springs is clarified by thinking in terms of series: for x near zero, F (x) = −kx+O(x2).

Suppose you have a spring whose force follows the equation F (x) = −2 tan 3x . What is its spring

constant?

• The profit, P , of a company that manufactures and sells N units of a certain product is modeled by the

function P (N) = R(N) − C(N). The revenue function, R(N) = S · N, is the selling price S per unit

times the number N of units sold. The company’s cost, C(N) = C0 + Cop(N), is a sum of two terms.

The first is a constant C0 describing the initial investment needed to set up production. The other term,

Cop(N), varies depending on how many units the company produces, and represents the operating costs.

Companies care not only about profit, but also “marginal profit,” the rate of change of profit with respect

to N. Assume that S = $50, C0 = $75, 000, Cop(N) = $50
√
N, and that the company currently sells

N = 100 units. Compute the marginal profit at this rate of production. Round your answer to one decimal

place.

• In Economics, “physical capital” represents the buildings or machines used by a business to produce a

product. The “marginal product of physical capital” represents the rate of change of output product with

respect to physical capital (informally, if you increase the size of your factory a little, how much more

product can you create?). A particular model tells us that the output product Y is given, as a function of

capital K, by Y = AKαL1−α, where A is a constant, L is units of labor (assumed to be constant), and

α is a constant between 0 and 1. Determine the marginal product of physical capital predicted by this

model.

73



10.6 Answers to Selected Examples

1. Using the binomial expansion and the above definition, one finds

f ′(a) = lim
h→0

(a + h)n − an

h

= lim
h→0

an + nan−1h +O(h2)− an

h

= lim
h→0

nan−1h +O(h2)

h

= lim
h→0

nan−1 +O(h)

= nan−1

Using the third definition, and again the binomial expansion, one writes

f (a + h) = (a + h)n

= an + nan−1h +O(h2),

so f ′(a) = nan−1.

(Return)

2. Note that ea+h = ea · eh. Using our knowledge of the Taylor series for eh, we have

ea+h = eaeh

= ea
(

1 + h +O(h2)
)

= ea + eah +O(h2),

and so the derivative of ex , evaluated at x = a, is ea.

(Return)

3. Using the above identity and our knowledge of Taylor series, we find

cos(a + h) = cos(a) cos(h)− sin(a) sin(h)

= cos(a)
(

1 +O(h2)
)
− sin(a)

(
h +O(h3)

)
= cos(a)− sin(a)h +O(h2),

so the derivative of cos x , evaluated at x = a, is − sin(x).

(Return)

4. First, write

f (a + h) =
√
a + h

=
√
a

√
1 +

h

a
.

Now, recalling the binomial series (1 + x)α = 1 + αx +O(x2), we find

√
a

√
1 +

h

a
=
√
a

(
1 +

1

2

h

a
+O(h2)

)
=
√
a +

1

2
√
a
h +O(h2),
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and so the derivative of
√
x , evaluated at x = a, is 1

2
√
a

.

(Return)
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11 Differentiation Rules
Recall from the previous module the third definition given of the derivative, that

f (x + h) = f (x) +
df

dx
h +O(h2).

The derivative can be thought of as a multiplier: a change of h to the input gets amplified by a factor of df
dx to

become a change of df
dx h to the output. This interpretation helps make sense of the following rules.

11.1 Differentiation rules

Suppose u and v are differentiable functions of x . Then the following rules (written using the shorthand

differential notation) hold:

Linearity

d(u + v) = du + dv and d(c · u) = c · du,

where c is a constant.

Product

d(u · v) = u · dv + v · du.

Chain

d(u ◦ v) = du · dv.

(See Proof 1)

Another common way to express the Chain rule, using the more traditional derivative notation, is

du

dx
=
du

dv
·
dv

dx
.
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Caveat

Note that in the chain rule, the output of v is being plugged in as an input to u. Therefore, in the above, if

the derivative d(u ◦ v) is being evaluated at x = a, then du is evaluated at x = v(a) and dv is evaluated at

x = a. More explicitly,

d(u ◦ v)

∣∣∣∣
x=a

= du

∣∣∣∣
x=v(a)

· dv
∣∣∣∣
x=a

.

Example

Compute d
dx

(
esin x

)
. (See Answer 2)

11.2 Other rules

There are a few other differentiation rules commonly taught in a first year calculus class, which can all be proven

using the rules from above.

Reciprocal

d

(
1

v

)
= −

1

v2
dv.

Quotient

d
(u
v

)
=
vdu − udv

v2
.

Inverse

d(u−1) =
1

du

∣∣∣∣
u−1

Note: u−1 is the inverse of u, not the reciprocal (which was covered above). (See Proof 3)

Example

Show that
d

dx
sec x = sec x tan x,

using the reciprocal rule. (See Answer 4)

Example

Show that
d

dx
tan x = sec2 x,

using the quotient rule. (See Answer 5)
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Example

Show that
d

dx
ln x =

1

x
,

using the inverse derivative rule. (See Answer 6)

11.3 Bonus

There are operators in other areas of mathematics which act similarly to the derivative. Finding such similarities

in disparate fields is useful, because theorems from one field can often be carried over to the other and proved

using similar techniques. These connections give a deeper understanding of both fields.

Boundary of spaces

Consider the boundary of a space. Loosely speaking, the boundary of a space is its outline, border, or edge.

Think of the boundary as an operator, denoted ∂:

It turns out the the boundary operator ∂ acts similarly to a derivative. In particular, there is a product rule for

∂. But first, we need a notion of product for spaces.

The Cartesian product of two spaces X and Y , denoted X × Y , is the set of ordered pairs (x, y) where x ∈ X
and y ∈ Y . This can be visualized by taking the first space and extruding it along the second space (easiest to

visualize if the second space is a line segment), as in the following examples:
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So the Cartesian product of two line segments is a filled in rectangle, and the Cartesian product of a disc and

a line segment is a solid cylinder.

Now, consider the boundaries of these regions. The boundary of the filled in rectangle is its border, which can be

thought of as the two vertical edges and the horizontal top and bottom edges. Note that this can be expressed

as the boundary of the first segment times the second segment union the first segment times the boundary of

the second segment:

Similarly, for the solid cylinder, the boundary is the union of the lateral area and the end caps. The lateral area

is the Cartesian product of the circle with the line segment, which is the boundary of the disc times the line

segment. The other piece (the end caps) is the disc times two points, which is the disc times the boundary of

the line segment:
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These examples suggest the (true) fact that for two spaces A and B, one has

∂(A× B) = ∂(A)× B ∪ A× ∂(B).

Thinking of the boundary operator ∂ as the derivative, × as multiplication, and ∪ as addition, this is exactly

like the product rule for functions given above. If you like this strange example, you may wish to take a course

in Topology some day...

Lists

Consider a list of five distinct objects, all labeled with x . We might symbolize this by x5. Now, consider

the deletion operator D which deletes an object from the list. There are five different lists that might result

(depending on which object was deleted), and this would logically be symbolized by 5x4, under the convention

that a plus + stands for ”logical OR”:

There is an entire calculus for lists and other grammatical constructs in Computer Science. As one simple

example, how would we algebraicize the empty list? It has zero elements, so logically it should be expressed as

x0 = 1. Now, let L denote the collection of all finite lists. The trivial observation that any list is either empty
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or has a first element can be translated into an algebraic equation:

L = 1 + xL.

Here’s the cool part...solve for L and you get:

L =
1

1− x = 1 + x + x2 + x3 + x4 + · · · ,

the geometric series! Remember that plus mean ”OR”, so that this equation says any list is either the empty

list, or the list of length 1, or the list of length 2, etc. If you find this sort of thing fun, you may wish to learn

some Computer Science and some Analytic Combinatorics.

11.4 EXERCISES

• Find the derivative of f (x) =
√
x(2x2 − 4x).

• Find the derivative of f (x) = 6x4 −
3

x2
− 2π.

• Find the derivative of f (x) = 7(x3 + 4x)5 cos x .

• Find the derivative of f (x) = (ex + ln x) sin x .

• Find the derivative of f (x) =

√
x + 3

x2

• Find the derivative of f (x) =
ln x

cos x
.

• Find the derivative of f (x) =
3
√
x − 4

x3
.

• Find the derivative of f (x) = sin3(x3).

• Find the derivative of f (x) = e−1/x
2
.

• Use the information about functions f and g from the following table to compute the value of
d

dx

∣∣∣∣
x=1

g(f (x)).

x f (x) f ′(x) g(x) g′(x)

−1 1 1 0 3

0 0 2 0 0

1 2 3 2 0

2 3 −1 −1 2

3 −1 0 3 −1

• Suppose that a certain quantity A is a function of another quantity B, which, in turn, depends on a third

quantity C. We know that B(C) =
√
C. If the rate of change of A with respect to B is B2, what is the

rate of change of A with respect to C?

81



• This problem concerns the boundary operator ∂ from the bonus material. Denote by I the closed unit

interval [0, 1]. Then, as observed, ∂I = {0}∪ {1} is the union of two points. Let’s get a little ”creative”.

Denote by In the ”n-cube”, that is, the Cartesian product of n intervals: In = I × I × · · · × I. This is a

well-defined and perfectly reasonable n-dimensional cube. (Just because you can’t visualize doesn’t mean

it can’t exist!) Note that I1 = I and I0 is a single point (a zero-dimensional cube!). As a step towards

building a ”calculus of spaces”, let us write ∂I1 = 2I0 = 2 as a way of saying that the boundary of an

interval consists of two points and that I0 = 1. The boundary of an n-dimensional cube consists of a

certain number of (n − 1)-dimensional cubes (called ”faces”). For example, a square I2 has four faces.

Using what you know about derivatives, answer this: how many faces does In have?

11.5 Answers to Selected Examples

1. Linearity Using the third definition of the derivative from the last module, we find

(u + v)(x + h) = u(x + h) + v(x + h)

= u(x) +
du

dx
h +O(h2) + v(x) +

dv

dx
h +O(h2)

= (u + v)(x) +

(
du

dx
+
dv

dx

)
h +O(h2),

as desired. Similarly,

(c · u)(x + h) = c · u(x + h)

= c

(
u(x) +

du

dx
h +O(h2)

)
= (c · u)(x) +

(
c
du

dx

)
h +O(h2).

Product Again using the third definition of the derivative, we find

(u · v)(x + h) = u(x + h) · v(x + h)

=

(
u(x) +

du

dx
h +O(h2)

)
·
(
v(x) +

dv

dx
h +O(h2)

)
= u(x)v(x) + u(x)

dv

dx
h + v(x)

du

dx
h +O(h2)

= (u · v)(x) +

(
u(x)

dv

dx
+ v(x)

du

dx

)
h +O(h2),

as desired.

Chain The chain rule is justified similarly, with a little bit more algebra:

(u ◦ v)(x + h) = u(v(x + h))

= u

(
v +

dv

dx
h +O(h2)

)
.
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To simplify the notation temporarily, let h̃ = dv
dx h +O(h2). Then

u(v + h̃) = u(v) +
du

dv
h̃ +O(h̃2)

= u(v) +
du

dv

(
dv

dx
h +O(h2)

)
+O((

dv

dx
h +O(h2))2)

= u(v) +
du

dv
·
dv

dx
h +O(h2),

as desired.

(Return)

2. In the above notation, u(x) = ex and v(x) = sin x , and the question asks for the derivative d(u ◦ v).

Again, remembering to evaluate du at v(x), one finds that

d
(
esin x

)
= d(ex)

∣∣∣∣
sin(x)

d(sin x)

∣∣∣∣
x

= esin x cos x.

(Return)

3. Reciprocal One can think of this as an application of the chain rule, by writing

1

v
= u ◦ v

where u(x) = 1
x . Or one can see it as a special case of the quotient rule.

Quotient Let w = u
v , so that u = w · v . By the product rule,

du = w · dv + v · dw.

Solving for dw , replacing w with u
v , and clearing fractions gives

dw =
du − w · dv

v

=
du − u

v dv

v

=
v · du − u · dv

v2
,

as desired.

Inverse Note that x = u ◦ u−1 by the definition of the inverse of a function. Differentiating both sides of

this equation, using the chain rule on the right, gives

1 = du

∣∣∣∣
u−1
d(u−1)

∣∣∣∣
x

Then solving for d(u−1) gives

d(u−1) =
1

du

∣∣∣∣
u−1

as desired.

(Return)
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4. We find that

d

dx
sec x =

d

dx

(
1

cos x

)
= −

1

cos2 x
(− sin x)

=
1

cos x
·

sin x

cos x

= sec x tan x.

(Return)

5. We find that

d

dx
tan x =

d

dx

sin x

cos x

=
d(sin x) cos x − d(cos x) sin x

cos2 x

=
sin2 x + cos2 x

cos2 x

=
1

cos2 x

= sec2 x.

(Return)

6. The inverse of the logarithm is the exponential, so u = ex in the inverse rule. Thus,

d

dx
ln x =

1

d(ex)

∣∣∣∣
ln x

=
1

ex

∣∣∣∣
ln x

=
1

x
,

as desired.

(Return)
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12 Linearization
One of the main uses of the derivative is linearization, which uses the first two terms (the constant and linear

term) of the Taylor series as an approximation. In many applications, this gives a very good approximation, as

we will see in some examples.

12.1 Linear variation visualized

There are several geometric examples where it is possible to see the linear variation as the change in area as a

parameter is changed by a small amount.

Square

The area of a square of side length x is given by A(x) = x2. When that is varied by a small amount h, the

result is

A(x + h) = (x + h)2 = x2 + 2xh + h2.

The linear variation is 2xh, which can be seen in the diagram as the rectangles along the right and top edges of

the square. There are two of them, each with area xh. The final bit of area, the purple square in the diagram,

has area h2, which is higher order.
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Triangle

The area of a right triangle with legs length x is A(x) = 1
2x
2. When the leg is varied by h, the result is

A(x + h) =
1

2
x2 + xh +

1

2
h2.

Visually, the linear variation xh comes from the red parallelogram, of base h and height x , running along the

hypotenuse. The higher order term 1
2h
2 comes from the small purple triangle at the tip of the triangle.

Disc

The area of a disc of radius x is A(x) = πx2. If the radius is increased by h, the result is

A(x + h) = π(x + h)2 = πx2 + 2πxh + πh2.

Visually breaking this into the linear variation and higher order variation is a little bit harder. The best way is

to imagine taking the ring formed by the increased radius and breaking it into rectangles and wedges. In the
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limit, the wedges can be rearranged into a disc of radius h, and the rectangles can be arranged to form a strip

of length 2πx (the circumference of the inner circle) and width h.

12.2 Linear approximation

The equation underlying any linear approximation should be familiar, since it is just the first order Taylor series

about x = a, after making the substitution h = x − a:

f (a + h) ≈ f (a) + f ′(a)h.

This will be a good linear approximation provided that h is small, i.e., the point a is close to the input we are

trying to approximate. In general, one wants to pick a to be an input where it is easy to compute f (a) and

f ′(a) which is as close to the desired input as possible.

Example

Using a linear approximation, estimate
√

250. (See Answer 1)

Example

Using a linear approximation, estimate
√

104. Is this an over-approximation or an under-approximation?

(See Answer 2)

Example

Approximate π20. Hint: π2 ≈ 9.86. (See Answer 3)

Example

Approximate e30. Hint: e3 ≈ 20.1, and 210 ≈ 1000. (See Answer 4)

12.3 Newton’s method

Another application of linearization gives a way of approximating the root of a function. This is called Newton’s

method.

Given a continuous, differentiable function f , the goal is to find a root (i.e. a value a such that f (a) = 0).

Suppose x is an initial guess of a root. Then x + h will be a root for some small value of h. Linearizing, and

ignoring the higher order terms, gives

f (x + h) = f (x) + f ′(x)h +O(h2)

≈ f (x) + f ′(x)h.

Since we supposed that x + h was a root of f , it follows that f (x + h) = 0. Therefore, setting the above equal

to 0 and solving for h gives

f (x) + f ′(x)h = 0 ⇒ h = −
f (x)

f ′(x)
.
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Thus, an even closer guess of a root is

x + h = x −
f (x)

f ′(x)
.

By taking this new guess of a root, and repeating the above process, one (hopefully) gets a better and better

approximation of a root.

More formally, this is what is called a difference equation. Given an initial guess, called x0, of a root of the

function, one uses the update rule

xn+1 = xn −
f (xn)

f ′(xn)

to get x1, and then x2, and so on.

The resulting sequence hopefully converges to a root of f . Graphically, what is happening is as follows:

1. Pick a guess x0.

2. Find the tangent line to f through the point (x0, f (x0)).

3. Let x1 be the point where the tangent line intersects the x-axis.

4. Repeat steps 2 and 3 (see the figure).

Caveat

This sequence is only defined if f ′(xn) exists and is non-zero for every xn in the sequence. Even if the sequence

is defined, it may not converge to anything. But if the sequence is defined and it does converge, say to L, then

L is a root of f .

Example

Find the update rule for approximating 1
a , the reciprocal of a number a. (See Answer 5)

Example

Find the update rule for using Newton’s method to approximate
√
a. Use the update rule twice with initial

guess x0 = 3 to estimate
√

11. (See Answer 6)
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Example

Find the update rule for finding 3
√
a. Use the update rule once with the initial guess of x0 = 5 to estimate

3
√

100. (See Answer 7)

12.4 EXERCISES

• Use a linear approximation to estimate 3
√

67. Round your answer to four decimal places. Hint: what is

43?

• Use a linear approximation to estimate the cosine of an angle of 66o. Round your answer to four decimal

places. Hint: remember that 60o =
π

3
, and hence 6o =

π

30
.

• Use Newton’s method to determine the intersection of e−x and x .

• The golden ratio ϕ =
1 +
√

5

2
is a root of the polynomial x2 − x − 1. If you use Newton’s method to

estimate its value, what is the appropriate update rule for the sequence xn ?

• To approximate
√

10 using Newton’s method, what is the appropriate update rule for the sequence xn ?

• You want to build a square pen for your new chickens, with an area of 1200 ft2. Not having a calculator

handy, you decide to use Newton’s method to approximate the length of one side of the fence. If your

first guess is 30 ft, what is the next approximation you will get?

• You are in charge of designing packaging materials for your company’s new product. The marketing

department tells you that you must put them in a cube-shaped box. The engineering department says

that you will need a box with a volume of 500 cm3. What are the dimensions of the cubical box? Starting

with a guess of 8 cm for the length of the side of the cube, what approximation does one iteration of

Newton’s method give you? Round your answer to two decimal places.

• Without using a calculator, approximate 9.9898. Here are some hints. First, 9.98 is close to 10, and

1098 = 1 E 98 in scientific notation. What does linear approximation give as an estimate when we decrease

from 1098 to 9.9898?

• A diving-board of length L bends under the weight of a diver standing on its edge. The free end of

the board moves down a distance D = PL3/3EI where P is the weight of the diver, E is a constant

of elasticity (that depends on the material from which the board is manufactured), and I is a moment

of inertia. (These last two quantities will again make an appearance in Lectures 13 and 41, but do not

worry about what exactly they mean now...) Suppose our board has a length L = 2 m, and that it takes

a deflection of D = 20 cm under the weight of the diver. Use a linear approximation to estimate the

deflection that it would take if its length was increased by 20 cm.

12.5 Answers to Selected Examples

1. The function here is f (x) =
√
x . Possible choices for a are perfect squares, because it is easy to compute

the square root of squares. The nearest perfect square is 256 = 162, so we choose a = 256. Thus,
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h = x − a = −6. Then

f (x) ≈ f (a) + f ′(a)h

√
250 ≈

√
256 +

1

2
√

256
(−6)

= 16−
6

32

= 15
13

16

≈ 15.8,

which is very close to the calculator’s answer of 15.811 . . ..

(Return)

2. As above, a = 100 is the closest point where it is easy to compute
√
x and derivatives. Then h = 4, so

the linear approximation is

f (a + h) ≈ f (a) + f ′(a)h

=
√

100 +
1

2
√

100
· 4

= 10 +
4

20

= 10.2.

This is an over-approximation. One way to see why is to consider the graph of
√
x , which is concave

down, so the linear approximation is above the true value. Another argument is to consider the next term

of the Taylor series, which is negative (since the second derivative of
√
x is negative).

For comparison, the value according to a calculator is
√

104 ≈ 10.198.

(Return)

3. From the hint, π20 = (π2)10 ≈ 9.8610. Thus, we are trying to approximate f (x) = x10 at x = 9.86. The

nearest easy input is a = 10, so we find

f (9.86) ≈ f (10) + f ′(10)(−.14)

= 1010 + 10(10)9(−.14)

= 1010 (1− .14)

= 8.6 · 109.

The true answer is approximately 8.77 · 109, so this estimate is within 2%.

(Return)

4. From the first hint, e30 = (e3)10 ≈ (20.1)10, so consider the linear approximation for f (x) = x10 near

a = 20:

f (x) ≈ f (20) + f ′(20)(x − 20)

x10 ≈ 2010 + 10 · 209(x − 20)
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So it follows that

e30 ≈ (20.1)10

≈ 2010 + 10 · 209 · (.1)

≈ 2010 [1 + (.5)(.1)]

≈ 210 · 1010 · 1.05

≈ 1.05 · 1013

(the last step used the second hint that 210 ≈ 103). The true answer is approximately e30 ≈ 1.068 · 1013,

so the error is less than 2%.

(Return)

5. First, we must find a function which has 1a as a root. We might try f (x) = x− 1a , but unfortunately (after

a little algebra) this leads to the update rule

xn+1 =
1

a
,

which is not particularly helpful, since that is the quantity we are trying to approximate.

Another try would be f (x) = a − 1
x . This will work. Note that f ′(x) = 1

x2 , so the update rule is

xn+1 = xn −
f (xn)

f ′(xn)

= xn −
a − 1

xn
1
x2n

= xn −
(
x2n a − xn

)
= 2xn − ax2n .

Note that this rule does not involve division, but only multiplication and subtraction.

(Return)

6. The first step is to find a function whose root is
√
a. A good choice is f (x) = x2 − a. Then according to

Newton’s method, the update rule is

xn+1 = xn −
f (xn)

f ′(xn)

= xn −
x2n − a

2xn

= xn −
xn
2

+
a

2xn

=
xn
2

+
a

2xn
.

Using the update rule with x0 = 3 and a = 11 gives

x1 =
x0
2

+
11

2x0

=
3

2
+

11

6

=
20

6

=
10

3
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Updating one more time gives

x2 =
x1
2

+
11

2x1

=
5

3
+

11
20
3

=
199

60

≈ 3.3166

The calculator gives that
√

11 ≈ 3.3166, so we get a good approximation with only a little bit of work.

One could repeat the update rule several more times to get an even better approximation.

(Return)

7. The function in this case is f (x) = x3 − a. Then f ′(x) = 3x2, and so the update rule is

xn+1 = xn −
f (xn)

f ′(xn)

= xn −
x3n − a

3x2n

= xn −
1

3
xn +

a

3x2n

=
2

3
xn +

a

3x2n
.

Using this to estimate 3
√

100 with the initial guess x0 = 5, one finds

x1 =
2

3
· x0 +

100

3x20

=
10

3
+

4

3

=
14

3

≈ 4.666

If we compare this to the answer from a calculator, we find that 3
√

100 ≈ 4.64, and so even after just one

step, we are within 1% of the true answer.

(Return)
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13 Higher Derivatives

The nth derivative of a function f (x), denoted f (n)(x) or dn

dxn (f ), is defined recursively by

f (n)(x) =
d

dx
f (n−1)(x).

In other words, the nth derivative is what one gets by taking the derivative n times. Note that in the d
dx

notation, the power n goes to the right of dx , to emphasize the fact that the nth derivative of f is achieved by

iterating n times the operator d
dx . So (

d

dx

)n
f =

dn

dxn
f .

13.1 Interpretations

Let x(t) denote the position of a moving body as a function of time. Then the velocity v(t) of the body is

v(t) =
dx

dt
.

The acceleration of an object is the second derivative of its position function (i.e. the derivative of its velocity):

a(t) =
dv

dt
=
d

dt

(
dx

dt

)
=
d2x

dt2
.

The jerk of an object is the third derivative of its position function (i.e. the derivative of its acceleration):

j(t) =
d3x

dt3
.

The snap (or jounce) of an object is the fourth derivative of its position:

s(t) =
d4x

dt4
.

Quadrotors

The maneuverability of nano quadrotors depends on controlling both the jerk and the snap (in addition to

velocity and acceleration).
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Curvature

In geometry, curvature can (informally) be thought of as how quickly the graph of the function curves. Consider

the largest circle that can comfortably sit tangent to the graph of f at the point a. Intuitively, the larger the

radius R of the circle that fits, the smaller the curvature. Here is a curve with several of these circles (called

osculating circles) drawn it at different indicated points.

In fact, the curvature of a curve f , denoted κ, is defined by κ = 1
R , where R is the radius of the largest circle

which fits the curve to second order. With some algebra, one finds the following expression for curvature in

terms of the first and second derivatives of f :

Curvature of a function f

κ =
|f ′′|

(1 + (f ′)2)3/2
.

(See Justification 1)

Note that for a straight line, the second derivative f ′′ = 0, and so κ = 0, which matches intuition. In this case,

the osculating circle is infinite. Similarly, κ = 0 at inflection points of f .

Elasticity

Consider an elastic beam with uniform cross section and static load q(x), where x is the location of the load

along the beam. Then the deflection u(x) (the amount the beam sags at location x) satisfies the equation

EI
d4u

dx4
= q(x),

where E and I are constants: E is the constant of elasticity (depends on the material), and I is the moment of

inertia (depends on the shape of the beam).
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Taylor series

As seen in previous modules, information about the derivatives of a function evaluated at a single point gives

information about the function for inputs near that point via the Taylor series:

f (x) = f (a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 +

f ′′′(a)

3!
(x − a)3 + · · ·

Taking a few terms of this series gives a polynomial which is a good approximation of f near a. The more

derivatives one knows, the more terms one can include in the series, and the better the approximation.

13.2 Bonus: another look at Taylor series

Consider the alternative way to express the Taylor series, in terms of the distance h from the base point a:

f (a + h) = f (a) + f ′(a)h +
f ′′(a)

2!
h2 +

f ′′′(a)

3!
h3 + · · ·

=

∞∑
k=0

f (k)(a)

k!
hk

=

∞∑
k=0

hk

k!

(
d

dx

∣∣∣∣
a

)k
f

=

∞∑
k=0

1

k!

(
h
d

dx

∣∣∣∣
a

)k
f .

Note that this resembles the Taylor series for the exponential ex , where

x = h
d

dx

∣∣∣∣
a

.

This may seem a little unusual. But the idea of exponentiating an operator to get another operator is a useful

tool, which comes up in other areas of mathematics. In this notation, we can write

f (a + h) = e(h d
dx |a)f .

Another way to think of this is that eh
d
dx is the shift operator, which takes in the function f (x) and gives back

the function f (x + h).

13.3 EXERCISES

• You are given the position, velocity and acceleration of a particle at time t = 0. The position is p(0) = 2,

the velocity v(0) = 4, and the acceleration a(0) = 3. Using this information, which Taylor series should

they use to approximate p(t), and what is the estimated value of p(4) using this approximation?

• If a particle moves according to the position function s(t) = t3 − 6t, what are its position, velocity and

acceleration at t = 3 ?

• If the position of a car at time t is given by the formula p(t) = t4− 24t2, for which times t is its velocity

decreasing?
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• What is a formula for the second derivative of f (t) = t2 sin 2t? Use this formula to compute f ′′(π/2).

• Use a Taylor series expansion to compute the third derivative of f (x) = sin3 (ln(1 + x)) at zero.

• What is the curvature of the graph of the function f (x) = −2 sin(x2) at the point (0, 0)?

13.4 Answers to Selected Examples

1. For a given point on the curve, draw its osculating circle, say of radius R (right now, R is unknown to

us;we will eventually find R). Then place the coordinate axes so that the origin is at the center of the

circle (note that the curvature at a given point only depends on the radius of the osculating circle, which

is independent of where the axes are placed):

The equation of the osculating circle is x2 + y2 = R2. Solving for y gives

y =
√
R2 − x2 = (R2 − x2)1/2,

whose first and second derivatives should respectively match the first and second derivatives of the function

f at the point (that is what it means for the circle to match the function up to second order). Remember

that the first derivative and second derivative of f at the given point are just constants. We will set the

derivative and second derivative of the equation of the circle equal to these constants, respectively, and

then solve for R.

The first derivative of the equation of the circle is

d

dx
(R2 − x2)1/2 =

1

2
(R2 − x2)−1/2(−2x)

= −x(R2 − x2)−1/2.
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The second derivative of the equation of the circle (using the product rule) is

d

dx

(
−x(R2 − x2)−1/2

)
= −(R2 − x2)−1/2 − x

(
−

1

2

)
(R2 − x2)−3/2(−2x)

= −(R2 − x2)−1/2 − x2(R2 − x2)−3/2

= −
1

(R2 − x2)1/2
−

x2

(R2 − x2)3/2

= −
(
R2 − x2

)
(R2 − x2)3/2

−
x2

(R2 − x2)3/2

=
−R2

(R2 − x2)3/2

= −R2(R2 − x2)−3/2.

So setting the corresponding derivatives of f equal to the derivatives of the circle gives

f ′ = −x(R2 − x2)−1/2

f ′′ = −R2(R2 − x2)−3/2.

Now we do some algebra to solve for R in terms of f ′ and f ′′. Squaring the first equation gives

(f ′)2 = x2(R2 − x2)−1.

Solving this equation for x2 gives

x2 =
(f ′)2R2

1 + (f ′)2
.

Plugging this into the second equation, and doing some algebra gives

f ′′ = −R2(R2 − x2)−3/2

= −R2
(
R2 −

(f ′)2R2

1 + (f ′)2

)−3/2
= −R2

[
R2
(

1−
(f ′)2

1 + (f ′)2

)]−3/2
=
−R2

R3

(
1 + (f ′)2 − (f ′)2

1 + (f ′)2

)−3/2
= −

1

R

(
1 + (f ′)2

)3/2
.

Taking absolute values (since the radius of a circle should not be negative) gives

|f ′′| =
1

R

(
1 + (f ′)2

)3/2
.

Now, solving for κ = 1
R gives

κ =
1

R
=

|f ′′|
(1 + (f ′)2)3/2

,

as desired.

(Return)
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14 Optimization

One of the most important applications of derivatives is optimization. In some introductory calculus classes

these types of problems are called max/min problems: given a function, what is the maximum or minimum

output subject to some constraints. This module will review how derivatives can be used in these problems and

give some of the reasons why these methods work.

14.1 Critical points

First, observe that for a differentiable function f , if the derivative is not zero at a point, then that point cannot

be a maximum or a minimum. For instance, if the derivative is positive, then the output is increasing with respect

to the input, so by increasing the input, one can increase the output. Hence, the point is not a maximum. If the

derivative is negative, then decreasing the input will increase the output, so that point cannot be a maximum.

Similarly, a point cannot be a minimum if the derivative is not zero. Thus, the only possible inputs where a

maximum or minimum can occur are those where the derivative is zero. This motivates the following definition

Critical point

A critical point of a function f is an input x = a where either f ′(a) = 0 or where the derivative is undefined.

Critical points include maximum and minimum points (called extrema) as well as inflection points; these are

the points where the derivative is 0. Other critical points occur at corner points or discontinuities, where the

derivative is undefined. The reason for including points where the derivative is not defined is that such a point

could be a maximum or minimum:

98



Example

Compute the critical points of f (x) = x3 − 6x2 + 9x − 5. (See Answer 1)

14.2 Classifying critical points

Once one has computed a critical points x = a, one can classify whether it is a maximum or minimum using

the second derivative test:

Second Derivative Test

Suppose x = a is a critical point of f where f ′(a) = 0.

1. If f ′′(a) > 0, then f has a local minimum at a.

2. If f ′′(a) < 0, then f has a local maximum at a.

3. If f ′′(a) = 0, then the test fails.

In the third case, one can use the Taylor expansion about x = a to determine the behavior of the function.

In this case, x = a could still be a local maximum, minimum, or inflection point.

(See Justification 2)

Example

Use the Taylor series about x = 0 for

sin2 x ln(cos x)

to determine whether the function has a local maximum, local minimum, or inflection point at x = 0. (Take

as a given that x = 0 is a critical point). (See Answer 3)

Example

Consider a square sheet of cardboard of side length L. By cutting equal sized squares of side length x from

each corner of the sheet and folding up the flaps which are formed, one gets an open box:
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Note that as x gets bigger, the box gets taller but the area of the base of the box shrinks. As x gets smaller,

the area of the base grows, but the height shrinks. Find the value of x which maximizes the volume of the

resulting box. (See Answer 4)

Example

Classify the critical points of f (x) = x3 − 6x2 + 9x − 5. (See Answer 5)

Example

Suppose a firm producing widgets expects to sell 3000−10p2 units (where p is the price of the unit). What

price p should the firm set to maximize revenue (note that revenue here is just price times quantity sold)?

(See Answer 6)

14.3 Global Extrema

While a local maximum or minimum is sometimes useful information, what is usually more important is the global

maximum and minimum values of a function on a closed interval [a, b] (or subject to some other constraint

such as x ≥ 0). These are called the global extrema, or absolute extrema, of a function.

Global extrema on the interval [a, b] either occur at critical points of f or at the endpoints of the interval. So

in addition to finding the critical points of f in the interval and checking their values, one must also evaluate f

at the endpoints of the interval to find the global extrema.

Example

Find the global extrema of f (x) = x3 − 6x2 + 9x − 5 on the interval [2, 4]. (See Answer 7)

14.4 Application: Statistics

In statistics, one often takes experimental data points of the form (xi , yi) and looks for a relationship. A very

simple relationship is the linear relationship y = mx . The data may not follow this relationship perfectly, and

there may be some slight experimental error or other noise, so one tries to find the value of m which best fits

the data:
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This process, called a linear regression, can be framed as an optimization problem. But what is the quantity

being optimized?

There are several different linear regression models, depending on the quantity being minimized. These different

quantities yield different best fit lines. One of the most common models is called ordinary least squares. This

method seeks to minimize the sum of the squares of the residuals, which are the vertical distances from the

points to the line:

As shown above, the residual for a given point (xi , yi) is yi −mxi . Thus, the quantity being minimized is

S(m) =
∑
i

(yi −mxi)2.
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Taking the derivative with respect to m gives

dS

dm
=
∑
i

2(yi −mxi)(−xi)

=
∑
i

(
−2xiyi + 2mx2i

)
= −2

∑
i

xiyi + 2m
∑
i

x2i .

Setting this equal to 0 and solving for m gives

m =

∑
i

xiyi∑
i

x2i
.

Applying the second derivative test, we compute

d2S

dm2
= 2

∑
i

x2i > 0,

so the above value of m minimizes the sum of squares (hence the least squares name).

Note

To find the line of best fit of the form y = mx +b requires methods of multivariable calculus (because there are

two variables, m and b, which need to be optimized). Optimization with multiple variables is not much more

difficult than for a single variable, but these methods are beyond the scope of this course.

14.5 EXERCISES

• Find all the local maxima and minima of the function y = xe−x
2
.

• Which type of critical point does the function f (x) = esin(x
4) cos(x2) have at zero ?

• Use a Taylor series about x = 0 to determine whether the function f (x) = sin3(x3) has a local maximum

or local minimum at the origin.

• Find the location of the global maximum and minimum of f (x) = x3 − 6x2 + 1 on the interval [−1, 7].

• Consider a stretch of highway in which cars are traveling at an average speed v . The “traffic density” u

is the total amount of cars on our stretch of road divided by its length. These two quantities are related:

the less cars on the road, the faster drivers are able to go. On the other hand, if traffic becomes heavy,

drivers will naturally decrease their speed. The so-called “parabolic model” assumes that this relationship

is dictated by the equation:

u = umax

(
1−

v

vmax

)
where umax represents the capacity of the road, and vmax the speed limit on it. The amount of cars passing

through our road is called the “traffic flux” or “throughput,” and is given by the product of the traffic

density and the average speed: F = uv . Using the parabolic model, find out at what average speed v∗
the flux through our road is maximized.
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• A manufacturing company wants to know how many workers it should hire. If it employs too many people,

the machines in the factory will be overutilized and the workers will have to wait until they are free, thus

reducing the number of units each one will produce in a day’s work. On the other hand, too few workers

would leave the machines idle for long periods of time. A rough model for the relationship between the

number n of workers and their productivity p is given by the equation

p = pmax

(
1−

n

nmax

)
where pmax = 10 is the maximum number of units a worker can produce in a day and nmax = 100 is the

maximum number of workers the factory can accommodate. The amount of units U manufactured in the

whole factory in one day is equal to the product of the number of workers and the number of units each

one produces: U = np. How many workers should the company hire in order to maximize its production?

• A technology company has just invented a new gadget. In order to maximize the profit derived from its

sale, the company must make a critical decision: at what price should it be sold? A market study suggests

that the number N of units sold would approximately follow the equation N = Nmaxe
−P/λ, where P is the

sale price, Nmax = 10, 000, 000 is the number of units that would saturate the market, and λ = $50. If

it costs $250 to manufacture one of these gadgets, at what price P∗ would be profit of the company be

maximized?

• The manufacturing process of a certain chemical substance is exothermic, that is, it releases heat. The

amount of heat released, Q, depends on the temperature T at which the process is carried out, and it

is given by the equation Q = α(T − T0)−2e(T−T0)/λ, where T0 = 70oF is the room temperature of the

manufacturing plant, and α = 3000 J (oF )2 and λ = 50oF . If the temperature T must be maintained

above 100oF , at what temperature T∗ would be the heat loss be minimized?

• Classify the critical point x = 0 of the function f (x) = sin2(3x2) cos(x)
x using Taylor series.

• Construct a box without a top whose base is a square. The material cost for the bottom is $10 per square

feet, the cost for the side is $5 per square feet. The box must have volume 8 cubic feet. Determine the

dimension of the box that will minimize the cost.

14.6 Answers to Selected Examples

1. The derivative f ′(x) = 3x2 − 12x + 9 is defined everywhere, so the critical points are where f ′(x) = 0.

Since

f ′(x) = 3x2 − 12x + 9

= 3(x2 − 4x + 3)

= 3(x − 3)(x − 1),

the critical points are x = 3 and x = 1.

(Return)

2. The second derivative test is justified by considering the Taylor series for f about x = a:

f (x) = f (a) + f ′(a)(x − a) +
1

2
f ′′(a)(x − a)2 + · · ·

= f (a) +
1

2
f ′′(a)(x − a)2 + · · · ,
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since f ′(a) = 0. Thus, when x is close to a, f (x) behaves like a parabola centered at x = a. Recall that

the sign of the coefficient of the square term in a parabola determines if the parabola opens up or down.

A positive coefficient means the parabola opens upward, and a negative coefficient means the parabola

opens downward.

Here, the coefficient of the (x −a)2 is 12 f
′′(a). So if f ′′(a) > 0, then the parabola opens upward, meaning

f (a) is a local minimum of f . If f ′′(a) < 0, then the parabola opens downward, meaning f (a) is a local

maximum of f . If f ′′(a) = 0, then one has to look at more terms of the Taylor series to determine f ’s

behavior at a.

(Return)

3. Expanding and multiplying the Taylor series gives

sin2 x ln(cos x) =
(
x +O(x3)

)2
ln

(
1−

1

2!
x2 +O(x4)

)
= (x +O(x3))(x +O(x3))

(
−

1

2
x2 +O(x4)

)
= −

1

2
x4 +O(x6).

Thus, near x = 0 the function behaves like − 12x
4, which is downward opening (because of the negative

coefficient) and U shaped (because it is an even power). Therefore, the function has a local maximum at

x = 0.

Note that the second derivative test, besides being tricky to apply with all of the product rules and chain

rules, would ultimately be inconclusive in this example.

(Return)

4. The volume of the box is the area of the base times the height. The base is a square of side length L−2x

(since x has been cut from both sides). The height of the box is x . Thus

V = (L− 2x)2 · x = 4x3 − 4Lx2 + L2x

Finding the critical points means taking the derivative with respect to x and setting equal to 0:

dV

dx
= 12x2 − 8Lx + L2 = 0.

This factors as

(6x − L)(2x − L) = 0,

so the critical points are x = L
6 and x = L

2 . To apply the second derivative test, we compute

d2V

dx2
= 24x − 8L

and evaluate at each critical point:

d2V

dx2

∣∣∣∣
x=L/2

= 4L > 0 and
d2V

dx2

∣∣∣∣
x=L/6

= −4L < 0.

Thus, x = L
2 is a local minimum and x = L

6 is a local maximum. (Note also that for x = L
2 there is no

cardboard left, since the removed corners have consumed the entire square!).
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The volume that results from x = L
6 is

V =

(
2L

3

)2
L

6
=

2L3

27
.

(Return)

5. As found in a previous example, the critical points of f are x = 3 and x = 1. The second derivative of f

is f ′′(x) = 6x − 12. Thus, f ′′(3) = 6 > 0 and f ′′(1) = −6 < 0, and it follows from the second derivative

test that 3 is a local minimum of f , and 1 is a local maximum of f .

(Return)

6. Revenue is R(p) = (3000 − 10p2)p = 3000p − 10p3. Taking the derivative gives R′(p) = 3000 − 30p2,

and setting equal to 0 gives

3000− 30p2 = 0

3000 = 30p2

100 = p2

p = ±10.

So R has critical point p = 10 (ignore p < 0 since price should be positive). The second derivative is

R(p) = -60p.T husR(10) = −600 < 0, and p = 10 is a local maximum.

At this price, the revenue is

R(10) = 2000 · 10 = 20000.

(Return)

7. From the prior examples, x = 1 and x = 3 are the critical points of f . But x = 1 is not in the interval

[2, 4], so disregard it. Then evaluate f at 2,3,4 to find the extreme values:

f (2) = 8− 24 + 18− 5 = −3

f (3) = 27− 54 + 27− 5 = −5

f (4) = 64− 96 + 36− 5 = −1.

Thus the absolute maximum is −1 and occurs when x = 4. The absolute minimum is −5 and occurs at

x = 3.

(Return)
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15 Differentials
This module deals with differentials, e.g. dx or du. A formal treatment of differential forms is beyond the scope

of this course. For now, the best way to think about the differential dx or du is to think of them as rates of

change, and relate them with the chain rule:

du =
du

dx
dx.

In words, the rate of change of u equals the rate of change of u with respect to x times the rate of change of

x . This is not a perfect interpretation, but it will serve our purposes for this course.

15.1 The differential as an operator

Think of the differential d as an operator which can be applied to an equation f = g to give back df = dg. This

process allows one to find the derivative of functions which are defined implicitly, i.e., functions which cannot

be “solved for y” as y = f (x). This method is called implicit differentiation.

Example

Find dy
dx of the circle x2 + y2 = r2. (See Answer 1)

Example

In economics, the marginal rate of substitution (MRS) of X for Y is the rate at which a consumer is willing

to exchange good Y for good X to maintain an equal level of satisfaction (called utility in economics jargon).

Let U(X, Y ) denote a particular consumer’s utility function. As a particular example, let X be coffee, in

ounces, and Y be doughnuts. Then the curve U(X, Y ) = C represents all the different combinations of

coffee and doughnuts where the consumer is equally happy. For example, if the utility function is

U(X, Y ) = Y 2(X − 3),

then the following shows the graph of the curve U(X, Y ) = 4. The two plotted points show that this

consumer is equally satisfied with 4 ounces of coffee and 2 doughnuts as with 7 ounces of coffee and 1

doughnut.
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The MRS, then, is the rate of exchange of Y for X (doughnuts for coffee) so that utility stays the same

(i.e. we stay on the curve). Mathematically, this is

MRS = −
d Y

dX
.

Find MRS for the utility function given above, U(X, Y ) = Y 2(X−3). Then calculate the MRS at the points

(4, 2) and (7, 1) and interpret the results. (See Answer 2)

Example

Find the derivative of the function y = f (x) defined implicitly by the equation

yex + x ln(y) = e.

(See Answer 3)

15.2 Related rates

The differential is often used in related rates problems. A related rates problem typically has a physical de-

scription and asks for the rate at which some quantity is changing. The description must be translated into

an implicit relation between the variables involved, and then implicit differentiation is used to find the desired

derivative.

Example

Suppose a 10 foot ladder is leaning against a wall. The base of the ladder starts sliding away from the wall

at a rate of 4 feet per second. At the moment when the base of the ladder is 6 feet away from the wall, at

what rate is the top of the ladder sliding down the wall? (See Answer 4)
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Example

Consider the shape of a stream of water as it flows from a faucet. The stream has a circular cross-section

which gets narrower lower in the stream, and the goal is to find how the radius of that cross-section is

changing with respect to time.

Assume on the one hand that the water is flowing at a constant rate C. On the other hand, the area of the

cross section times the velocity through that cross section equals the flow:

Dividing by π and taking the differential gives

r2v = C

2r dr v + r2 dv = 0

dr = −
r2

2rv
dv = −

r

2v
dv .

So
dr

dv
= −

r

2v
.

Now, using the chain rule and a few facts from physics gives that

dr

dt
=
dr

dv

dv

dt

= −
r

2v

dv

dt

= −
rg

2v

= −
rg

2(v0 + gt)
.

This is known as a differential equation (in particular, a separable differential equation). One can solve this

equation to get an explicit expression for r in terms of t; see the module on separable differential equations.

15.3 Relative rates of change

We can normalize the differential du by dividing by u. This gives du
u . This is known as the relative rate of

change. Note that
du

u
= d(ln u).
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Example

For a given resistor in an electrical circuit, Ohm’s law says that

V = IR,

where V is voltage across the resistor, I is the current, and R is the resistance of the resistor. If the voltage

across a variable resistor is fixed, find the relationship between the relative rates change of resistance and

current. (See Answer 5)

Example

In a geometric solid (say, a sphere or a cube), how does the relative rate of change in volume compare to

that of surface area? (See Answer 6)

Example

In economics, the demand curve for a good is the quantity Q of the good that a consumer would purchase

as a function of the price P of the good. The demand curve slopes downward since a consumer will typically

buy less of a good if it is more expensive (the exception being a Giffen good).

The price elasticity of demand, E, for a good is the rate of change of relative quantity fluctuation with

respect to relative price fluctuation. Informally, it can be thought of as the percent change in quantity

resulting from a percent change in price. One can also think of E as a measure of how price sensitive a

consumer is for that good at that price. Mathematically,

E = −
dQ/Q

dP/P
.

The negative sign is there to force elasticity to be positive (without it, dQ/Q
dP/P would always be negative due

to the downward slope of the demand curve).

A good is said to be elastic at a certain price if E > 1 (that is, a consumer is highly sensitive to price

changes). A good is inelastic at a certain price if E < 1. An example of an elastic good is wine, since a

small increase in the relative price of wine can result in a consumer substituting a different alcohol for it. An

example of an inelastic good is toilet paper, since regardless of price changes, a consumer is likely to require

about the same amount of toilet paper:
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Revenue, R, is given by R = P ·Q. How does one maximize the revenue with respect to price? Express the

criterion in terms of E.

15.4 EXERCISES

• Use implicit differentiation to find
dy

dx
from the equation y2 − y = sin 2x .

• Find the derivative
dy

dx
if x and y are related through xy = ey .

• Use implicit differentiation to find
dy

dx
if sin x = e−y cos x .

• Find the derivative
dy

dx
from the equation x tan y − y2 ln x = 4.

• Model a hailstone as a round ball of radius R. As the hailstone falls from the sky, its radius increases at

a constant rate C. At what rate does the volume V of the hailstone change?

• The volume of a cubic box of side-length L is V = L3. How are the relative rates of change of L and V

related?

• Consider a box of height h with a square base of side length L. Assume that L is increasing at a rate of

10% per day, but h is decreasing at a rate of 10% per day. Use a linear approximation to find at what

(approximate) rate the volume of the box changing. “Hint:” consider the relative rate of change of the

volume of the box.

• A large tank of oil is slowly leaking oil into a containment tank surrounding it. The oil tank is a vertical

cylinder with a diameter of 10 meters. The containment tank has a square base with side length of 15

meters and tall vertical walls. The bottom of the oil tank and the bottom of the containment tank are

concentric (the round base inside the square base). Denote by ho the height of the oil inside of the oil

tank, and by hc the height of the oil in the containment tank. How are the rates of change of these two

quantities related?

• The “stopping distance” Dstop is the distance traveled by a vehicle from the moment the driver becomes

aware of an obstacle in the road until the car stops completely. This occurs in two phases.
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(1) The first one, the “reaction phase,” spans from the moment the driver sees the obstacle until he or

she has completely depressed the brake pedal. This entails taking the decision to stop the vehicle, lifting

the foot from the gas pedal and onto the brake pedal, and pressing the latter down its full distance to

obtain maximum braking power. The amount of time necessary to do all this is called the “reaction time”

treact, and is independent of the speed at which the vehicle was traveling. Although this quantity varies

from driver to driver, it is typically between 1.5 s and 2.5 s. For the purposes of this problem, we will use

an average value of 2 s. The distance traversed by the vehicle in this time is unsurprisingly called “reaction

distance” Dreact and is given by the formula Dreact = vtreact, where v is the initial speed of the vehicle.

(2) In the “braking phase,” the vehicle decelerates and comes to a complete stop. The “braking distance”

Dbrake that the vehicle covers in this phase is proportional to the square of the initial speed of the vehicle:

Dbrake = αv2. The constant of proportionality α depends on the vehicle type and condition, as well as on

the road conditions. Consider a typical value of 10−2 s2/m.

If the initial speed of the vehicle is 108 km/h = 30 m/s, what is the ratio between the relative rate of

change of the stopping distance and the relative rate of change of the initial speed?

• Assume that you possess equal amounts of a product X and Y , but you value them differently. Specifically,

your “utility function” is of the form U(X, Y ) = CXαY β for α, β, and C positive constants. What is your

marginal rate of substitution (MRS) of Y for X?

15.5 Answers to Selected Examples

1. Taking the differential (remembering the chain rule) and doing some algebra gives

2x(dx) + 2y(dy) = 0

2y(dy) = −2x(dx)

dy

dx
=
−2x

2y

= −
x

y
.

So dy
dx = − x

y .

(Return)

2. Using implicit differentiation, we find

Y 2(X − 3) = C

2Y d Y (X − 3) + Y 2 dX = 0.

Now solving for − dYdX we find

MRS = −
d Y

dX
=

Y 2

2Y (X − 3)
=

Y

2(X − 3)
.

Evaluating at (4, 2) gives a MRS of 1, which means that at that point the consumer is willing to substitute

1 doughnut for an ounce of coffee. At (7, 1) the MRS is 18 , which means that the consumer is only willing

to give up 1
8 of a doughnut for an additional ounce of coffee.

In a sense the MRS is a measure of how a consumer reacts to the scarcity of one good relative to another

and how that affects her willingness to exchange the goods.

(Return)
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3. Taking the differential (remembering the product rule) gives

(dy)ex + y(exdx) + (dx) ln(y) + x

(
1

y
dy

)
= 0.

Ultimately, the goal is to solve for dy
dx , so collecting all the terms with dy on the left and the terms with

dx on the right gives (
ex +

x

y

)
dy = (−yex − ln(y)) dx.

Finally, dividing through gives
dy

dx
=
−yex − ln(y)

ex + x/y
.

(Return)

4.

Let x be the distance from the base of the ladder to the wall and y be the distance from the top of the

ladder to the floor. Then by the Pythagorean theorem, x2+ y2 = 102. At the moment in question, x = 6

so y = 8.

The differential of this equation gives

2xdx + 2ydy = 0,

and solving for dy
dx gives dy

dx = − x
y = − 68 = − 34 . But the question asked for dy

dt , not dy
dx . But by the Chain

rule,
dy

dt
=
dy

dx
·
dx

dt
.

Since dy
dx = − 34 and dx

dt = 4 (given in the problem), it follows that

dy

dt
=
dy

dx
·
dx

dt
=

(
−

3

4

)
· 4 = −3.

So the top of the ladder is sliding down the wall at a rate of 3 feet per second.

(Return)

5. Beginning with Ohm’s law and taking the differential gives

V = IR

dV = RdI + I dR.
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Now, note that dV = 0 since voltage was assumed to be constant. Then dividing through by IR gives

RdI + I dR = 0

RdI

IR
+
I dR

IR
= 0

dI

I
+
dR

R
= 0

dI

I
= −

dR

R
.

Thus, the relative rates of change of resistance and current are equal and opposite.

(Return)

6. For a sphere of radius r , the volume and area (and their differentials) are

V =
4

3
πr3 dV = 4πr2 dr

A = 4πr2 dA = 8πr dr.

Then the relative rates of change of volume and area are

dV

V
=

4πr2 dr
4
3πr

3

= 3
dr

r
.

and

dA

A
=

8πr dr

4πr2

= 2
dr

r
.

Thus, the relative rate of change of volume is 32 that of area. Written another way,

dV/V

dA/A
=

3

2
.

For a cube of side length s, it turns out the same holds. The volume and area are

V = s3 dV = 3s2 ds

A = 6s2 dA = 12s ds.

The relative rates are dV
V = 3 dss and dA

A = 2 dss , so once again

dV/V

dA/A
=

3

2
.

(Return)
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16 Differentiation As An Operator

The sum, product, quotient, and chain rules make it possible to differentiate many functions. However, there

are some more exotic functions which cannot be differentiated using these tools alone. For example, what is

the derivative of 2x or xx or xx
x

?

The derivative should be interpreted as a rate of change, but what about the act of differentiation? Differ-

entiation is an operator: it takes in a function and gives out another function. Other examples of operators

include the logarithm, exponentiation, and integration. These (and other) operators can be applied to an entire

equation to transform a hard problem to an easy problem and (once the solution is found) back again. This

idea will allow us to compute the derivatives of the exotic functions above, and more.

16.1 Logarithmic differentiation

A common combination is called logarithmic differentiation, which consists of applying the logarithm operator

followed by the differentiation operator. It is best demonstrated by example.

Example

Find the derivative of ex using logarthmic differentiation. (See Answer 1)

Example

Use logarithmic differentiation to show that d
dx (ax) = ax ln a. (See Answer 2)

Example

Find the derivative of xx . (See Answer 3)

Example

Find the derivative of f (x)g(x). (See Answer 4)

16.2 Other operators

There are other operators which can be used prior to differentiation. Consider the following examples.
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Example

Compute the derivative of ln x by using exponentiation followed by differentiation. (See Answer 5)

Note that ln x is the inverse of ex , and so when we exponentiated the equation, it could be thought of as

applying the inverse of ln x . This same method works for many other inverse functions. In particular, applying a

trigonometric function can be thought of as an operator as well. This method can be used to find the derivatives

of the various inverse trigonometric functions.

Example

Find the derivative of arcsin(x). (See Answer 6)

Example

Find the derivative of arctan(x). (See Answer 7)

16.3 Operators in other contexts

Besides being useful in computing derivatives of exotic functions, operators (especially the logarithm) can also

be useful in computing limits. The method is similar to the above method for derivatives.

Example

Show that

lim
x→∞

(
1 +

a

x

)x
= ea.

This is a common limit which will come up again in the course. (See Answer 8)

16.4 Infinite Power Tower

Consider the infinite power tower

y = xx
xx
···

.

That is, x raised to the x raised to the x etc. This is certainly an unusual function. A better way to define this

function is implicitly:

y = xy .

To see that this makes intuitive sense, note that the exponent of the first x in the infinite tower is itself an

infinite tower, so replacing the exponent of x with y is sensible.

Use logarithmic differentiation to find the derivative of this function (that is, dy
dx ).

(See Answer 9)

It turns out that this function is well-defined and differentiable on

e−e < x < e1/e

One can check that the (x, y) pairs (e−e , e−1), (1, 1), (
√

2, 2), (e1/e , e) all satisfy the above implicit equation.
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16.5 EXERCISES

• Find the derivative of f (x) = (ln x)x

• Find the derivative of f (x) = x ln x

• Compute lim
x→+∞

(
x + 2

x + 3

)2x
• Compute lim

x→0+
[ln(1 + x)]x

• Compute lim
x→0

(
1 + arctan

x

2

)2/x
• Compute lim

x→0+

(
2

x

)sin x
• Let

α = 1 +
2

2 + 2
2+ 2

2+···

What is the value of α?

• Let

ϕ =

√
1 +

√
1 +

√
1 +

√
1 +
√

1 + · · ·

What is the value of ϕ?

16.6 Answers to Selected Examples

1. We already know the derivative of ex , but suppose we did not. Let y = ex . Then applying the logarithm

operator to this equation gives

ln y = ln(ex) = x.

Now applying the differentiation operator to the equation (and remembering the chain rule) gives

dy

y
= dx,

so dy
dx = y , and since y = ex from our original definition, we have

dy

dx
= ex ,

as expected.

(Return)
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2. Similarly to the above example, let y = ax . Then taking the logarithm gives

ln y = ln(ax) = x ln a.

Differentiating gives
dy

y
= (ln a) dx

And so
dy

dx
= y(ln a) = ax ln a,

as desired.

(Return)

3. Let y = xx . Taking the logarithm gives

ln y = x ln x.

Differentiating (using the product rule on the right) gives that

dy

y
= x

1

x
dx + ln x dx.

Next, factoring and solving for dy
dx gives

dy

dx
= y(1 + ln x) = xx(1 + ln x)

(Return)

4. Let y = f (x)g(x). Applying the logarithm gives ln y = g(x) ln f (x), and differentiating gives

dy

y
= g(x)

1

f (x)
f ′(x) dx + g′(x) ln f (x) dx.

Factoring and solving for dy
dx shows

dy

dx
= y

[
g(x)

1

f (x)
f ′(x) + g′(x) ln f (x)

]
= f (x)g(x)

[
g(x)

f (x)
f ′(x) + g′(x) ln f (x)

]

(Return)

5. Letting y = ln x , we exponentiate the equation to find

ey = x.

Now, differentiating gives

ey dy = dx,

and solving for dy
dx gives

dy

dx
=

1

ey
=

1

e ln x
=

1

x
,

as desired.

(Return)
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6. Letting y = arcsin x , take the sine of the equation to find

sin y = x.

Now, differentiating gives

cos y dy = dx.

Thus, we find that
dy

dx
=

1

cos y
.

Now, a little bit of trigonometry helps rewrite sec y in terms of x . Our original equation had y = arcsin x .

That means that y is the angle such that sin y = x . Since sine is the opposite over the hypotenuse, we

can express this relationship with the following right triangle:

where the adjacent leg comes from the Pythagorean theorem. It follows that cos y =
√

1− x2, and so

we find
dy

dx
=

1

cos y
=

1√
1− x2

.

(Return)

7. Let y = arctan(x). Applying tan to the equation gives

tan y = x,

and differentiating gives

sec2 y dy = dx.

Therefore,

dy

dx
=

1

sec2 y

We can now do similar right triangle trig as in the previous example. Or we can recall that by the

Pythagorean identity for tangent and secant, we have

tan2 y + 1 = sec2 y

Making this substitution gives

dy

dx
=

1

sec2 y

=
1

tan2 y + 1

=
1

x2 + 1
.

(Return)
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8. Let y be the function given by

y =
(

1 +
a

x

)x
.

Take the logarithm of both sides, and use the power property of logarithms to see

ln y = ln
(

1 +
a

x

)x
= x ln

(
1 +

a

x

)
.

Now, taking the limit of both sides gives

lim
x→∞

ln y = lim
x→∞

x ln
(

1 +
a

x

)
.

Now, since x → ∞, we have that a
x is small, and so we can use our Taylor series for ln(1 + x), which

gives us that

lim
x→∞

ln y = lim
x→∞

x ln
(

1 +
a

x

)
= lim

x→∞
x

(
a

x
+O

(
1

x2

))
= lim

x→∞
a +O

(
1

x

)
= a.

Recall from our limit rules that the order of the logarithm and the limit can be switched since the logarithm

is a continuous function. Thus

ln
(

lim
x→∞

y
)

= a.

So, exponentiating both sides, we have that

lim
x→∞

y = ea,

as desired.

(Return)

9. First, taking the logarithm gives

ln y = y ln x.

Now, differentiating the equation (implicitly) gives

dy

y
= ln x dy + y

dx

x

Factoring and solving for dy
dx gives (

1

y
− ln x

)
dy = y

dx

x

dy

dx
=

y

x (1/y − ln x)

=
y2

x(1− y ln x)
.

This shows that although a function may be difficult to understand, it can nevertheless be fairly easy to

find its derivative.

(Return)
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17 Antidifferentiation
This module begins our study of integration. Integration, or anti-differentiation, can be thought of as running

differentiation in reverse, or undoing the derivative.

This motivates the following definition:

The Indefinite Integral

The indefinite integral of f (t), denoted
∫
f (t) dt, is the class of functions whose derivative is f (t).

∫
f (t) dt

is also referred to as the anti-derivative of f . The act of taking the indefinite integral is an operator which

is referred to as anti-differentiation or integration.

Note

The indefinite integral of a function is only defined up to an added constant, called the constant of integration.

In other words, if F (x) is an anti-derivative of f (x), then G(x) = F (x) + C, C a constant, is also an anti-

derivative of f , because C disappears when differentiated. Conversely, any two indefinite integrals of f (x) differ

only by some constant.

Any of the known derivatives from the previous chapter can be rephrased as an integral. For example, just

as there was a power rule for differentiating monomials, there is a corresponding power rule for integrating

monomials. And any anti-derivative can easily be checked by taking the derivative and seeing that the result

gives back the original function.

Example

Give the integral of each of the following functions: xn, 1
x , sin x , cos x , ex . (See Answer 1)

There are other functions which are harder to integrate by merely using one of the derivatives we already know.

Some of these can be integrated using other techniques from upcoming modules, but there are also functions

whose anti-derivative cannot be expressed in terms of simple functions.

17.1 Differential equations

The motivating problem for the study of anti-differentiation is solving a differential equation. A differential

equation is an equation involving a function and its derivative. In this course, we deal with ordinary differential

equations, ODEs, which are differential equations involving only functions of one variable and the derivative
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with respect to that variable (future courses deal with partial differential equations, which involve functions of

several variables and partial derivatives).

Solving a differential equation means finding the function (or class of functions, usually) which satisfy the

differential equation.

A Simple ODE

The simplest differential equation is of the form

dx

dt
= f (t).

Here, the goal is to find the function x(t) whose derivative with respect to t is f (t). But this is precisely what

the integral is. And so, the solution of the differential equation dx
dt = f (t) is given by x(t) =

∫
f (t)dt.

Using the interpretation of the derivative as slope, one can think of the function f (t) as describing the slope of

the function x(t):

Thus, x(t) is a function which fits the slopes prescribed by f (t). Note that any constant vertical shift of a

solution x(t) will still have the same slope at each point. This is one interpretation of the integration constant:

it represents the potential vertical shifts to a solution of the differential equation.

Example

Consider a falling object. Let x(t) be the height of the object at time t, v(t) be the velocity of the object,

and assume that acceleration is the constant −g (negative because gravity pulls down). Express the height

of the object as a function of t, v0, and x0; here, v0 and x0 are the velocity and height of the object,

respectively, at time t = 0. (See Answer 2)

The Next Simplest ODE

Another slightly more complex ODE is of the form

dx

dt
= f (x).
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Before we discuss how to solve this in general, we consider a specific example, which is one of the most famous

differential equations:
dx

dt
= ax,

where a is a constant. We solve this differential equation in three different ways:

1. (Guess) Solve this differential equation by first observing that x = Cet satisfies dx
dt = x and then adjusting

the exponent so that an extra factor of a comes out when differentiating. Hint: remember the chain rule.

(See Answer 3)

2. (Series) Solve the differential equation by assuming

x(t) = c0 + c1t + c2t
2 + c3t

3 + · · ·

and then determining what the constants ci must be to satisfy the differential equation. (See Answer 4)

3. (Integration) Rearrange the differential equation into the form

dx

x
= a dt

and integrate both sides to solve the differential equation. (See Answer 5)

The differential equation from this example is sometimes used as a simple model of population growth. In words,

the differential equation says that the growth of a population is proportional to the size of the population. As the

solution above slows, this model implies the population has exponential growth. This is not a very good model

for most populations because of competition for resources and overcrowding. But under certain conditions and

for short periods of time, some populations (for instance, bacteria with an abundant food supply) do exhibit

exponential growth. For more examples of exponential growth, see the next module.

17.2 Initial value problems

Although a general differential equation’s solution often depends on a constant (sometimes several), an addi-

tional condition called an initial value or initial condition can specify a specific solution. This condition is usually

of the form y(t0) = y0. A differential equation with such an initial condition is called an initial value problem.

To solve such a problem, first find the general solution and then use the initial value to find the specific constant

of integration which satisfies the initial condition.

In the context of population growth, the initial value is typically the size of the population at time 0. This

is particularly nice in the exponential growth model, because the solution is of the form P (t) = DeAt . So if

P (0) = P0 is given, then plugging this in gives P (t) = P0e
At .

17.3 EXERCISES

•
∫

(4x3 + 3x2 + 2x + 1) dx =

•
d

dx

∫
ln tan x dx =

•
∫ (

d

dx
e−x
)
dx =
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• Find the general solution of the differential equation

dx

dt
= t2

• Find the general solution of the differential equation

dx

dt
= x2

• There is a large class of differential equations – the so-called “linear” ones – for which we can find solutions

using the Taylor series method discussed in the Lecture. One such differential equation is

t
d2x

dt2
+
dx

dt
+ tx = 0

This is a particular case of the more general “Bessel differential equation,” and one solution of it is given

by the Bessel function J0(t) that we saw earlier. Notice that this involves not only the first derivative but

also the second derivative. For this reason, it is said to be a “second order” differential equation.

In this problem we will content ourselves with finding a relationship (specifically, a “recurrence relation”)

on the coefficients of a Taylor series expansion about t = 0 of a solution to our equation. Hence consider

the Taylor series

x(t) =

∞∑
k=0

ckt
k

Substituting this into the differential equation above will give you two conditions. The first one is c1 = 0.

What is the other one?

“Note:” this problem involves some nontrivial manipulation of indices in summation notation. Do not get

discouraged if it feels more difficult than other problems: it is!

• Find the general solution of the differential equation

dx

dt
= t3 + x2t3

17.4 Answers to Selected Examples

1. ∫
xndx =

1

n + 1
xn+1 + C∫

1

x
dx = ln |x |+ C∫

sin xdx = − cos x + C∫
cos xdx = sin x + C∫
exdx = ex + C

(Don’t forget the constant!)

(Return)
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2. We know from an earlier module that
dv

dt
= a = −g.

Beginning with the second of these equations, we find that

v(t) =

∫
(−g) dt = −gt + C.

We can determine C by plugging in t = 0. This cancels that −gt and leaves us with C = v(0) = v0, the

initial velocity. Thus,

v(t) = −gt + v0

Now, using the fact that
dx

dt
= v ,

we find that

x(t) =

∫
v(t) dt

=

∫
(−gt + v0) dt

= −
1

2
gt2 + v0t + C.

Again, we can find C by plugging in t = 0. This leaves us with x(0) = C, and so C = x0, the initial

height. Thus,

x(t) = −
1

2
gt2 + v0t + x0.

(Return)

3. Observe that x = Ceat will get an extra factor of a when differentiated by the chain rule. That is,

d

dt

(
Ceat

)
= aCeat .

And so x(t) = Ceat is a solution of the differential equation.

(Return)

4. Assuming that

x(t) = c0 + c1t + c2t
2 + c3t

3 + · · · ,

and then taking the derivative of this series, term by term, we find

dx

dt
= 0 + c1 + 2c2t + 3c3t

2 + · · · .

On the other hand, from the original differential equation we have

dx

dt
= ax

= a
(
c0 + c1t + c2t

2 + c3t
3 + · · ·

)
= ac0 + ac1t + ac2t

2 + ac3t
3 + · · · .
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Because these two series both equal dx
dt , they must be equal to each other. But two series are equal if

and only if their corresponding coefficients are equal. Therefore,

c1 = ac0

2c2 = ac1

3c3 = ac2,

and so on. Solving these equations one by one gives

c1 = ac0

c2 =
1

2
ac1 =

1

2
a2c0

c3 =
1

3
ac2 =

1

6
a3c0

And, generally, cn = 1
n!a

nc0 (this can be proven using a method called induction). Doing a little bit of

factoring and grouping of factors, we find

x(t) = c0 + ac0t +
1

2!
a2c0t

2 +
1

3!
a3c0t

3 + · · ·

= c0

(
1 + (at) +

1

2!
(at)2 +

1

3!
(at)3 + · · ·

)
= c0e

at ,

which is, again, of the form Ceat .

(Return)

5. Using the chain rule and substituting according to the differential equation, we have

dx =
dx

dt
dt

dx = ax dt

dx

x
= a dt.

Integrating both sides of the equation gives

ln x = at + C

(only one constant of integration is necessary here, because a constant on the left side could be subtracted

from both sides and absorbed into C). Now, exponentiating the equation gives x = eat+C . By exponential

rules, eat+C = eateC , and the eC is often rewritten as a new constant, often written C again.

Thus, the solution to dx
dt = ax is x(t) = Ceat , where C is any constant.

(Return)
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18 Exponential Growth Examples

Recall from the last module that the differential equation dx
dt = ax has solution x = Ceat , where C is some

constant. The constant C can be thought of as an initial condition, the value of the function at time t = 0.

When a > 0, the function has exponential growth. When a < 0, the function has exponential decay :

This module is devoted to several examples of exponential growth and decay.

18.1 Radioactive decay

Carbon-14 is a radioactive isotope of carbon which exists in organic materials. It is known that the rate at which

carbon-14 atoms decay is proportional to the number of carbon-14 atoms present. If I represents the number

of atoms, then the differential equation is
dI

dt
= −λI,

where λ is positive (and so the number of atoms is decreasing).
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18.2 Population growth

For bacteria with an abundant food supply, the population P satisfies

dP

dt
= bP,

for some positive b. But as the food supply dwindles, or overcrowding occurs, the population growth will

necessarily slow (or else the bacteria would eventually consume the earth). Thus, this is not usually an accurate

population model.

18.3 Interest accumulation

Consider a bank account with initial deposit (also called the principal) P , annual interest rate r , and which is

compounded n times a year (so n = 1 gives simple interest, n = 4 is quarterly interest, etc.). Then the value

of the account at the end of k years is P
(

1 + r
n

)nk
. What happens as n gets bigger and bigger? Recall that

lim
n→∞

(
1 +

α

n

)n
= eα. Then it follows that

lim
n→∞

P
(

1 +
r

n

)nk
= lim

n→∞
P
[(

1 +
r

n

)n]k
= Perk .

This is called continuous compounding. So an account with continuous compounding is worth Perk after k

years, where P is the initial investment, and r is the annual interest rate.

Rule of 70

The Rule of 70 is a mental math trick that approximates the number of years it takes for a continuously

compounded account to double in value. The rule says that

# years for the account to double =
70

100r
.

In other words, the number of years is 70 divided by the annual percentage. Verify the Rule of 70. (See Answer

1)

18.4 Linguistics

Historical linguists study (among other things) word usage and the rate at which words fall out of use. Let W (t)

be the number of words which are in active use in English after t years. One model predicts that dW
dt = −λW ,

hence W = Ce−λt , and C is the number of common words at time 0.

Example

Suppose the writing of John Milton (from around 1667) consists of 20% words which are unfamiliar to us

today. Use the above model to estimate the fraction of words that Shakespeare’s audience (from around

1600) recognized of Chaucer’s writing (from around 1400). (See Answer 2)

This model ignores the creation of new words as well as the fact that definitions of existing words can evolve

over time. So it is probably not the most accurate model. It is worth noting that even if the mathematics are

correct, if the underlying model is not very good, then the resulting answer will not be very good either.
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18.5 Zombies

Suppose in the zombie apocalypse that the rate of change of the infected population Z(t) is proportional to

the uninfected population U(t). Let P be the total population (assumed to be constant). Then

dZ

dt
= rU = r(P − Z),

since U = P − Z (the number of uninfected is the total population less the infected). Taking the derivative of

U = P − Z gives

dU

dt
=
dP

dt
−
dZ

dt

= −
dZ

dt

= −rU,

since P was assumed to be constant. Thus, U(t) = U0e
−r t , where U0 is the initial uninfected population. And

so the zombie population is given by

Z(t) = P − U0e
−r t .

Note the population is doomed, as Z(t)→ P as t →∞.

Although a zombie apocalypse is unlikely, this model is still useful for other phenomena involving how quickly

something spreads. This includes the spread of disease, propaganda, and technology. Another example is heat

transfer, discussed in detail below.

18.6 Newton’s law of cooling

Newton’s law of cooling says that the rate of change of the temperature of a body is proportional to the

difference of the temperatures of the body and ambient environment. Let T be the temperature of the body

and A be the ambient temperature. Then
dT

dt
= k(A− T ),

for some positive constant k . Separating gives

dT

T − A = −k dt,

and integrating and exponentiating gives T − A = Ce−kt . Thus the solution is T = A + Ce−kt . Note that

k must be positive for this to model to make sense. Indeed, as t → ∞, the temperature of the body should

approach the ambient temperature, which will only happen if k > 0. Also, note that C = T0 − A is the initial

difference in temperature.

18.7 EXERCISES

• After drinking a cup of coffee, the amount C of caffeine in a person’s body obeys the differential equation

dC

dt
= −αC

where the constant α has an approximate value of 0.14 hours−1

How many hours will it take a human body to metabolize half of the initial amount of caffeine?
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• The amount I of a radioactive substance in a given sample will decay in time according to the following

equation:
dI

dt
= −λI

Nuclear engineers and scientists tend to be concerned with the “half-life” of a substance, that is, the time

it takes for the amount of radioactive material to be halved.

Find the half-life of a substance in terms of its decay constant λ.

• In a highly viscous fluid, a falling spherical object of radius r decelerates right before reaching the bottom

of the container. A simple model for this behavior is provided by the equation

dh

dt
= −

α

r
h,

where h is the height of the object measured from the bottom, and α is a constant that depends on the

viscosity of the fluid.

Find the time it would take the object to drop from h = 6r to h = 2r in terms of α and r .

• On a cold day you want to brew a nice hot cup of tea. You pour boiling water (at a temperature of 212◦

F) into a mug and drop a tea bag in it. The water cools down in contact with the cold air according to

Newton’s law of cooling:

dT

dt
= κ(A− T )

where T is the temperature of the water, A = 32◦F the ambient temperature, and κ = 0.36 min−1.

The threshold for human beings to feel pain when entering in contact with something hot is around 107◦

F. How many seconds do you have to wait until you can safely take a sip?

• On the night of April 14, 1912, the British passenger liner RMS Titanic collided with an iceberg and sank

in the North Atlantic Ocean. The ship lacked enough lifeboats to accommodate all of the passengers, and

many of them died from hypothermia in the cold sea waters. Hypothermia is the condition in which the

temperature of a human body drops below normal operating levels (around 36◦C). When the core body

temperature drops below 28◦C, the hypothermia is said to have become severe: major organs shut down

and eventually the heart stops.

If the water temperature that night was -2◦C, how long did it take for passengers of the Titanic to enter

severe hypothermia? Recall from lecture that heat transfer is described by Newton’s law of cooling:

dT

dt
= κ(A− T )

where T is the body temperature of a passenger, A the water temperature, and κ = 0.016 min−1.

• The birthrate of a population (number of births per year × 100 / number of population) is 20%, and the

mortality rate (number of deaths per year × 100/ number of population) is 5%. If the initial population

is 10,000, find the function P (t), the population as a function of time. How long does it take for the

population to double?

• Let y(t) denote the number of atoms of a particular radioactive isotope of carbon at year t. We know

that the rate at which y(t) decreases is proportional to y itself. (a) What differential equation does y(t)

satisfy? (b) If it takes 5 years for the number to decrease to half of its initial number, what is the constant

involved in your answer of part (a)?
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18.8 Answers to Selected Examples

1. The problem asks for k when the balance has doubled. That is, find k such that

2P = Perk .

Dividing by P and taking logarithms gives rk = ln(2), so k = ln(2)
r . Since ln(2) ≈ .7, this shows that

k =
ln(2)

r

≈
.7

r

≈
70

100r
,

as desired.

(Return)

2. Let t denote time measured in years. Let WM(t) denote the number of words from Milton’s time which

are in common use at time t. Then

WM(t) = WM(1667)e−λ(t−1667)

(the t−1667 is used in the exponent because we are interested in the number of years since Milton). Let

WC(t) denote the number of words from Chaucer’s time which are in common use at time t. Then

WC(t) = WC(1400)e−λ(t−1400).

From the given information, we have that

WM(2013)

WM(1667)
=

4

5
.

And according to the above formula, we have

WM(1667)e−λ·346

WM(1667)
=

4

5
.

The factors of WM(1667) cancel, leaving

e−λ·346 =
4

5
.

Taking the logarithm of both sides and dividing by −346 gives

λ =
− ln(4/5)

346
≈ 6.5× 10−4.

Knowing λ allows us to compute the fraction of words from Chaucer’s time that would be recognized in

Shakespeare’s time:

WC(1600)

WC(1400)
=
WC(1400)e−λ(200)

WC(1400)

= e−λ(200)

≈ .88

So, according to this model, approximately 88% of words from Chaucer’s work would have been understood

in Shakespeare’s time.

(Return)
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19 More Differential Equations

Recall that an ordinary differential equation is an equation involving a function and its derivatives. The solution

to a differential equation is a function which satisfies the equation. An earlier module introduced a few basic

differential equations. This module deals with a few different families of differential equations and the methods

of solving them.

19.1 Autonomous differential equations

A differential equation is called autonomous if the derivative of the function x(t) is independent of t, i.e. the

equation is of the form
dx

dt
= f (x).

Logically, a nonautonomous differential equation is one where the derivative equals a function of both x and t:

dx

dt
= f (x, t).

In general, nonautonomous differential equations can be very difficult, but certain types yield to a little algebra

and integration. These include separable differential equations and linear first order differential equations, which

are covered here.

19.2 Separable differential equations

A separable differential equation is one where, with a little algebra, we are able to express the differential

equation in the form
dx

dt
= f (x)g(t).

This may involve some algebra. Note in particular that any autonomous equation is separable (think of g(t) = 1).

Once a differential equation is factored this way, it can be solved by using the chain rule and some algebra:

dx =
dx

dt
dt

dx = f (x)g(t) dt

dx

f (x)
= g(t) dt.
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(This is why these equations are called separable–the variables can be separated to opposite sides of the

equation). To solve this equation, one must find the functions whose derivatives are 1
f (x) and g(t), respectively.

In other words, one integrates both sides.

Example

Solve the differential equation

y ′ = 3yx2.

(See Answer 1)

Example

Solve the differential equation
dx

dt
= et−x .

(See Answer 2)

Example

Solve the initial value problem dy
dx = xy + x , with y(0) = 3. (See Answer 3)

Example

Assume that a falling body with mass m has a drag force proportional to velocity v(t). Then the downward

acceleration mg is being counteracted by the upward acceleration κv , for some constant κ. Thus,

m
dv

dt
= mg − κv

= −κ
(
v −

mg

κ

)
.

which is separable. Solve this differential equation. (See Answer 4)

19.3 Linear 1st order differential equations

The product rule gives a technique (integration by parts) for seemingly difficult integrals; the product rule

also gives a technique for solving a certain class of non-separable differential equations called linear 1st order

differential equations. This is a differential equation which can be written in the form

dx

dt
= A(t)x + B(t)

(as for separable differential equations, this may involve a little algebra). This form gives the reason for calling

these equations linear, since dropping the t’s gives

dx

dt
= Ax + B,

which is reminiscent of the equation of a line. 1st order means that the equation only involves the function x

and its derivative dx
dt (and no higher derivatives), along with functions of t.
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The standard form of a linear 1st order differential equation is achieved by bringing all the terms involving x to

the left side, which gives
dx

dt
− A(t)x = B.

Example

Identify which of these is a linear 1st order differential equation, and put it in standard form if it is. In the

cases that are not, identify which condition is violated. Are all separable equations also linear 1st order?

1. tx ′ + x = 0

2. x ′ − etx2 = 0

3. x ′ = x sin(t)

4. x ′′ − t2 dx
dt = 0

(See Answer 5)

Integrating factors

The method for solving linear 1st order differential equations is to use the product rule to factor the sum of

two derivatives into the derivative of a product. It is best explained by example.

Example

In part 1 from the previous example, note that tx ′ + x = (tx)′ by the product rule. So that differential

equation can be written as (tx)′ = 0. Integrating both sides gives tx = C for some constant C. Thus the

solution is x = C
t .

However, not all linear 1st order differential equations are expressed so nicely. For instance, in example

3 above, one cannot rewrite x ′ − sin(t)x as the derivative of a product of functions. This is where an

integrating factor is used.

The integrating factor, denoted by I(t) in this course, is a function which is multiplied through the entire

differential equation, giving

I
dx

dt
− IAx = IB.

I(t) is chosen so that the left side of this equation can be factored as a derivative of a product using the

product rule. Symbolically, the goal is to choose I(t) so that

I
dx

dt
− IAx =

d

dt
(Ix).

To find I, expand the product d
dt (Ix) = I dxdt + dI

dt x . For this to equal the left side of the above equation, it

must be that −IA = dI
dt . This differential equation is separable, and one finds that dI

I = −Adt. Integrating

and exponentiating gives that

I(t) = e
∫
−A(t) dt .

One need not work through all this algebra every time but can jump straight to writing down the integrating

factor. Multiplying through by the integrating factor allows the left side to be rewritten by the product rule,

and integrating both sides finishes the problem.

To summarize the method:
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1. Get the differential equation into standard form dx
dt − A(t)x = B(t).

2. Compute the integrating factor I(t) = e−
∫
A(t) dt .

3. Multiply the entire equation by I(t), which gives

I
dx

dt
− IAx = IB.

1. Rewrite the left side as the derivative of a product (this works because of the way I(t) was chosen):
d
dt (Ix) = IB.

2. Integrate both sides and then divide by I.

3. The final answer, then, is given by

x(t) = e
∫
A ·
∫
Be−

∫
A.

Example

Solve the differential equation

tx ′ + tx = t2.

Hint:
∫
tet dt = tet − et + C. (See Answer 6)

Example

Suppose a 1000 gallon tank is 90% full. An additive is is pumped into the tank at a rate of 10 gallons per

minute. The mixture is well stirred and drained at a rate of 5 gallons per minute.

What is the concentration of the additive when the tank is full? (See Answer 7)

19.4 EXERCISES

• Solve the differential equation
dx

dt
=
x

t
.

• Solve the differential equation
dx

dt
=

√
1− x2

√
1− t2

.

• Given that x(0) = 0 and
dx

dt
= tex , compute x(1).

• What integrating factor should be used to solve the linear differential equation

t2 dx

dt
= 4t − t5x

• Solve the differential equation
dx

dt
− 5x = 3.

• Solve the differential equation
dx

dt
=

x

1 + t
+ 2.
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• Suppose that, in order to buy a house, you obtain a mortgage. If the lender advertises an annual interest

rate r , your debt D(t) will increase exponentially according to the simple O.D.E.

dD

dt
= rD

If you pay your debt at a rate of P (annual rate, paid continuously), the evolution of your debt will then

(under assumptions of continual compounding and payment) obey the linear differential equation

dD

dt
= rD − P

Using this model, answer the following question: if initial amount of the mortgage is for $400,000, the

annual interest rate is 5%, and you pay at a rate of $40,000 every year, how many years will it take you

to pay off the debt?

• German physician Ernst Heinrich Weber (1795-1878) is considered one of the fathers of experimental

psychology. In his study of perception, he noticed that the perceived difference between two almost-equal

stimuli is proportional to the percentual difference between them. In terms of differentials, we can express

Weber’s law as

dp = k
dS

S
,

where p is the perceived intensity of a stimulus and S its actual strength. Observe the relative rate of

change on the right hand side. In what way must the magnitude of a stimulus change in time for a human

being to perceive a linear growth? Linearly? Logarithmically? Polynomially?

• Some nonlinear differential equations can be reduced to linear ones by a clever change of variables.

Bernouilli equations

dx

dt
+ p(t)x = q(t)xα, α ∈ R

constitute the most important case. Notice that for α = 0 or α = 1 the above equation is already linear.

For other values of α, the substitution u = x1−α yields a linear differential equation in the variable u.

Apply the above change of variables in the case

dx

dt
+ 2tx = x3

What differential equation on u do you get?

19.5 Answers to Selected Examples

1. Separating gives
dy

y
= 3x2 dx.

Integrating both sides, we have ∫
dy

y
=

∫
3x2 dx

ln y = x3 + C.
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Now exponentiating both sides gives

y = ex
3+C

= Cex
3

,

for some constant C (remember that the C is not the same in the first and second line above, but we

just rewrite it for convenience).

(Return)

2. First, using a law of exponents on the right side, we have

et−x = ete−x .

Now, separating gives

ex dx = et dt.

We might be tempted at this point to say x = t because of the symmetry of this equation. But we must

integrate both sides, which introduces an integration constant:

ex = et + C.

Now taking the logarithm gives

x = ln(et + C).

Note We must have the integration constant contained within the natural logarithm. In general, it is best

to introduce the integration constant as soon as the integration occurs. A common mistake is to forget

the constant and then at the very end of the problem add it. This is frequently incorrect, as in this case.

(Return)

3. First, this differential equation does not look like it is of the form of a separable differential equation.

However, with a little factoring, one finds that dy
dx = x(y + 1). Thus,

dy

y + 1
= x dx.

Anti-differentiating gives ln |y + 1| = 1
2x

2 + C. Then, exponentiating gives

|y + 1| = ex
2/2+C = Dex

2/2.

Apply the initial condition by plugging in x = 0 and y = 3, which gives that D = 4. Thus, the solution

to the initial value problem is y = 4ex
2/2 − 1. One should double check that this satisfies the differential

equation.

(Return)

4. Separating gives
dv

v −mg/κ = −
κ

m
dt.

Integrating both sides gives ln(v −mg/κ) = −κt/m + C, and so exponentiating and solving for v gives

v = Ce−κt/m +
mg

κ
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(here C is replacing the constant eC from exponentiating). Note that as t → ∞, the exponential term

goes to 0, and so v(t)→ mg
κ , which is the terminal velocity of the falling body (when the force of gravity

and drag cancel each other).

(Return)

5. 1. Linear 1st order. Standard form is x ′ + 1
t x = 0.

2. Not linear because of the x2. Note that this is separable though.

3. Linear 1st order. Standard form is x ′ − sin(t)x = 0.

4. Not 1st order because of the presence of x ′′.

Number 2 shows that a differential equation can be separable even though it is not linear 1st order.

(Return)

6. Divide through by t to get the equation in standard form: x ′ + x = t. Compute the integrating factor

I = e
∫
dt = et .

Multiplying through gives

etx ′ + etx = ett.

Rewriting this using the product rule gives (etx)′ = tet . Integrating both sides and using the hint gives

etx = tet − et + C.

Finally, dividing by et gives

x = t − 1 +
C

et

as a final answer.

(Return)

7. Begin by setting up a few variables to help make sense of what is happening. Let V (t) be the volume of

the total mixture at time t. Let Q(t) be the total amount of additive in the mixture at time t. Let C(t)

be the concentration of the mixture, i.e.

C(t) =
Q(t)

V (t)
.

The volume is not too difficult to compute. Since there are 10 gallons per minute entering the tank, and

5 gallons per minute leaving the tank, the net amount of fluid entering the tank is 5 gallons per minute.

The tank begins at 90% full, which is 900 gallons. So

V (t) = 900 + 5t,

and is full at t = 20. Next, consider the rate at which the quantity Q(t) of additive in the tank is changing.

There is 10 gallons of pure additive entering per minute and 5 gallons of mixture leaving. Therefore the

amount of additive leaving is 5C. Putting this together gives

d

dt
Q = 10− 5C = 10−

5Q

900 + 5t
.

Rearranging this gives
dQ

dt
+

1

180 + t
Q = 10.
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This is a 1st order linear differential equation. Computing the integrating factor we find

I = exp

(∫
1

180 + t
dt

)
= exp(ln(180 + t))

= 180 + t.

Multiplying through gives

(180 + t)
dQ

dt
+Q = 10(180 + t).

Now, as always, the left side can be rewritten using the product rule to give

d

dt
[Q(180 + t)] = 1800 + 10t.

Integrating both sides gives

Q · (180 + t) = 1800t + 5t2 +K

(using K here to avoid confusion with concentration C). We can find K by setting t = 0 in this equation.

Since Q(0) = 0 (there is no additive in the tank initially), we find K = 0.

Now, solving for Q and evaluating at t = 20 gives

Q =
1800t + 5t2

180 + t

= 190.

So the final concentration of the full tank is

190

1000
= 19%.

(Return)
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20 ODE Linearization
We have seen techniques for solving two types of differential equations: separable and linear. Unfortunately,

there are a lot of differential equations which do not fit into these categories. In some of these cases, we can

use linearization to determine the behavior of such differential equations.

20.1 Oscillation

How does one model oscillation? It turns out that a first order differential equation will not work, but a second

order (i.e. involving the second derivative) equation will:

d2x

dt2
= −a2x.

Solving such an equation is beyond the scope of this course, but in a course on differential equations one finds

the pair of solutions

x = C1 cos(at)

x = C2 sin(at).

For this course we will look at a simpler way to model oscillation.

20.2 Simple Oscillator

Consider a spinner where θ(t) represents the angle the arrow makes with the positive x-axis at time t. Then θ

increases linearly with t and whenever θ gets to 2π, it goes back to 0: (Click Here: Simple Oscillator Animated

GIF)

This can be modeled by

dθ

dt
= a

θ = at + θ0 mod 2π

where mod 2π means ”take the remainder when divided by 2π”. Here a can be thought of as the frequency

of the spinner (e.g. how many revolutions per minute it makes).
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20.3 Coupled Oscillators

Now consider two simple oscillators, θ1 and θ2, with the same frequency a, but which are slightly out of phase

with each other (i.e. one arrow is slightly ahead of the other): (Click Here: Two Oscillators Animated GIF)

Now suppose these oscillators are coupled so that each exerts a small influence on the other (e.g. by connecting

their axles with a rod). One way to represent this mathematically is to adjust the rates of change of the oscillators

so that they are affected by the difference in angles:

dθ1

dt
= a + ε sin(θ2 − θ1)

dθ2

dt
= a − ε sin(θ2 − θ1).

Here, ε is some small constant which represents the strength of the effect of the coupling. When θ2 is bigger

than θ1, the above differential equations speed up θ1 slightly and slow down θ2 slightly. One can find by

simulation that this coupling effect causes the oscillators to synchronize relatively quickly, depending on how

big the phase is between them and how big ε is: (Click Here: Coupled Oscillators Animated GIF)

Synchronization

To analyze the synchronization effect mathematically, consider the phase ϕ between the two oscillators:

ϕ = θ2 − θ1.

Looking at how the phase ϕ changes with respect to time gives

dϕ

dt
=
d

dt
(θ2 − θ1)

=
dθ2

dt
−
dθ1

dt

= (a − ε sin(θ2 − θ1))− (a + ε sin(θ2 − θ1))

= −2ε sin(θ2 − θ1)

= −2ε sin(ϕ).

This is a separable differential equation, but solving it to find ϕ as an explicit function of t is not so easy, and

does not really help us understanding the synchronization phenomenon. But linearization will help us understand

the synchronization effect and how quickly it occurs.

Linearization

Going back to the differential equation for the phase, suppose we replace sinϕ with its linearization:

dϕ

dt
= −2ε sinϕ

= −2ε
(
ϕ+O(ϕ3)

)
≈ −2εϕ.

This will be a good approximation assuming the phase is small (the oscillators are not too far out of sync). This

is a familiar differential equation, which gives us the approximate solution

ϕ(t) ≈ ϕ0e
−2εt ,
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where ϕ0 is the initial phase. This is called the linearized solution to the original differential equation. Here, the

linearized solution predicts that the phase decays exponentially, which is consistent with the above simulation.

20.4 Equilibria

Another way to study differential equations and predict their behavior, is to study the equilibria of the equation.

An equilibrium of the equation

ẋ = f (x)

(here, ẋ = dx
dt ), is a solution x(t) = C, C a constant, such that ẋ = 0. In other words, an equilibrium is a

root of f . In terms of the differential equation, an equilibrium is a steady state where the quantity x does not

change.

One way to find the equilibria of a differential equation is to plot the derivative of a function versus the function

itself. From the phase differential equation above, we plot ϕ̇ on the y-axis and ϕ on the x-axis and look for

roots:

The roots of this equation are the values of ϕ for which sinϕ = 0. For the range of values in which we

are interested, the roots are ϕ = −π, 0, π. The equilibrium at 0 is familiar, because that is the state of

synchronization to which the above simulation converged. The other two correspond to a phase of π, which

means the oscillators are completely opposite one another (it is the same for −π since these angles are co-

terminal).

Stable and Unstable

A logical question at this point is why did the above coupled oscillator simulation eventually synchronize rather

than ending up in opposite directions?

In general, some equilibria are attractive in the sense that if the quantity x gets near such an equilibrium, it will

be drawn towards it and stay at it. Some equilibria are repellent in the sense that even if x is very close to such

an equilibrium, it will be pushed away from it. Formally,
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Stable and Unstable Equilibria

An equilibrium C of the differential equation

dx

dt
= f (x)

is stable if f ′(C) < 0 and is unstable if f ′(C) > 0.

It is best to make sense of these definitions visually. Plot ẋ versus x . Then each root of this equation is an

equilibrium. If the graph crosses from positive to negative (going from left to right), then the equilibrium is

stable. If the graph crosses from negative to positive (again, from left to right), then the equilibrium is unstable:

Another way to think of stable and unstable equilibria is to visualize one ball sitting in a bowl, and another ball

sitting on top of an inverted bowl:

Each of these balls is in equilibrium (it will stay where it is as long as it is not disturbed). But the ball in the

bowl is stable because if we nudge it in either direction, it will return to its equilibrium. However, the ball on

the inverted bowl is unstable because if it is nudged in either direction it will roll off the bowl.
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Example

Find and classify the equilibria of the equation

dx

dt
= x2 − 4x + 3.

(See Answer 1)

20.5 EXERCISES

• The differential equation

dx

dt
= (ex − 1)(x − 1)

has an equilibrium at x = 0. What is the linearized equation at this equilibrium? Hint: Taylor-expand the

right hand side about zero.

• There is also an equilibrium at x = 1 in the equation above. What is the linearized equation at this

equilibirum? Hint: let h = x − 1 be a local coordinate and compute ḣ = ẋ = · · · by Taylor expanding the

right hand side at x = 1.

• Recall from Lecture 18, Newton’s Law of Heat Transfer, which states that

dT

dt
= κ(A− T ),

where κ > 0 is a thermal conductivity constant and A is the (constant) ambient temperature. Find and

classify the equilibria in this system (using the derivative of the right hand side at the equilibria, recall...).

Wasn’t that easy?

• Find and classify all the equilibria of the ODE

dy

dt
= −2y + y2 + y3

• Recall from Lecture 19 how we computed the terminal velocity of a falling body with linear drag given by

m
dv

dt
= mg − κv,

where, of course, m is mass, g is gravitation, v is velocity, and κ > 0 is the drag coefficient. Can you see

how easily one can solve for the equilibrium v∞ = mg/κ? Do it!

• Very good. Now, let’s use a more realistic model of drag that is quadratic as opposed to linear:

m
dv

dt
= mg − λv2,

where λ > 0 is a constant drag coefficient. This differential equation is not as easy to solve (but soon

you will learn how). Is there is terminal velocity? What is it?
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• Recall that with continuous compounding at an interest rate of r > 0, an investment I(t) with initial

investment I0 = I(0) is I(t) = I0e
r t . What happens if you wish to withdraw funds from the investment

at a rate of spending S, where S > 0 is constant? The differential equation is:

dI

dt
= r I − S.

Your goals are as follows. You have an initial investment I0, and you cannot change it or the rate r .

You want to be able to spend as much as possible but you also don’t want to ever spend all your money.

What amount of spending rate S can you bear? Hint: if you’re not sure what to do, find and classify the

equilibria in this model and think about which initial conditions lead to which long-term behaviors.

• In our lesson, we looked at two oscillators with ”sinusoidal” coupling. Other types of coupling are possible

as well. Consider the system of two oscillators modeled by

dθ1

dt
= 2 + ε(eθ1−θ2 − 1) ;

dθ2

dt
= 2 + ε(1− eθ1−θ2 )

Consider the phase difference ϕ = θ2 − θ1. Note that ϕ = 0 (where the oscillators are coupled) is an

equilibrium. What is the linearized equation for ϕ about 0?

This looks intimidating, but is very straightforward. If you’re not sure how to start, compute
dϕ

dt
. Then

linearize this about ϕ = 0.

20.6 Answers to Selected Examples

1. Here, f (x) = x2 − 4x + 3. Factoring, one finds

dx

dt
= (x − 1)(x − 3).

So the roots (and hence the equilibria) are x = 1 and x = 3. Taking the derivative, we find

f ′(x) = 2x − 4

f ′(1) = −2 < 0

f ′(3) = 2 > 0.

Thus x = 1 is a stable equilibrium, and x = 3 is an unstable equilibrium.

(Return)
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21 Integration By Substitution

The previous modules gave some of the motivation for integration as a method of solving differential equations.

In this and the next few modules, we turn to techniques of integration.

21.1 Integration rules

Since integration is the inverse of differentiation, one can turn differentiation rules into integration rules. For

example, by the linearity of the derivative, we have linearity of the integral:∫
(u + v) dx =

∫
u dx +

∫
v dx∫

(cu) dx = c

∫
u dx

where c is a constant. In other words, integration is a linear operator.

The rest of this module deals with turning the chain rule for differentiation into a rule for integration. This rule

is called substitution, or u-substitution traditionally.

21.2 Substitution: the chain rule in reverse

Recall the chain rule, which says that if u = u(x) is a function of x , then

du =
du

dx
dx.

Now if f = f (u) is a function of u, then we find∫
f (u) du =

∫
f (u(x))

du

dx
dx

(To get from the left side to the right, all we have done is replace u and du by u(x) and du
dx dx , respectively).

This is the formula for substitution, or u-substitution.

Substitution is a useful technique but is not always easy to apply. In a typical problem, one encounters the right

side of the above equation, but without knowing what f and u are. If one can find the correct f and u so that

the integral can be expressed as above, then one can switch over to the left side of the above equation, which

is usually easier to evaluate.
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Example

Compute ∫
esin x cos x dx.

(See Answer 1)

Example

Compute ∫
2xex

2

dx.

(See Answer 2)

It is not always so easy to see the ideal choice of u, and sometimes it might take a few tries to find the right

substitution. Usually, a good strategy is to look for the inner function of a composition of functions and let

that be u. Another idea is to look for a function whose derivative is also a factor of the integrand.

Example

Compute ∫
x
√
x − 1 dx

(See Answer 3)

Another general tip for integration by substitution is to try to simplify the integrand as much as possible before

integrating.

Example

Compute ∫
cot θ csc θ dθ.

(See Answer 4)

Example

The Gompertz model for the size N(t) of a tumor at time t is

dN

dt
= −aN ln(bN),

where a > 0 and 0 < b < 1 are constants. Solve this differential equation. Hint: it is separable.

Then find the limit behavior

lim
t→∞

N(t).

Finally, find the equilibria of the original differential equation and classify them as stable or unstable. (See

Answer 5)
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Example

Compute ∫
4(2x + 5)4dx.

(See Answer 6)

21.3 Perspective

The big idea of this module is that a change of variables (a substitution of one variable for a function of

another) can change a difficult integral into an easier one. After computing the easier integral, we can change

the variables back again. This idea will come up again in this course and in multivariable calculus.

21.4 Additional Examples

Example

Compute ∫
(ln x)2

x
dx.

(See Answer 7)

Example

Compute ∫
tan θ dθ.

(See Answer 8)

Example

Compute ∫
x5
√

1 + x3 dx.

(See Answer 9)

21.5 EXERCISES

• Compute the integral

∫
3 cos x dx

• Compute the integral

∫
x sec2 x2 dx

• Compute the integral

∫
4x

(x2 − 1)3
dx
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• Compute the integral

∫
e
√
x

√
x
dx

• Compute the integral

∫
ln(15x5)

x
dx

• Compute the integral
x dx√
x + 3

dx

• Compute the integral
dx

x
√
x2 − 1

dx using the substitution u =
√
x2 − 1

• Now do the same integral using the substitution u = x−1 What is going on here?

• Compute the integral
dx

x
√
x2 + 1

dx

21.6 Answers to Selected Examples

1. Let u = sin x and f (u) = eu. Then

du =
du

dx
dx = cos x dx,

and ∫
esin x cos x dx =

∫
f (sin x)d(sin x)

=

∫
f (u) du

=

∫
eu du

= eu + C

= esin x + C.

Note that after evaluating the integral in terms of u, we usually replace u with its function of x , since the

original integral was with respect to x .

We can check that this is the correct antiderivative by differentiating (remembering to apply the chain

rule) and seeing that we get back the function which we were integrating originally.

Typically, we need not write out all the details of what f is. It is sufficient to identify u and du and then

make the necessary substitutions.

(Return)

2. The inner function here looks like u = x2. Then du = 2x dx , which is the remaining factor in the

integrand. Thus, ∫
2xex

2

dx =

∫
eu du

= eu + C

= ex
2

+ C.

(Return)
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3. Here, the inner function seems to be x − 1. So let u = x − 1. Then du = dx . This takes care of what

is under the square root, and the differential, but what about the extra factor of x? We can take care of

this factor by noting that u = x − 1 implies x = u + 1. So the integral becomes∫
x
√
x − 1 dx =

∫
(u + 1)

√
u du

=

∫
(u + 1)u1/2 du

=

∫
u3/2 + u1/2 du

=
2

5
u5/2 +

2

3
u3/2 + C

=
2

5
(x − 1)5/2 +

2

3
(x − 1)3/2 + C.

From the third to the fourth line above, we used the power rule on each term of the integrand. Again,

we can differentiate to make sure we get back to our original integrand (though it might require a little

algebra to show that they are in fact equal).

(Return)

4. Since cotangent and cosecant are not very familiar functions, it is helpful to rewrite them in terms of sine

and cosine. This gives ∫
cot θ csc θ dθ =

∫
cos θ

sin θ
·

1

sin θ
dθ

=

∫
cos θ

sin2 θ
dθ.

It is easier now to see that u = sin θ is a good choice, since its derivative du = cos θ dθ is in the numerator.

Making this substitution shows ∫
cos θ

sin2 θ
dθ =

∫
1

u2
du

=

∫
u−2 du

= −u−1 + C

= −
1

sin θ
+ C

= − csc θ + C.

Of course, if one happened to remember the fact that

d

dθ
csc θ = − csc θ cot θ,

then we would not require a substitution. But substitution allows us to do these integrals (and harder

ones) without needing to memorize a lot of information.

(Return)

5. Separating variables and integrating both sides gives∫
dN

N ln(bN)
=

∫
−a dt.
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The right side is easy, but the left side requires some work. Looking for a function whose derivative is a

factor in the integrand, we see that u = ln(bN) is a good choice. In this case

du =
1

bN
· b dN =

dN

N
.

And so, the integral on the left above becomes∫
dN

N ln(bN)
=

∫
1

u
du

= ln u + C

= ln ln(bN) + C.

Putting this together with the integral on the right above (and combining the integration constants to

one integration constant on the right), we have

ln ln(bN) = −at + C

Exponentiating twice and then dividing by b gives

N =
1

b
ee
−at+C

=
1

b
eCe

−at
.

By plugging in t = 0, we find that C = ln(bN0), where N0 is the initial size of the tumor.

In the long run, the exponential e−at → 0, since a > 0 by assumption. Therefore, the entire exponent is

going to 0, and so

lim
t→∞

N(t) =
1

b
.

Note that N(t) = 1
b is an equilibrium solution to the original differential equation, since it gives dN

dt = 0.

It is a stable equilibrium since the graph of of −aN ln(bN) goes from positive to negative as N goes from

less than 1
b to greater than 1

b .

Another equilibrium is N = 0. This is unstable, since N > 0 means dN
dt > 0. Intuitively, even if the tumor

is very tiny, it will grow according to this model.

(Return)

6. In this case, the inner function is u = 2x + 5, and one finds that du = 2dx . Thus dx = du
2 , which gives∫

4(2x + 5)4dx =

∫
4u4 du

2

=

∫
2u4du

=
2

5
u5 + C

=
2

5
(2x + 5)5 + C.

(Return)
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7. Here, a good inner function is u = ln x , because the derivative du = 1
x dx . Thus∫

(ln x)2

x
dx =

∫
u2 du

=
u3

3
+ C

=
(ln x)3

3
+ C.

(Return)

8. First, rewrite tangent in terms of sine and cosine:∫
tan θ dθ =

∫
sin θ

cos θ
dθ

Now, note that u = sin θ would not work, because its derivative, cos θ is in the denominator. On the other

hand, u = cos θ is a good substitution because its derivative (up to a constant) is in in the numerator.

That is, du = − sin θ dθ. Therefore, ∫
sin θ

cos θ
dθ =

∫
−

1

u
du

= − ln(u) + C

= − ln(cos θ) + C.

(Return)

9. The logical choice of inner function is u = 1 + x3, which gives du = 3x2 dx and so

dx =
du

3x2

Substituting in, we find ∫
x5
√

1 + x3 dx =

∫
x5
√
u
du

3x2

=
1

3

∫
x3
√
u du.

This seems problematic, because we haven’t been able to get everything in terms of u. But we can use

our original substitution to help. Since u = 1 + x3, we have that x3 = u − 1, and so

1

3

∫
x3
√
u du =

1

3

∫
(u − 1)

√
u du

=
1

3

∫
u3/2 − u1/2 du

=
1

3

(
2

5
u5/2 −

2

3
u3/2

)
+ C

=
2

15
(1 + x3)5/2 −

2

9
(1 + x3)3/2 + C.

(Return)
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22 Integration By Parts

This module uses the product rule to derive another useful integration technique: integration by parts. Recall

the product rule:

d(u · v) = u · dv + v · du.

Integrating both sides gives ∫
d(u · v) =

∫
u dv +

∫
v du.

Solving for
∫
u dv gives

Integration by parts

If u = u(x) and v = v(x) are two functions of x , then∫
u dv = uv −

∫
v du.

Intuitively, we are given a difficult integral
∫
u dv . By breaking the integrand into u and dv and applying the

above formula, we are hopefully able to wind up with an easier integral
∫
v du. Like with the substitution

technique, it requires a little bit of thought to choose suitable u and dv . Once u and dv are picked, it is a fairly

mechanical process to apply the formula (assuming a good choice of u and dv).

Note that the selection is constrained by the fact that u dv must be the entire integrand. So whatever choice

is made for u, whatever factors are left over become dv . Note also that the formula involves finding v , and so

dv must be integrable. Ideally, dv should be easy to integrate, which can help guide the selection.

Example

Compute ∫
xexdx.

(See Answer 1)

Example

Compute ∫
ln(x)dx.
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(See Answer 2)

Example

Try to compute ∫
sin x

x
dx

Hint: it cannot be done using integration by parts. (See Answer 3)

22.1 LIPET: A tip for choosing u and dv

It is not always obvious how to choose u and dv . The mnemonic LIPET gives a suggestion for how to select

u, and then whatever is left over becomes dv .

1. Logarithm

2. Inverse function

3. Polynomial

4. Exponential

5. Trigonometric.

When picking u, go down the list until some factor of the integrand first matches something from the list. So

in the first example above, there was no logarithm, no inverse function, but there was a polynomial, x , which

was chosen for u. In the second example, there was a logarithm, so that became u.

This will not always work perfectly, because (as the above example showed) some integrals simply cannot

be computed using integration by parts. But in most examples where integration by parts works, the above

mnemonic will help give the correct selection of u and dv .

Example

Compute ∫
ln x

x2
dx.

(See Answer 4)

22.2 Repeated use

Sometimes integration by parts requires repeated use, if the integral
∫
v du is not easy to compute. It is not

always easy to tell when repeating integration by parts will help, but with practice it becomes easier.

Example

Compute ∫
ex cos(x)dx.
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(See Answer 5)

Example

Compute ∫
e2x sin(3x) dx.

(See Answer 6)

There are integrals that require several applications of integration by parts before they are finished. Unfortu-

nately, it is not always clear when it will work and when it will not. Doing a lot of practice can help develop the

intuition to tell the difference.

As the next example shows, sometimes an integral that looks like a perfect candidate for integration by parts

does not yield to this method.

Example

Compute ∫
ex cosh x dx.

(See Answer 7)

22.3 Reduction formulae

A final application of integration by parts is to prove what are known as reduction formulae. These formulae

express one integral in terms of another slightly simpler integral. One can use a reduction formula to repeatedly

simplify an integral, eventually reaching a known integral. These formulae are invariably derived by using

integration by parts and some algebra.

Example

For a fixed integer n ≥ 0, show that∫
xn cos x dx = xn sin x + nxn−1 cos x − n(n − 1)

∫
xn−2 cos x dx.

Use this formula to find ∫
x2 cos xdx.

(See Answer 8)

Example

Similar algebra as in the above example shows that for n ≥ 0∫
xn sin x dx = −xn cos x + nxn−1 sin x − n(n − 1)

∫
xn−2 sin x dx.
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Example

Find a reduction formula for ∫
xnex dx.

Use it to evaluate ∫
x2ex dx.

(See Answer 9)

Example

Show that for n ≥ 2,∫
secn(x) dx =

1

n − 1
secn−2(x) tan(x) +

n − 2

n − 1

∫
secn−2(x) dx.

(See Answer 10)

22.4 Additional examples

Example

Compute ∫
x sin(x) dx.

(See Answer 11)

Example

Compute ∫
arctan x dx.

Hint: recall that
d

dx
arctan x =

1

1 + x2
.

(See Answer 12)

22.5 EXERCISES

Compute the following integrals:

•
∫
xex/2 dx

•
∫
x2ex/2 dx
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•
∫

3x ln x dx

•
∫

3x2 ln x dx

•
∫
x2 cos

x

2
dx

•
∫
e2x sin 3x dx

•
∫

ln x dx

•
∫

ln2 x dx

•
∫

sin(ln x) dx

•
∫

arcsin(2x) dx

To solve the integral

∫
ex cos x dx , we used the method of integration by parts twice. Based on how we solved

the integral of ex cosh x , we can try the same with the cosine version, using the fact that cos x =
1

2
(e ix +e−ix).

Try! The integration is the easy part...the hard part is getting the algebra to work out (hello again, Euler’s

formula...)

• Compute

∫
sin(2x) cos(3x) dx

22.6 Answers to Selected Examples

1. Letting u = x and dv = exdx (we see that these factors together make up our integrand), one finds by

differentiating u and integrating dv that du = dx and v = ex . Many students find it helps to organize

this information in a grid:

u = x du = dx

dv = ex dx v = ex .

Then, from the formula it follows that∫
xexdx = xex −

∫
exdx

= xex − ex + C

= (x − 1)ex + C.

One can check that the derivative of this gives back the original integrand, as desired.

(Return)

43



2. The selection of u and dv that works is

u = ln(x) du =
1

x
dx

dv = dx v = x.

Note that the only other possibility would be dv = ln(x)dx . But this choice would mean that to find v

we would need to find the integral of ln(x), which is the problem at hand.

Applying the formula, we find ∫
ln(x)dx = x ln(x)−

∫
x ·

1

x
dx

= x ln(x)−
∫
dx

= x ln(x)− x + C

= x(ln(x)− 1) + C.

Again, we can check that the derivative of this function gives back ln x , our original integrand.

(Return)

3. One choice we might try is

u = sin x du = cos x dx

dv =
1

x
dx v = ln x.

However, this requires us to compute the integral∫
v du =

∫
ln x cos x dx,

which is no better than the original integral. Another possible choice is

u =
1

x
du = −

1

x2
dx

dv = sin x dx v = − cos x.

This leads to the integral ∫
v du =

∫
cos x

x2
dx,

which is again no better than the original integral.

It turns out no selection will work. Some integrals cannot be computed using integration by parts.

And some integrals (like this one) have no elementary answer (i.e. some combination of trigonometric

functions, polynomials, exponentials, etc.).

That said, we could expand sin(x) as a Taylor series, divide by x and integrate term by term, which gives

a series solution. This gives a perfectly suitable solution provided that x is not too far from 0.

(Return)
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4. A good choice is

u = ln x du =
1

x
dx

dv =
1

x2
dx v = −

1

x
.

Then ∫
ln x

x2
dx = −

1

x
ln x −

∫
−

1

x2
dx

= −
1

x
ln x −

1

x
+ C.

(Return)

5. We can take

u = ex du = ex dx

dv = cos x dx v = sin x.

(it turns out that this would work equally well if we reversed these). Then the formula says that∫
ex cos(x)dx = ex sin(x)−

∫
sin(x)exdx.

This does not seem much better than the original problem. However, with some persistence and algebra,

this will work. Let I =
∫
ex cos(x)dx be the original integral, and let J =

∫
sin(x)exdx be the new

integral. So the above calculation shows

I = ex sin(x)− J

Using integration by parts on J, we pick

u = ex du = ex dx

dv = sin x dx v = − cos x.

Then it follows that

J =

∫
sin(x)exdx

= ex(− cos(x))−
∫

(− cos(x))exdx

= −ex cos(x) +

∫
ex cos(x)dx

= −ex cos(x) + I.

So the problem has come back to the original integral I. This might seem like cause for despair, but

putting together the previous calculations shows

I = ex sin(x)− J
= ex sin(x)− (−ex cos(x) + I)

= ex sin(x) + ex cos(x)− I.
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Now, solving for I gives

2I = ex sin(x) + ex cos x + C

I =
1

2
(ex sin(x) + ex cos(x)) + C.

(Return)

6. The algebra is similar to the above example, but care must be taken with the constants. Let

I =

∫
e2x sin(3x) dx.

Let

u = e2x du = 2e2x dx

dv = sin(3x) dx v = −
1

3
cos(3x).

Then

I = −
1

3
e2x cos(3x)−

∫ (
−

1

3
cos(3x)

)
2e2x dx

= −
1

3
e2x cos(3x) +

2

3

∫
e2x cos(3x) dx.

Now, let

J =

∫
e2x cos(3x) dx.

Selecting

u = e2x du = 2e2x dx

dv = cos(3x) dx v =
1

3
sin(3x),

we have

J =
1

3
e2x sin(3x)−

2

3

∫
e2x sin(3x) dx

=
1

3
e2x sin(3x)−

2

3
I.

Putting this all together, we have

I = −
1

3
e2x cos(3x) +

2

3
J

= −
1

3
e2x cos(3x) +

2

3

(
1

3
e2x sin(3x)−

2

3
I

)
= −

1

3
e2x cos(3x) +

2

9
e2x sin(3x)−

4

9
I.
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Solving for I gives

13

9
I = −

1

3
e2x cos(3x) +

2

9
e2x sin(3x)

I =
9

13

(
−

1

3
e2x cos(3x) +

2

9
e2x sin(3x)

)
=

1

13
e2x (−3 cos(3x) + 2 sin(3x)) .

Remember that any indefinite integral has an integration constant, so the final answer is∫
e2x sin(3x) dx =

1

13
e2x (−3 cos(3x) + 2 sin(3x)) + C.

(Return)

7. This looks so similar to the above examples, that it is reasonable to expect that two applications of

integration by parts will allow us to algebraically find this integral. Unfortunately, there is a problem that

will soon present itself. Let

I =

∫
ex cosh x dx.

If we set

u = ex du = ex dx

dv = cosh x dx v = sinh x,

we find

I = ex sinh x −
∫
ex sinh x

= ex sinh x − J,

where we have set

J =

∫
ex sinh x dx.

Letting

u = ex du = ex dx

dv = sinh x dx v = cosh x,

we find

J = ex cosh x −
∫
ex cosh x dx

= ex cosh x − I.

Putting it all together,

I = ex sinh x − J
= ex sinh x − (ex cosh x − I)
= ex sinh x − ex cosh x + I.
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Here is where our problem arises. We cannot solve for I because there is a positive I on both sides. This

problem is due to the fact that (unlike sine and cosine), the hyperbolic sine and cosine do not introduce

negative signs when integrated or differentiated, respectively.

So what do we do? Rewrite our integral using the definition of cosh x and it becomes easy:∫
ex cosh x dx =

∫
ex ·

(
ex + e−x

2

)
=

1

2

∫ (
e2x + 1

)
dx

=
1

2

(
1

2
e2x + x

)
+ C

=
1

4
e2x +

1

2
x + C.

(Return)

8. Let

u = xn du = nxn−1 dx

dv = cos x dx v = sin x.

Then according to the formula,∫
xn cos x dx = xn sin x −

∫
nxn−1 sin x dx.

Now, since we want to get our integral in terms of an integral involving cos x and a power of x , we can

apply integration by parts to ∫
xn sin x dx.

Here, we let

u = xn du = nxn−1 dx

dv = sin x dx v = − cos x.

This gives ∫
xn sin x dx = −xn cos x +

∫
nxn−1 cos x dx.

Now, using this in our earlier equation (though with n replaced by n − 1), we find∫
xn cos x dx = xn sin x −

∫
nxn−1 sin x dx

= xn sin x − n
∫
xn−1 sin x dx

= xn sin x − n
(
−xn−1 cos x +

∫
(n − 1)xn−2 cos x dx

)
= xn sin x + nxn−1 cos x − n(n − 1)

∫
xn−2 cos x dx.
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The formula says that ∫
x2 cos x dx = x2 sin x + 2x cos x − 2

∫
cos x dx

= x2 sin x + 2x cos x − 2 sin x + C

= x2 sin x + 2x cos x − 2 sin x + C.

(Return)

9. Letting

u = xn du = nxn−1 dx

dv = ex dx v = ex ,

we find that ∫
xnex = xnex − n

∫
xn−1ex dx.

Applying this when n = 2 (then applying it again) gives∫
x2ex = x2ex − 2

∫
xex dx

= x2ex − 2

(
xex −

∫
ex dx

)
= x2ex − 2xex + 2ex + C.

(Return)

10. In integrating a power of a trigonometric function, it can be hard to pick how many factors become u

and how many become dv . The fact that dv is supposed to be easy to integrate can guide this selection.

Since
∫

sec2 xdx = tan x , letting dv = sec2 xdx should work well.

Thus, u = secn−2(x) and dv = sec2 xdx , which means du = (n − 2) secn−3(x) sec(x) tan(x)dx (by the

chain rule), and v = tan x . Recalling the Pythagorean identity tan2 x = sec2 x − 1, one finds that∫
secn(x)dx = secn−2(x) tan(x)−

∫
(n − 2) secn−2(x) tan2(x)dx

= secn−2(x) tan(x)− (n − 2)

∫
secn−2(x)(sec2(x)− 1)dx

= secn−2(x) tan(x)− (n − 2)

∫
(secn(x)− secn−2(x))dx

= secn−2(x) tan(x)− (n − 2)

∫
secn(x)dx + (n − 2)

∫
secn−2(x)dx

Now, solving for
∫

secn(x)dx gives∫
secn(x)dx =

1

n − 1
secn−2(x) tan(x) +

n − 2

n − 1

∫
secn−2(x)dx,

as desired.

(Return)
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11. The logical choice (either by the LIPET mnemonic, or by picking u to be something which gets simpler

when differentiated) for parts is

u = x du = dx

dv = sin(x) dx v = − cos(x)

Therefore, ∫
x sin(x) dx = −x cos(x)−

∫
− cos(x) dx

= −x cos(x) +

∫
cos(x) dx

= −x cos(x) + sin(x) + C.

(Return)

12. As in some earlier examples, the only choice we have is to set

u = arctan x du =
1

1 + x2
dx

dv = dx v = x.

Therefore, ∫
arctan x dx = x arctan x −

∫
x

1 + x2
dx.

This second integral can be solved with a substitution of

u = 1 + x2

du = 2x dx.

So dx = du
2x . Making the substitution gives∫

x

1 + x2
dx =

∫
x

u
·
du

2x

=
1

2

∫
du

u

=
1

2
ln u + C

=
1

2
ln(1 + x2) + C.

Putting it all together, we find∫
arctan x dx = x arctan x −

∫
x

1 + x2
dx

= x arctan x −
1

2
ln(1 + x2) + C.

(Return)
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23 Trigonometric Substitution

There is another class of integrals which usually do not involve trigonometric functions, but which can be solved

by substituting the variable with a trigonometric function. This can be thought of as using the substitution

formula, from Integration By Substitution, in the other direction. That is, going from the left side to right side

in the equality ∫
f (x) dx =

∫
f (x(θ))

dx

dθ
dθ,

where we have made the substitution x = x(θ). We often use θ when making a trigonometric substitution.

Example

Compute ∫
dx

1 + x2
.

(See Answer 1)

23.1 Typical substitutions

Trigonometric substitution makes use of the Pythagorean identities. In general, the basic trigonometric substi-

tutions are:

Form Substitution Identity used

1 + x2 x = tan θ 1 + tan2 θ = sec2 θ

1− x2 x = sin θ 1− sin2 θ = cos2 θ

x2 − 1 x = sec θ sec2 θ − 1 = tan2 θ

Caveat

The form x2 − 1 often leads to a messy integral involving sec(θ). This can often be avoided using a hyperbolic

trigonometric substitution (see below).

After a substitution has been made, the resulting integral will often involve a product of trigonometric functions,

possibly raised to powers. These types of integrals are covered in more detail in Trigonometric Integrals. For

now, here are a few of the useful identities in evaluating these integrals:
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Power reduction

sin2(θ) = 1−cos(2θ)
2

cos2(θ) = 1+cos(2θ)
2

Double angle

sin(2θ) = 2 sin θ cos θ

cos(2θ) = cos2 θ − sin2 θ

Example

Compute ∫ √
1− x2 dx.

(See Answer 2)

Example

Compute ∫
dx√

1− x2
.

(See Answer 3)

23.2 Forms with other constants

There are other forms which are similar to the above forms but have different constants involved. These are

dealt with using similar substitutions which make the constants cancel and factor so that the same identities

can be used.

Example

Compute ∫
dx

x2
√
x2 + 4

(See Answer 4)

Example

Compute ∫
dx

4 + 9x2
.

(See Answer 5)

The following table summarizes the substitutions to be made when other constants are involved. The identities

used are the same Pythagorean identities given in the above table.

Form Substitution

a2x2 + b2 x = b
a tan θ

b2 − a2x2 x = b
a sin θ

a2x2 − b2 x = b
a sec θ
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23.3 Completing the square

Sometimes it is not obvious at first that an integral is of the form where a trigonometric substitution is helpful.

It may take a little bit of algebra to see what the right substitution is. This common algebraic tool is known as

completing the square, which simply rewrites a quadratic expression as the square of a binomial plus a constant.

To review the algebra involved in this process, check Wikipedia:Completing the square.

Example

Compute ∫
dx√

3 + 2x − x2

(See Answer 6)

23.4 Hyperbolic trigonometric substitutions

Recall that the hyperbolic trigonometric functions sinh(x) and cosh(x) are defined by

sinh(θ) =
eθ − e−θ

2

cosh(θ) =
eθ + e−θ

2
.

These functions satisfy the Pythagorean identity cosh2(θ)− sinh2(θ) = 1. Also, note that d
dθ cosh(θ) = sinh(θ),

and d
dθ sinh(θ) = cosh(θ). This means hyperbolic substitutions are another option for dealing with the following

forms:

Form Substitution Identity used

1 + x2 x = sinh θ 1 + sinh2 θ = cosh2 θ

x2 − 1 x = cosh θ cosh2 θ − 1 = sinh2 θ

This often gives a simpler answer than the x = sec θ substitution suggested above, but the trade-off is that

the answer will involve hyperbolic functions. Here are some of the other identities for the hyperbolic functions,

which are similar to those for regular trigonometric functions:

Double Angle

sinh(2θ) = 2 sinh(θ) cosh(θ)

cosh(2θ) = cosh2(θ) + sinh2(θ)

cosh(2θ) = 2 cosh2(θ)− 1

cosh(2θ) = 2 sinh2(θ) + 1

Power reduction

sinh2(θ) = cosh(2θ)−1
2

cosh2(θ) = cosh(2θ)+1
2
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Example

Compute ∫
dx√

1 + x2
.

(See Answer 7)

Example

Compute ∫ √
1 + x2 dx.

(See Answer 8)

23.5 Blow-ups

Sometimes a differential equation can be solved by using a trigonometric substitution. But this can sometimes

lead to an unreasonable solution due to blow-ups or singularities, which exist for many trigonometric functions.

Example

Consider a financial model which predicts that marginal profits equal some positive constant plus something

which is proportional to the square of net profits. Mathematically,

dP

dt
= b2 + a2P 2,

for constants a and b (we square them to ensure that they are positive). Solve this differential equation and

find where it has a blow-up. (See Answer 9)

23.6 EXERCISES

Compute the following integrals:

•
∫

x2

√
4− x2

dx

•
∫

dx√
x2 − 2x

•
∫ √

1− x2

x2
dx

•
∫

(1− x2)−3/2 dx

•
∫

x√
1 + x2

dx

•
∫

dx

x
√
x2 − 1
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•
∫

dx√
x2 − 6x + 10

•
∫

dx√
x2 − 2x − 8

23.7 Answers to Selected Examples

1. Consider the substitution x = tan(θ). Then one finds that dx = sec2 θ dθ. Making these substitutions

and recalling the Pythagorean identity 1 + tan2 θ = sec2 θ, the integral becomes∫
dx

1 + x2
=

∫
sec2 θ dθ

1 + tan2 θ

=

∫
sec2 θ dθ

sec2 θ

=

∫
dθ

= θ + C

= arctan(x) + C.

The last line comes from our original substitution:

x = tan θ ⇔ arctan x = θ.

(Return)

2. According to the above guide, the substitution to make is x = sin θ. Then dx = cos θ dθ, and it follows

that ∫ √
1− x2 dx =

∫ √
1− sin2 θ cos θ dθ

=

∫ √
cos2 θ cos θ dθ

=

∫
cos2 θ dθ.

Now using the power reduction identity for cosine, we have∫
cos2 θ dθ =

∫
1

2
(1 + cos(2θ)) dθ

=
θ

2
+

1

4
sin(2θ) + C.

Finally, we must get this back in terms of x . We know that θ = arcsin x . But to take care of sin 2θ, we

must use the double angle formula from above. This gives

sin 2θ = 2 sin θ cos θ

= 2x
√

1− x2

In the last line above, we knew sin θ = x from the original substitution. We found cos θ by drawing a right

triangle which relates x and θ according to the substitution sin θ = x :
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Putting this all together and doing a little simplification, we find∫ √
1− x2 =

1

2
arcsin x +

1

2
x
√

1− x2 + C.

(Return)

3. By the above table, the substitution x = sin θ should be used (hence θ = arcsin(x)). Then dx = cos θ dθ,

so the integral becomes ∫
dx√

1− x2
=

∫
cos θ dθ√
1− sin2 θ

=

∫
cos θ dθ√

cos2 θ

=

∫
dθ

= θ + C

= arcsin(x) + C.

(Return)

4. The form x2 + 4 in the denominator reminds us of the substitution we made earlier for x2 + 1, which was

the substitution x = tan θ. This is the correct impulse, but unfortunately it does not work quite right here

since there is no nice simplification for tan2 θ + 4.

We can fix this by adjusting the coefficients. The idea is that we could factor out a 4 if we had

4 tan2 θ + 4 = 4(tan2 θ + 1).

To get that extra factor of 4, we can make the substitution x = 2 tan θ. Then dx = 2 sec2 θ dθ, and the

integral becomes ∫
dx

x2
√
x2 + 4

=

∫
2 sec2 θ dθ

4 tan2 θ
√

4 tan2 θ + 4

=

∫
2 sec2 θ dθ

4 tan2 θ
√

4(tan2 θ + 1)

=
1

4

∫
sec2 θ dθ

tan2 θ sec θ
.
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The last equality above comes from again using the identity tan2 θ+1 = sec2 θ. Doing a little simplification

and rewriting in terms of sine and cosine gives

1

4

∫
sec θ dθ

tan2 θ
=

1

4

∫
1

cos θ
·

cos2 θ

sin2 θ
dθ

=
1

4

∫
cos θ dθ

sin2 θ
.

This we can handle with a substitution of u = sin θ and du = cos θ dθ, which gives

1

4

∫
cos θ dθ

sin2 θ
=

1

4

∫
du

u2

=
1

4

(
−

1

u

)
+ C

= −
1

4u
+ C

= −
1

4 sin θ
+ C

Now, we must do one final bit of right triangle trigonometry to get sin θ in terms of x . By the original

substitution we have tan θ = x
2 , and this can be expressed by the following triangle:

It follows that sin θ = x√
x2+4

. Putting it all together, we have∫
dx

x2
√
x2 + 4

= −
1

4 sin θ
+ C

= −
√
x2 + 4

4x
+ C.

(Return)

5. This is another example which looks like x = tan θ is the right type of substitution to make. However,

again we need to adjust the coefficient since 4 + 9 tan2 θ does not simplify nicely.
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The key is to get the constants to cancel and factor. The substitution x = 2
3 tan θ will work, and in this

case θ = arctan( 3
2x). Then dx = 2

3 sec2 θdθ, and the integral becomes∫
dx

4 + 9x2
=

2

3

∫
sec2 θ dθ

4 + 9(4/9) tan2 θ

=
2

3

∫
sec2 θ dθ

4(1 + tan2 θ)

=
2

3

∫
sec2 θ dθ

4 sec2 θ

=
2

3
·

1

4

∫
dθ

=
1

6
θ + C

=
1

6
arctan(

3

2
x) + C.

(Return)

6. Start by completing the square for the quadratic:

3 + 2x − x2 = −x2 + 2x + 3

= −(x2 − 2x) + 3

= −(x2 − 2x + 1) + 4

= −(x − 1)2 + 4

= 4− (x − 1)2.

So we can rewrite the integral as∫
dx√

3 + 2x − x2
=

∫
dx√

4− (x − 1)2

=

∫
du√

4− u2
,

where we substituted u = x − 1 and du = dx . This can now be dealt with using a trigonometric

substitution of u = 2 sin θ (remember, the extra factor of 2 is there so that the 4 will factor out). So

du = 2 cos θ dθ, and the integral becomes∫
du√

4− u2
=

∫
2 cos θ dθ√
4− 4 sin2 θ

=

∫
2 cos θ dθ

√
4
√

1− sin2 θ

=

∫
2 cos θ dθ

2 cos θ

=

∫
dθ

= θ + C.
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Solving our original substitution for θ, we see that

θ = arcsin
(u

2

)
= arcsin

(
x − 1

2

)
.

So the final answer is ∫
dx√

3 + 2x − x2
= arcsin

(
x − 1

2

)
+ C.

(Return)

7. Using a regular trigonometric substitution, we would set x = tan θ, and dx = sec2 θ dθ, which, after the

usual algebra, gives ∫
dx√

1 + x2
=

∫
sec2 θ dθ√
1 + tan2 θ

=

∫
sec θ dθ.

But the integral of secant is not easy to remember, nor easy to rederive. If instead, we make the hyperbolic

trigonometric substitution x = sinh u, so dx = cosh u du, then we have∫
dx√

1 + x2
=

∫
cosh u du√
1 + sinh2 u

=

∫
cosh u du

cosh u

=

∫
du

= u + C

= arcsinh x + C.

So the hyperbolic trigonometric substitution led to a much easier integral to evaluate. The trade-off is

that the final result involves the inverse hyperbolic trigonometric functions, as opposed to more familiar

functions.

(Return)

8. Using the hyperbolic trigonometric substitution x = sinh(θ) gives∫ √
1 + x2 dx =

∫ √
1 + sinh2 θ cosh θ dθ

=

∫ √
cosh2 θ cosh θ dθ

=

∫
cosh2 θ dθ

=
1

2

∫
(cosh(2θ) + 1) dθ

=
1

2

(
θ +

1

2
sinh(2θ)

)
+ C

=
1

2
θ +

1

4
2 sinh(θ) cosh(θ) + C

=
1

2
sinh−1 x +

1

2
x
√

1 + x2 + C.
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(Return)

9. This is a separable equation. Separating the variables and integrating both sides gives∫
dP

b2 + a2P 2
=

∫
dt.

On the left, we can use the trigonometric substitution

P =
b

a
tan θ

dP =
b

a
sec2 θ dθ.

Note then that θ = arctan a
bP . This gives∫

dP

b2 + a2P 2
=

∫ b
a sec2 θ dθ

b2(1 + tan2 θ)

=
b

a

∫
sec2 θ dθ

b2 sec2 θ

=
1

ab

∫
dθ

=
1

ab
θ

=
1

ab
arctan

a

b
P.

(leaving off the constant for now). On the right side we get t + C, so

1

ab
arctan

a

b
P = t + C.

Solving this for P gives

P (t) =
b

a
tan(abt + C).

If initial profits, at t = 0, are 0, then C = 0, so the final answer is

P (t) =
b

a
tan(abt).

Since tangent blows up at π
2 , this model implies profit goes to infinity at t = π

2ab , which is a sign that this

model is not perfect.

(Return)
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24 Partial Fractions
So far, the techniques of integration covered in this course have all been derived from differentiation rules run

in reverse. This module gives an algebraic method for integrating rational functions. Recall that a rational

function is a function of the form

f (x) =
P (x)

Q(x)
,

where P (x) and Q(x) are polynomials. It turns out that with a little bit of algebraic manipulation, many of

these integrals are not too difficult to compute.

Example

Compute ∫
3x2 − 5

x − 2
dx.

(See Answer 1)

The rest of this module expands on this method (in particular, when the denominator is of a higher degree),

which is known as the method of partial fractions.

24.1 Partial fractions

Given a rational function P (x)
Q(x) , and P has a lower power than Q, the method of partial fractions uses algebra

to rewrite the function as a sum of simpler terms which are easy to integrate. While there are some cases to

deal with, the basic outline of the method is:

1. Given the integral
∫ P (x)
Q(x)dx where P and Q are polynomials.

2. Factor Q(x) = (x − r1)(x − r2) . . . (x − rn). Assume for now that each of these factors is distinct.

3. We use the following fact, that the rational function can be expressed as

P (x)

Q(x)
=

A1

x − r1
+

A2

x − r2
+ . . .+

An
x − rn

.

4. Use algebra to find what each of the constants Ai is. This step requires the most work.

5. Then
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∫
P (x)

Q(x)
dx =

∫ (
A1

x − r1
+ . . .+

An
x − rn

)
dx

= A1 ln |x − r1|+ . . .+ An ln |x − rn|+ C.

Example

Compute ∫
3x − 1

x2 − 2x − 3
dx.

(See Answer 2)

Example

Compute ∫
2x2 − 6x − 2

x3 − x2 − 2x
dx.

(See Answer 3)

Example

Compute ∫
x2 + 2x − 1

2x3 + 3x2 − 2x
dx.

(See Answer 4)

Example

A simple model for the deflection x(t) of a thin beam under a load proportional to λ2 is

dx

dt
= λ2x − x3 = x(λ− x)(λ+ x).

Solve this differential equation (but do not solve for x(t) explicitly). Then find the equilibria of the differential

equation and classify them as stable or unstable. (See Answer 5)

Example

The logistic model for population dynamics says that the rate of change of a population P with respect to

time is
dP

dt
= rP − bP 2

where r and b are positive constants which can be thought of as the reproduction rate and death rate,

respectively. Factoring and letting K = r
b , we have

dP

dt
= bP (K − P ).

Solve this differential equation. What is the long run population behavior? (See Answer 6)
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24.2 Other technicalities

Higher degree numerator

For the algebra to work out above, the degree of the numerator, P (x), must be lower than that of the

denominator, Q(x). However, it is easy to deal with the case when the numerator has equal or higher degree.

One can use long division to rewrite the quotient as a divisor plus a remainder, just like writing an improper

fraction as a mixed number in middle school.

Repeated factors

If the denominator has one or more repeated factors, i.e.

P (x)

Q(x)
=

P (x)

(x − r1)m1 . . . (x − rk)mk
,

where one or more of the mi is greater than 1. Then the way to express the function is

P (x)

(x − r1)m1 . . . (x − rn)mn
=

A1

x − r1
+

A2

(x − r1)2
+ · · ·+

Am1

(x − r1)m1

+
B1

x − r2
+

B2

(x − r2)2
+ · · ·+

Bm2

(x − r2)m2

+ . . . .

Now, the algebra proceeds as before to find the constants in the numerators. It is easiest to see this through

an example.

Example

Compute ∫
2x2 − 4x − 2

(x + 1)(x − 1)2
dx.

(See Answer 7)

Quadratic factors

Suppose one of the factors of the denominator is a quadratic which cannot be factored (e.g. x2 + 1). Then the

numerator of this factor in the expansion should be of the form Ax +B. Then the algebra proceeds as before.

Example

Compute ∫
3x2 − 2x + 1

(x − 1) (x2 + 1)
dx.

(See Answer 8)

24.3 EXERCISES

Compute the following integrals:
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•
∫

5 + x

x2 + x − 6
dx

•
∫

2x + 3

6x2 + 5x + 1
dx

•
∫

x

(x + 1) (x + 2)
dx

•
∫

x2 − x + 5

(x − 2) (x − 1)(x + 3)
dx

•
∫

2x − 1

x3 − x dx

•
∫
x2 − 3

x2 − 4
dx

•
∫
x3 + 10x2 + 33x + 36

x2 + 4x + 3
dx

•
∫

x + 2

(x − 1)2
dx

•
∫

dx

x4 − 6x3 + 12x2

24.4 Answers to Selected Examples

1. By doing polynomial long division on this ratio, we find

(For more on polynomial long division, see wikipedia).

The above observation, which is entirely based on algebra, allows us to evaluate the integral as∫
3x2 − 5

x − 2
dx =

∫ (
3x + 6 +

7

x − 2

)
dx

=
3

2
x2 + 6x + 7 ln |x − 2|+ C.

(Return)
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2. Factoring the denominator gives x2− 2x − 3 = (x + 1)(x − 3). Thus, the goal is to find constants A and

B such that
3x − 1

(x + 1) (x − 3)
=

A

x + 1
+

B

x − 3
.

There are several methods for finding the constants, but one of the simplest is to clear denominators,

which gives

3x − 1 = A(x − 3) + B(x + 1).

This equation must hold for every value of x . In particular, one can pick convenient values of x which

make the algebra easy. In this case, by plugging in x = 3, the first term on the right disappears. Thus,

the equation becomes 8 = B · 4, and so B = 2. Similarly, picking x = −1 makes the second term on the

right disappear. Thus, −4 = A · (−4) so A = 1. It follows that∫
3x − 1

x2 − 2x − 3
dx =

∫
3x − 1

(x + 1) (x − 3)
dx

=

∫ (
1

x + 1
+

2

x − 3

)
dx

= ln |x + 1|+ 2 ln |x − 3|+ C.

(Return)

3. Factoring the denominator gives

x3 − x2 − 2x = x(x + 1)(x − 2)

So we are looking for constants A, B, and C such that

2x2 − 6x − 2

x(x + 1)(x − 2)
=
A

x
+

B

x + 1
+

C

x − 2
.

Clearing fractions gives

2x2 − 6x − 2 = A(x + 1)(x − 2) + Bx(x − 2) + Cx(x + 1).

Now, picking the following convenient values of x allows us to find each constant:

x = 0 −2 = −2A A = 1

x = −1 6 = 3B B = 2

x = 2 −6 = 6C C = −1.

So we have that ∫
2x2 − 6x − 2

x(x + 1)(x − 2)
=

∫ (
1

x
+

2

x + 1
−

1

x − 2

)
dx

= ln |x |+ 2 ln |x + 1| − ln |x − 2|+ C.

(Return)
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4. Factoring gives

2x3 + 3x2 − 2x = x(2x − 1)(x + 2)

So we are looking for constants A,B, C such that

x2 + 2x − 1

2x3 + 3x2 − 2x
=
A

x
+

B

2x − 1
+

C

x + 2
.

As before, we clear fractions which gives

x2 + 2x − 1 = A(2x − 1)(x + 2) + Bx(x + 2) + Cx(2x − 1).

Now we pick convenient values of x to make the factors cancel and solve for the constants:

x = 0 −1 = −2A A =
1

2

x =
1

2

1

4
=

5

4
B B =

1

5

x = −2 −1 = 10C C = −
1

10
.

So we find ∫
x2 + 2x − 1

x(2x − 1)(x + 2)
dx =

∫ (
1/2

x
+

1/5

2x − 1
+
−1/10

x + 2

)
dx

=
1

2
ln |x |+

1

5
·

1

2
ln |2x − 1| −

1

10
ln |x + 2|+ C

=
1

2
ln |x |+

1

10
ln |2x − 1| −

1

10
ln |x + 2|+ C.

Note the extra factor of 1
2 for the middle term comes from doing a substitution of u = 2x − 1, which

implies dx = 1
2 du.

(Return)

5. Factoring gives
dx

dt
= x(λ− x)(λ+ x).

Separating and integrating gives ∫
dx

x(λ− x)(λ+ x)
=

∫
dt.

Now, we use partial fractions on the left side:

1

x(λ− x)(λ+ x)
=
A

x
+

B

λ− x +
C

λ+ x

Clearing fractions gives

1 = A(λ− x)(λ+ x) + Bx(λ+ x) + Cx(λ− x).
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Picking convenient values of x gives

x = 0 1 = λ2A A =
1

λ2

x = λ 1 = 2λ2B B =
1

2λ2

x = −λ 1 = −2λ2C C = −
1

2λ2
.

So we have ∫
dx

x(λ− x)(λ+ x)
=

∫ (
1/λ2

x
+

1/2λ2

λ− x −
1/2λ2

λ+ x

)
dx

=
1

λ2
ln |x | −

1

2λ2
ln |λ− x | −

1

2λ2
ln |λ+ x |.

All of this equals t + C on the right.

The equilibria of the differential equation are x = 0, x = λ, and x = −λ. The equilibrium at 0 is unstable

and the other two are stable, as the graph shows:

(Return)

6. Separating gives
dP

P (K − P )
= bdt. (1)

Integrating the left side is done using partial fractions, and the denominator is already factored. So the

next step is to find A and B such that

1

P (K − P )
=
A

P
+

B

K − P .

Clearing denominators gives 1 = A(K − P ) +BP . Remember, K and A are constants, and this equation

must hold for every value of P . Setting P = K cancels the first term and gives 1 = BK, so B = 1
K .
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Setting P = 0 cancels the second term and gives A = 1
K . Thus,∫

dP

P (K − P )
=

∫
1

K

(
1

P
+

1

K − P

)
dP

=
1

K
(lnP − ln(K − P ))

=
1

K
ln

P

K − P ,

by a property of logarithms. Multiplying through by K gives

ln

(
P

K − P

)
=

∫
Kb dt

=

∫
r dt

= r t + C

(recall that Kb = r by the definition of K). Now, exponentiating gives

P

K − P = C̃er t ,

for a new constant C̃. By plugging in t = 0, we find that

C̃ =
P0

K − P0
,

where P0 is the initial population. Multiplying through by K − P and doing a little algebra gives

P = C̃er t(K − P )

P + P C̃er t = C̃er tK

P (1 + C̃er t) = C̃er tK

P =
C̃er tK

1 + C̃er t
.

Replacing C̃ = P0

K−P0
gives

P =
P0

K − P0
er tK ·

1

1 + P0

K−P0
er t

=
KP0e

r t

K − P0 + P0er t

=
KP0

(K − P0)e−r t + P0

(From the first to the second line, we distributed (K −P0) in the denominator. From the second to third

line, we multiplied the top and bottom by e−r t .).

Note that if P0 = 0 (i.e. there was no population to begin with), then the population will stay at 0. This

is consistent with the above equation. On the other hand, if P0 > 0, then as t → ∞, the e−r t in the

denominator goes to 0, and so

lim
t→∞

P (t) =
KP0

P0
= K.
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We can think of K as the carrying capacity for the population, a sort of ideal size for the population.

Alternatively, by looking at the original differential equation, we see that K is an equilibrium. It is stable,

since populations above K have a negative derivative (hence are decreasing), and populations below K

have a positive derivative (hence are increasing).

On the other hand 0 is an unstable equilibrium. The model implies that as long as the population is not

extinct to begin with, it will grow and eventually equal K.

(Return)

7. The denominator is already factored, so write

2x2 − 4x − 2

(x + 1)(x − 1)2
=

A

x + 1
+

B

x − 1
+

C

(x − 1)2
.

Clearing the denominators gives

2x2 − 4x − 2 = A(x − 1)2 + B(x + 1)(x − 1) + C(x + 1).

Plugging in x = 1 cancels the first two terms on the right, leaving −4 = 2C, so C = −2. Plugging in

x = −1 cancels the second two terms and leaves 4 = 4A, so A = 1.

Now, it seems that there are no more nice values of x to help solve for B. But remember that the equation

must hold for any value of x . Picking x = 0 (which is an easy value to use), gives −2 = A − B + C.

Knowing A = 1 and C = −2 gives B = 1.

Thus, ∫
2x2 − 4x − 2

(x + 1) (x − 1)2
dx =

∫ (
1

x + 1
+

1

x − 1
+

−2

(x − 1)2

)
dx

= ln |x + 1|+ ln |x − 1|+
2

x − 1
+ C

(Return)

8. Write
3x2 − 2x + 1

(x − 1) (x2 + 1)
=

A

x − 1
+
Bx + C

x2 + 1
.

Clearing fractions gives 3x2 − 2x + 1 = A(x2 + 1) + (Bx + C)(x − 1). Picking x = 1 gives 2 = 2A, so

A = 1. Now, picking any other two values for x will allow finding B and C. For instance, x = 0 gives

1 = A− C, and so C = 0. Finally, picking x = −1 gives 6 = 2A+ (−B)(−2), so B = 2.

Thus, ∫
3x2 − 2x + 1

(x − 1) (x2 + 1)
dx =

∫ (
1

x − 1
+

2x

x2 + 1

)
dx

= ln |x − 1|+ ln(x2 + 1) + C.

(Return)
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25 Definite Integrals

This module moves from the indefinite integral, which is a class of functions, to the definite integral, which is

a number. The relationship between these seemingly unrelated topics will be revealed in the next module.

The idea underlying the definite integral is that adding up local increments leads to a global total. Before

getting into the details of what this means, consider a simple example.

Example

Consider
n∑
i=1

i = 1 + 2 + 3 + · · ·+ n.

One can visualize this sum as the area of a triangular stack of 1× 1 boxes. The first column has 1 box, the

second column has 2 boxes, and so on through the nth column with n boxes:

The area of this roughly triangular region can be found by splitting it into two regions: a right triangle of

base and height n, and the half boxes left over:
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The total area is therefore 1
2n(n + 1), and so we find that

n∑
i=1

i =
1

2
n(n + 1).

The point of this example is to compare the amount of computation (e.g. the number of additions) required to

do the sum using local information (adding up the terms one by one), verses the global information (evaluating

the product on the right above). It is much easier to simply evaluate the product.

The definite integral takes this type of idea and generalizes it to more difficult sums. Before we can define it,

we need a few definitions.

25.1 Partitions and Riemann sums

Given an interval [a, b], a partition P of [a, b] is a division of the interval [a, b] into subintervals Pi . Visually,

think of placing hash marks along the interval [a, b] and then labeling the subintervals P1, P2, . . . from left to

right:

Let (∆x)i be the width of the ith subinterval, Pi .

Choose a sample point xi from the ith subinterval (this can be a point chosen at random from the subinterval

or systematically; it does not matter).
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Given a function f , a partition P for an interval [a, b], and sample points xi , the Riemann sum of f on P is

given by
N∑
i=1

f (xi)(∆x)i .

The Riemann sum can be interpreted as an approximation of the area under the curve of f from a to b using

rectangles. The width and height of the ith rectangle are (∆x)i and f (xi), respectively. Note that in this area

interpretation, a rectangle which is below the x-axis has negative area (since f (xi) < 0 in this case). For an

example with N = 4 rectangles, consider the following figure:

25.2 The definite integral

The definite integral

The definite integral of a function f from a to b, denoted∫ b

x=a

f (x) dx,

is defined by ∫ b

x=a

f (x) dx = lim
∆x→0

N∑
i=1

f (xi)(∆x)i .

The function f being integrated is called the integrand.

In other words, the definite integral is the limit of the Riemann sums as the lengths of the subintervals approach

0. In the area interpretation, the widths of all the rectangles are getting arbitrarily small, which ultimately gives

the area under the curve:

(Link to Riemann Sum Limit Animated GIF)

Remember that when interpreting the definite integral as the area under the curve, any region which is below

the x-axis contributes negative area to the total.

72

http://calculus.seas.upenn.edu/uploads/Main/RiemannLimit.gif


Example

Using the definition of the definite integral, compute∫ 1

x=0

x dx.

(See Answer 1)

Notation

Sums The integral sign
∫

and the summation sign
∑

are both short for sum. The integral sign
∫

looks like a

stylized S, and the summation sign is the Greek sigma, short for sum.

Limits Including the variable in the limits of integration is not strictly necessary, but is a useful habit to develop

for future courses where integration will be happening with respect to several variables. It is also fine to suppress

the notation and just have
∫ b
a f (x) dx : ∫ b

a

f (x) dx =

∫ b

x=a

f (x) dx.

Variables The variable used in the integrand does not matter; it is sometimes referred to as a dummy variable:∫ b

x=a

f (x) dx =

∫ b

t=a

f (t) dt =

∫ b

z=a

f (z) dz.

However, if there is a variable used in one of the limits of integration (as will happen from time to time), it is

important to avoid using that as the dummy variable too. For example,∫ x

a

f (t) dt instead of

∫ x

a

f (x) dx.

Caveat

Note that, although their notation is similar, definite integrals are not the same as indefinite integrals! The

indefinite integral of a function is a class of functions, whereas the definite integral of a function over an interval

is a number.

That said, it is no accident that they have similar notations, because of their relationship, which is given by the

Fundamental Theorem of Integral Calculus in the next module.

25.3 Properties of definite integrals

Linearity

The definite integral is linear, i.e.∫ b

x=a

(f (x) + g(x)) dx =

∫ b

x=a

f (x) dx +

∫ b

x=a

g(x) dx.∫ b

x=a

c · f (x) dx = c

∫ b

x=a

f (x) dx.

(See Justification 2)
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Additivity

When integrating the same function over two adjacent intervals, we have additivity:∫ b

a

f (x) dx +

∫ c

b

f (x) dx =

∫ c

a

f (x) dx.

In the area interpretation, this can be thought of as taking the area under the curve from a to b and adding

the area under the curve from b to c , which gives the area under the curve from a to c :

Another way of thinking about it is adding the intervals [a, b] and [b, c ] together to get [a, c ]. It is important

to note that the orientation of the interval matters, as discussed in the next subsection.

Orientation

The orientation of the interval over which we integrate matters. Integrating from left to right is positive, and

integrating from right to left is negative:∫ b

a

f (x) dx = −
∫ a

b

f (x) dx.

(See Justification 3)

Dominance

This is another intuitive property. If f (x) ≥ 0 for all x in the interval [a, b], then∫ b

a

f (x) dx ≥ 0.

Also, if f (x) ≥ g(x) for all x in the interval, then∫ b

a

f (x) dx ≥
∫ b

a

g(x) dx

(See Justification 4)
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25.4 More examples

There are a few definite integrals that we can compute directly from the definition. But for most functions, it

is not easy to work directly with the definition.

Example

Compute ∫ b

a

c dx

(See Answer 5)

Example

Compute ∫ b

a

x dx

(See Answer 6)

25.5 Odd and even functions

There are a few final cases where certain definite integrals can be simplified by using properties of the integrand.

Odd and even functions

A function f (x) is called odd if

f (−x) = −f (x).

A function g(x) is called even if

g(−x) = g(x).
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The reason for the terminology comes from Taylor series. A function is odd if and only if every term in its

Taylor series has odd power. Similarly, a function is even if and only if every term in its Taylor series has even

power. (See Justification 7)

Example

Sine and hyperbolic sine are both odd functions because they only have odd powers in their Taylor series.

Cosine and hyperbolic cosine are both even functions because they only have even powers in their Taylor

series.

Odd function over a symmetric domain

If an odd function f is integrated over a domain that is symmetric about the origin (i.e., an interval of the form

[−L, L], then ∫ L

x=−L
f (x) dx = 0.

Formally, any subinterval’s on the left half of the interval will make a contribution to the Riemann sum which is

equal and opposite to the contribution of the corresponding subinterval on the right half of the interval. These

equal and opposite sums cancel, and so the definite integral over the entire interval is 0.

In terms of the area interpretation, the net area under the curve over the left half of the interval will be equal

and opposite in sign to the net area under the curve over the right half of the interval. Therefore, the total

area will be 0:
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Even function over a symmetric domain.

If an even function g is integrated over a domain that is symmetric about the origin (i.e., an interval of the

form [−L, L]), then ∫ L

x=−L
g(x) dx = 2

∫ L

x=0

g(x) dx.

Formally, each subinterval on the left half of the interval has a corresponding subinterval on the right with an

equal contribution to the Riemann sum. So one can just take the Riemann sum on the right and double it.

Using the area interpretation, one can see that the region under the curve on the left will be the mirror image

of the region under the curve on the right, so the total area is just twice the area on the right:

25.6 EXERCISES

• One particular choice of partition and sampling that can be used to numerically evaluate definite integrals

is the following. With n fixed, divide the interval [a, b] into n subintervals Pi of common length (∆x)i =

(b − a)/n. For the sampling, choose the right endpoint of each Pi ; this gives you the formula:

xi = a + i
b − a
n

With these choices of partition and sampling, compute the Riemann sums for the integral
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∫ 2

x=1

dx

x

for n = 1, 2, 3 subdivisions. Note: in the next Lecture we will learn that

∫ 2

x=1

dx

x
= ln 2 ' 0.693

How does this compare to the values you obtained from the Riemann sums?

• With the same choices of partition and sampling as in the previous problem, evaluate the Riemann sum

for the integral

∫ 3

x=0

x2 dx

for an arbitrary number n of subdivisions. You may need to use the following:

n∑
i=1

i =
n(n + 1)

2
,

n∑
i=1

i2 =
n(n + 1)(2n + 1)

6
,

n∑
i=1

i3 =
n2(n + 1)2

4

• The line y = x , the x-axis and the vertical line x = 2 bound a triangle of area 2. Thus,

I =

∫ 2

x=0

x dx = 2

Evaluating the Riemann sum for n subdivisions for the above integral with the same choices of partition

and sampling as in the previous problem yields an approximation RS(n) for its value I. The error E(n)

we commit by using this approximation is defined to be the difference

E(n) = RS(n)− I

Show that E(n) is in O(n−k) for some k > 0. What’s the best value of k?

• What is the following integral? Think!

∫ π/4

x=−π/4

(
x2 + ln | cos x |

)
sin

x

2
dx

• Using the definition of definite integrals, compute

∫ 1

0

x3 dx . Use a uniform partition and the fact that∑n
i=1 i

3 = n2(n+1)2

4 .
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25.7 Answers to Selected Examples

1. Let the partition P divide the interval [0, 1] into N equally sized subintervals. Then the ith subinterval

of P is given by [(i − 1) 1
N , i

1
N ], and (∆x)i = 1

N . Choose the right endpoint of each subinterval to be its

sample point, i.e. xi = i
N . Finally, note that as N →∞, ∆x → 0. It follows that∫ 1

0

x dx = lim
∆x→0

N∑
i=1

f (xi)(∆x)i

= lim
N→∞

N∑
i=1

i

N
·

1

N

= lim
N→∞

1

N2

N∑
i=1

i

= lim
N→∞

1

N2

N(N + 1)

2

= lim
N→∞

N2 + N

2N2

=
1

2
.

We used the fact from earlier that
n∑
i=1

i =
1

2
n(n + 1)

(Return)

2. The definite integral is defined as the limit of Riemann sums. Note that for any partition P of the interval,

N∑
i=1

(f + g)(xi)(∆x)i =

N∑
i=1

[f (xi) + g(xi)] (∆x)i

=

N∑
i=1

f (xi)(∆x)i + g(xi)(∆x)i

=

N∑
i=1

f (xi)(∆x)i +

N∑
i=1

g(xi)(∆x)i ,

because of linearity of finite sums. Therefore, as one takes the limit as ∆x → 0, one finds (by the linearity

of limits) that ∫ b

a

(f (x) + g(x)) dx =

∫ b

a

f (x) dx +

∫ b

a

g(x) dx.

The argument for a constant multiple is almost identical: we can pull a constant out from a sum, and

pull a constant out from a limit.

(Return)

3. Consider what happens if one computes∫ b

a

f (x) dx +

∫ a

b

f (x) dx.
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By the additivity property (where c has been replaced by a), this is∫ a

a

f (x) dx.

But this equals 0, which is intuitive in the area interpretation. (More formally, any partition of an interval

with 0 width has subintervals of 0 width, so the Riemann sums equal 0). Therefore,∫ b

a

f (x) dx +

∫ a

b

f (x) dx = 0,

and rearranging gives ∫ b

a

f (x) dx = −
∫ a

b

f (x) dx,

as desired.

(Return)

4. For the first part, note that regardless of the partition of [a, b], the Riemann sum

N∑
i=1

f (xi)(∆x)i ≥ 0,

because f (xi) ≥ 0 by the above assumption. Since each Riemann sum is non-negative, the limit is

non-negative.

For the second part, note that

f (x) ≥ g(x) =⇒ f (x)− g(x) ≥ 0.

So applying the first part, we have ∫ b

a

(f (x)− g(x)) dx ≥ 0.

Then by linearity of the definite integral (above),∫ b

a

f (x) dx −
∫ b

a

g(x) dx ≥ 0,

and rearranging gives ∫ b

a

f (x) dx ≥
∫ b

a

g(x) dx.

(Return)

5. If we use the partition of [a, b] into n equal intervals, then

(∆x)i =
b − a
n
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Also, note that f (xi) = c for all i . So∫ b

a

c dx = lim
∆x→0

n∑
i=1

c
b − a
n

= lim
∆x→0

c · n ·
b − a
n

= c · (b − a).

We could also see this by interpreting this definite integral as the area under the curve y = c between

x = a and x = b, which is simply a rectangle of base b − a and height c .

(Return)

6. Again using a partition into n equal sized subintervals, we have that (∆x)i = b−a
n . If we take our sample

point to be the right endpoint of each subinterval, then we have xi = a + b−a
n i . So∫ b

x=a

x dx = lim
n→∞

n∑
i=1

(
a +

b − a
n

i

)
b − a
n

= lim
n→∞

n∑
i=1

a
b − a
n

+

n∑
i=1

i

(
b − a
n

)2

= lim
n→∞

n · a
b − a
n

+

(
b − a
n

)2
n(n + 1)

2

= a(b − a) +
(b − a)2

2

=
2ab − 2a2 + b2 − 2ab + a2

2

=
1

2
(b2 − a2).

This can also be found by interpreting the definite integral as the area under the curve y = x , which can

be broken into a rectangle with base b − a and height a and a triangle with base and height b − a:
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(Return)

7. If f only has odd powers in its Taylor series, then

f (x) = a1x + a3x
3 + a5x

5 + · · ·

for some constants a1, a3, · · · . So evaluating f (−x) and doing a little algebra, we find

f (−x) = a1(−x) + a3(−x)3 + a5(−x)5 + · · ·
= −a1x − a3x

3 − a5x
5 − · · ·

= −
(
a1x + a3x

3 + a5x
5 + · · ·

)
= −f (x),

as desired. Similarly, if g(x) has even powers, then

g(x) = a0 + a2x
2 + a4x

4 + · · ·

and it follows that

g(−x) = a0 + a2(−x)2 + a4(−x)4 + · · ·
= a0 + a2x

2 + a4x
4 + · · ·

= g(x),

as desired.

(Return)
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26 Fundamental Theorem Of Integral
Calculus

Computing definite integrals from the definition is difficult, even for fairly simple functions. Fortunately, there

is a powerful tool—the Fundamental Theorem of Integral Calculus—which connects the definite integral with

the indefinite integral and makes most definite integrals easy to compute.

The Fundamental Theorem of Integral Calculus (FTIC)

Given a continuous function f , it follows that

1. d
dx

(∫ x
a f (t)dt

)
= f (x) and

2.
∫ b
a f (x)dx =

(∫
f (x)dx

) ∣∣∣∣b
a

(where F (x)

∣∣∣∣b
a

= F (b)− F (a)).

In other words, Part 1 says that the function

F (x) =

∫ x

t=a

f (t)dt

is an anti-derivative of f .

Part 2 says that the definite integral can be computed by finding the indefinite integral of f and subtracting the

evaluation at the bottom bound from the evaluation at the top bound. Note that even though the indefinite

integral is actually a class of functions that differ by a constant, F (b)−F (a) has the same value for any function

F in such a class, so when computing the antiderivative for the purpose of computing a definite integral, it is

allowable (and convenient) to forego the constant of integration.

Part 2 can be expressed in a slightly different way which is illustrative. For a differentiable function F we have

F

∣∣∣∣b
x=a

=

∫ b

x=a

dF.

This says that the net change in quantity (given on the left side) equals the integral of the rate of change (given

on the right side). This interpretation will be used in many applications in the next chapter. (See Rough Proof

1)
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Example

Compute ∫ T

x=1

1

x
dx.

(See Answer 2)

Example

Compute ∫ 3

1

x2dx.

(See Answer 3)

Example

Suppose a publisher prints 12000 books per month with expected revenue of $60 per book. The marginal

cost of each book is given by

MC(x) = 10 +
1

2000
x.

What would be the change in profit from a 25% increase in production? (See Answer 4)

Example

Find
d

dx

(∫ x

0

sin(t)dt

)
.

(See Answer 5)

Example

Find
d

dx

(∫ x3

x

sin(t)dt

)
.

(See Answer 6)

Caveat

Note that if the integrand f (t) fails to be defined or continuous at a point in the interval [a, b], then the FTIC

does not hold. The following example shows this using the singularities of a rational function.

Example

Compute ∫ 4

1

dx

x2 − 5x + 6
.

(See Answer 7)
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26.1 Limits of integration and substitution

One must be careful when using Part 2 of the Fundamental Theorem of Integral Calculus along with the

method of substitution. The reason this can cause problems is that when a substitution is made, the old limits

of integration are still in terms of the original variable. Therefore, one must either get the antiderivative in terms

of the original variable before evaluating (this is what we usually did at the end of the substitution anyway), or

one can change the limits of integration to reflect the new variable.

Consider the following example which demonstrates both techniques.

Example

Compute ∫ 1

x=0

x(x − 1)n dx,

where n is some fixed positive constant. (See Answer 8)

Another case where one must be careful of the limits of integration is with Integration By Parts. One can

compute the indefinite integral completely and then apply the limits of integration, or one can apply them as

one goes, as in the following: ∫ b

a

u dv = uv

∣∣∣∣b
a

−
∫ b

a

v du.

Example

Again compute the definite integral ∫ 1

x=0

x(x − 1)n dx,

but this time using integration by parts. (See Answer 9)

26.2 Additional examples

Example

Compute ∫ e5

x=e3

ln x

x
dx.

(See Answer 10)

Example

Compute ∫ 1

x=−1

1

1 + 3x2
dx.

(See Answer 11)
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26.3 EXERCISES

• Evaluate the following integrals:

∫ 1

x=−1

dx

1 + x2

∫ 3

x=0

5x
√
x + 1 dx

∫ π

x=−π

d

dx
(x cos x) dx

• Compute the following derivatives:

d

dx

∫ π

x=−π
x cos x dx

d

dx

∫ x

t=0

cos t dt

d

dx

∫ x4

t=x2

e−t
2

dt

d

dx

∫ x

t=1

1√
t
dt

d

dx

∫ arcsin x

t=0

ln |sin t + cos t| dt

d

dx

∫ tan x

t=sin x

e−t
2

dt

• What is the leading-order term in the Taylor series about x = 0 of

f (x) =

∫ x

0

ln(cosh(t))dt

• We usually use Riemann sums to approximate integrals, but we can go the other way, too, using an

antiderivative to approximate a sum. Using only your head (no paper, no calculator), compute an approx-

imation for

100∑
n=0

n3

Hint: what integral does this resemble?

• Compute
d

dx

∫ x4

3x

e−t
2/2dt

• Find the critical points of the function f (x) =
∫ x2

e ln(1 + t2) cos(
√
t)dt
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26.4 Answers to Selected Examples

1. Part 1: By the definition of the derivative, and the definition of the definite integral,

d

dx

(∫ x

a

f (t)dt

)
= lim

h→0

∫ x+h

a f (t)dt −
∫ x
a f (t)dt

h

= lim
h→0

∫ x+h

x f (t)dt

h

= lim
h→0

f (x∗)∆x

h

= lim
h→0

f (x∗)h

h

= lim
h→0

f (x∗)

= f (x),

since x ≤ x∗ ≤ x + h.

Part 2: By Part 1, F (x) =
∫ x
a f (t)dt is an anti-derivative of f . Furthermore, we have

F (b)− F (a) =

∫ b

a

f (t)dt −
∫ a

a

f (t)dt =

∫ b

a

f (t)dt − 0 =

∫ b

a

f (t)dt.

Let G(x) be some anti-derivative of f . Since anti-derivatives of the same function differ only by a constant,

G(x) = F (x)− C for some constant C. Then we have

G(b)− G(a) = (F (b)− C)− (F (a)− C) = F (b)− F (a)

as desired.

(Return)

2. Using Part 2 of the Fundamental Theorem, we find that∫ T

x=1

1

x
dx = ln x

∣∣∣∣T
x=1

= lnT − ln 1

= lnT.

Note that the above definite integral is sometimes used as the definition of the natural logarithm.

(Return)

3. By Part 2 of FTIC, ∫ 3

1

x2dx =
1

3
x3

∣∣∣∣3
1

=
1

3
(33 − 13)

=
26

3
.

(Return)

87



4. The additional 25% means an extra 3000 books. So the goal is to find the change in profit P as x goes

from 12000 to 15000. That is,

P

∣∣∣∣15000

x=12000

=

∫ 15000

x=12000

dP,

according to Part 2 of the Fundamental Theorem. Now, since profit is revenue minus cost, it follows that

marginal profit is given by

dP = dR − dC.

Here,

dR = MR(x) dx = 60 dx

since the marginal revenue from each book is $60. And

dC = MC(x) dx = 10 +
1

2000
x dx.

Putting it all together, we find that

P

∣∣∣∣15000

x=12000

=

∫ 15000

x=12000

dP

=

∫ 15000

x=12000

(
60−

(
10 +

1

2000
x

))
dx

=

∫ 15000

x=12000

(
50−

1

2000
x

)
dx

= 50x −
1

4000
x2

∣∣∣∣15000

x=12000

=

(
50 · 15000−

150002

4000

)
−
(

50 · 12000−
120002

4000

)
= $129750

(Return)

5. By Part 1 of FTIC, d
dx

(∫ x
0 sin(t)dt

)
= sin(x).

(Return)

6. One must be careful with a function of x in one or both bounds. A good way to break the problem down

is to write F (x) =
∫ x

0 sin(t)dt. By Part 1 of FTIC, F ′(x) = sin(x). Now, note that∫ x3

x

sin(t)dt =

∫ x3

0

sin(t)dt −
∫ x

0

sin(t)dt

= F (x3)− F (x).

Next, taking the derivative (and remembering the chain rule) gives

d

dx

(∫ x3

x

sin(t)dt

)
=

d

dx

(
F (x3)− F (x)

)
= F ′(x3)(3x2)− F ′(x)(1)

= sin(x3)(3x2)− sin(x).

(Return)
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7. This is a rational function, and the denominator factors as (x − 3)(x − 2), so use partial fractions to

express
1

(x − 3) (x − 2)
=

A

x − 3
+

B

x − 2
.

Clearing denominators gives 1 = A(x − 2) + B(x − 3). Setting x = 3 gives A = 1. Setting x = 2 gives

B = −1. Thus, ∫
dx

x2 − 5x + 6
=

∫ (
1

x − 3
−

1

x − 2

)
dx

= ln |x − 3| − ln |x − 2|.

Then trying to apply FTIC would give∫ 4

1

dx

x2 − 5x + 6
= ln |x − 3| − ln |x − 2|

∣∣∣∣4
1

= ln(1)− ln(2)− (ln(2)− ln(1))

= −2 ln(2).

However, because 1
(x−3)(x−2) has singularities at x = 2 and x = 3, one must evaluate the improper integral

as follows: ∫ 4

1

dx

x2 − 5x + 6
=

∫ 2

1

dx

x2 − 5x + 6
+

∫ 3

2

dx

x2 − 5x + 6
+

∫ 4

3

dx

x2 − 5x + 6
,

and none of these integrals exist, as will be shown in the next section on improper integrals, so the entire

integral does not exist.

(Return)

8. First, we will try the method of substituting back in before evaluating. We make the substitution

u = x − 1

du = dx.

Then the integral becomes ∫ 1

x=0

x(x − 1)n dx =

∫ 1

x=0

(u + 1)un du

=

∫ 1

x=0

un+1 + un du

=
un+2

n + 2
+
un+1

n + 1

∣∣∣∣1
x=0

.

This is where a lot of students might make the mistake of plugging in the limits of x when trying to

evaluate the integral. This is a reason to include the x = a at the bottom limit of integration: it helps

remind us that those limits are in terms of x , even if we have made one or more substitution.
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To avoid this pitfall, we now finish getting the antiderivative in terms of x so that we can evaluate:

un+2

n + 2
+
un+1

n + 1

∣∣∣∣1
x=0

=
(x − 1)n+2

n + 2
+

(x − 1)n+1

n + 1

∣∣∣∣1
x=0

= 0 + 0−
(−1)n+2

n + 2
−

(−1)n+1

n + 1

= (−1)n+2

(
1

n + 1
−

1

n + 2

)
=

(−1)n

(n + 1) (n + 2)
.

On the other hand, as soon as we made the substitution u = x − 1, we could have changed the limits of

integration to reflect our new variable.

Namely, at the lower limit x = 0, what is the corresponding value of u? Well, u = x − 1, so when x = 0,

we have u = −1. Similarly, when x = 1, the corresponding value of u is u = 0. So as we were making our

substitution, we could make a corresponding change in the limits of integration so that the new definite

integral is entirely in terms of u:∫ 1

x=0

x(x − 1)n dx =

∫ 0

u=−1

(u + 1)un du.

Now the calculation proceeds as before, and gives the same answer. Changing the limits can sometimes

be easier, especially in a complicated integral which may involve (for example) a u-substitution and a

trigonometric substitution. Otherwise, the algebra can get messy as one substitutes back in and then

substitutes back in again.

(Return)

9. The logical choice of parts is

u = x du = dx

dv = (x − 1)n dx v =
(x − 1)n+1

n + 1
.

Then by the formula for parts, we have∫ 1

x=0

x(x − 1)n dx = x
(x − 1)n+1

n + 1

∣∣∣∣1
x=0

−
∫ 1

x=0

(x − 1)n+1

n + 1
dx

= 0−
(x − 1)n+2

(n + 1) (n + 2)

∣∣∣∣1
x=0

=
(−1)n+2

(n + 1) (n + 2)

=
(−1)n

(n + 1) (n + 2)
.

Note that from the first to second line above, we have x (x−1)n+1

n+1 is 0 at both x = 1 and at x = 0, so that

entire term disappears.

(Return)
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10. This integral is best computed with a substitution of

u = ln x

du =
1

x
dx

(Integration by parts works too, but it involves a little bit of algebra). Here it is convenient to change the

limits of integration as we go, so note that when x = e3, we have u = 3. When x = e5 we have u = 5.

Thus, ∫ e5

x=e3

ln x

x
dx =

∫ 5

u=3

u du

=
1

2
u2

∣∣∣∣5
u=3

=
1

2
(25− 9)

=
1

2
· 16

= 8.

(Return)

11. This looks like a good candidate for a trigonometric substitution. Because of the extra factor of 3, the

logical substitution is

x =
1√
3

tan θ

dx =
1√
3

sec2 θ dθ.

Remember the constant 1√
3

is there so that when it is squared it will cancel with the factor of 3 and allow

us to use the identity 1 + tan2 = sec2. Again, we will change the bounds as we go. Note that

x = −1 ⇒
1√
3

tan θ = −1

⇒ tan θ = −
√

3.

The value of θ for which this holds is θ = −π3 . Similarly, when x = 1 we have θ = π
3 . Proceeding, we
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have ∫ 1

x=−1

1

1 + 3x2
=

1√
3

∫ π/3

θ=−π/3

sec2 θ dθ

1 + 3( 1√
3

tan θ)2

=
1√
3

∫ π/3

θ=−π/3

sec2 θ dθ

1 + tan2 θ

=
1√
3

∫ π/3

θ=−π/3

sec2 θ

sec2 θ
dθ

=
1√
3

∫ π/3

θ=−π/3

dθ

=
1√
3
θ

∣∣∣∣π/3

−π/3

=
1√
3

(
π

3
−
−π

3

)
=

2π

3
√

3

(Return)
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27 Improper Integrals

An improper integral is a definite integral which cannot be evaluated using the Fundamental Theorem of Integral

Calculus (FTIC). This situation arises because the integral either

1. has a point in its interval of integration which is not in the domain of the integrand (the function being

integrated) or

2. has ∞ or −∞ as a bound of integration.

As an example of the first type, consider ∫ 2

0

dx

x
.

This integral is improper because the left endpoint, 0, is not in the domain of 1
x .

Another example of the first type is ∫ 4

0

dx
3
√
x − 2

.

This is improper because the point 2 is in the interval of integration but is not in the domain of 1
3√x−2

.

For an example of the second type, consider ∫ ∞
0

dx

1 + x2
.

This is improper because the upper bound is ∞.

For an example of the danger of trying to apply the Fundamental Theorem of Integral Calculus when it does

not apply, consider ∫ 1

x=−1

1

x2
dx.

This is an improper integral (hence FTIC does not apply) because the point x = 0 is not in the domain of 1
x2 .

If we were to try to apply FTIC anyway, we would find∫ 1

x=−1

1

x2
dx = −

1

x

∣∣∣∣1
x=−1

= −1− 1

= −2.

This is problematic since 1
x2 > 0 for all x (hence should have a positive integral by the dominance property).
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27.1 Dealing with improper integrals

To deal with an improper integral of the first type, first consider the integral
∫ b
a f (x) dx , where a is not in the

domain of f (x), but f is continuous on the rest of the interval (a, b]. In this situation, one replaces the lower

bound with a variable T which is slightly larger than a, and then takes the limit as T approaches a from the

right (this is denoted by T → a+). ∫ b

a

f (x) dx = lim
T→a+

∫ b

T

f (x) dx.

This replacement allows the integral
∫ b
T f (x) dx to be computed using FTIC, since f is continuous on that

interval. After that integral is computed (in terms of T ), the limit is computed. If the limit exists, then the

original integral exists and equals the result. If the limit does not exist or is infinite, then the original integral

does not exist either.

Example

Determine whether the integral ∫ 2

0

dx

x

exists, and if it exists, what its value is. (See Answer 1)

If the right endpoint, b, of the integral
∫ b
a f (x) dx is not in the domain of f , then b gets replaced with a variable

T slightly smaller than b, and again the integral is replaced with a limit, this time as T → b− (that is, the limit

as T approaches b from the left). ∫ b

a

f (x) dx = lim
T→b−

∫ T

a

f (x) dx.

Again, the integral equals this limit, if it exists. If the limit does not exist, then the integral does not exist.

Example

Determine whether the integral ∫ 3

1

dx

(x − 3)2

exists. If it exists, find its value. (See Answer 2)

For integrals where a point inside the interval of integration is not in the domain of the integrand, the integral

is first split at the bad point, and then each integral is evaluated separately using the above techniques. So,

consider
∫ b
a f (x) dx where the point c is not in the domain of f and a < c < b. Then∫ b

a

f (x) dx =

∫ c

a

f (x) dx +

∫ b

c

f (x) dx

= lim
T→c−

∫ T

a

f (x) dx + lim
U→c+

∫ b

U

f (x) dx.

Both of the resulting limits must exist for the original integral to exist.
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Example

Determine if the integral ∫ 1

−1

dx

x4/5

exists. (See Answer 3)

27.2 Bounds at infinity

For integrals with one bound at infinity, the integral is defined as follows.∫ ∞
a

f (x) dx = lim
T→∞

∫ T

a

f (x) dx.

Similarly, ∫ a

−∞
f (x) dx = lim

T→−∞

∫ a

T

f (x) dx.

In the case of bounds of ∞ and −∞, one can first split the integral at any real number c , and then compute

each integral as above: ∫ ∞
−∞

f (x) dx =

∫ c

−∞
f (x) dx +

∫ ∞
c

f (x) dx

= lim
T→−∞

∫ c

T

f (x) dx + lim
U→∞

∫ U

c

f (x) dx.

As before, both of these limits must exist for the original integral to exist. It is not equivalent to computing a

single limit such as

lim
T→∞

∫ T

−T
f (x) dx.

Example

Determine if the integral ∫ ∞
0

dx

1 + x2

exists. If it exists, find its value. (See Answer 4)

27.3 The p-integral

One class of improper integrals is common enough to get its own name: the p-integral. This is the name given

to integrals of the form ∫
1

xp
dx =

∫
x−p dx.

There are two versions of this integral that are of interest to us. First, with a limit at infinity, and second with

a limit at 0.
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Example

Show that ∫ ∞
x=1

x−p dx =

{
1
p−1 if p > 1

∞ if p ≤ 1.

(See Answer 5)

Example

Consider the p-integral with a limit at 0: ∫ 1

x=0

x−p dx.

This integral is improper because 0 is not in the domain of x−p. Show that∫ 1

x=0

x−p dx =

{
∞ if p ≥ 1

1
1−p if p < 1.

(See Answer 6)

27.4 Converge or diverge

In some contexts, it is enough to know whether an integral converges (has a finite answer) or diverges (goes

to infinity or does not exist). Using the knowledge of the above p-integrals, and some asymptotic tools from

earlier in the course, can help quickly determine whether certain improper integrals converge or diverge.

Example

Determine if ∫ 1

x=0

dx√
x2 + x

converges or diverges. (See Answer 7)

Example

Determine if ∫ ∞
x=1

dx√
x2 + x

converges or diverges. (See Answer 8)

Example

Determine if ∫ ∞
x=−∞

2x

1 + x2
dx

converges or diverges. (See Answer 9)
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27.5 EXERCISES

• Use a Talyor expansion of the integrand at x = 0 to determine whether the following integrals converge

or diverge:

∫ 1

x=0

e−x

x
dx

∫ 1

x=0

cos2 x√
x

dx

• Use the asymptotics of the integrand as x →∞ to determine whether the following integrals converge or

diverge:

∫ +∞

x=1

3
√
x + 3

x3
dx

∫ +∞

x=1

1− 5−x

x
dx

• Compute the following integrals, if they converge, by evaluating a limit.

∫ +∞

x=0

e−x sin x dx

∫ 2

x=1

dx√
x − 1∫ 4

x=0

2 dx√
16− x2

• The following integral is improper both at x = 1 and at x →∞:

∫ +∞

x=1

1√
x3 − 1

dx

First, as x →∞, show that the integrand is x−3/2 +O(x−9/2), so that it converges at this limit.

Next, as x → 1+, show that the integrand is (3(x − 1))−1/2 +O((x − 1)1/2), so that it converges at this

limit also.

• Consider the following two integrals:

I1 =

∫ +∞

x=2

dx√
x3 − 8

, I2 =

∫ +∞

x=2

1√
(x − 2)3

dx

One converges and one does not. Which is which and why?
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• Until now we have used asymptotic analysis to relate an improper integral to a p-integral. But sometimes

the leading order term is not a power. Identify the leading order term as x → +∞ of the integrand of∫ +∞

x=1

1

sinh x
dx

and determine whether the integral converges or diverges.

• For p ≥ 0 an integer, consider the following integral:

Ip =

∫ +∞

x=1

dx

lnp x

Show that this diverges for any value of p.

Hint 1: think about the growth of lnp x as x → +∞ as compared to polynomial growth.

Hint 2: recall from Lecture 25 that if g(x) ≥ f (x) for every x ∈ [a, b], then

∫ b

x=a

g(x) dx ≥
∫ b

x=a

f (x) dx

This is also true if the domain of integration is unbounded and the integrals are defined...

• Determine whether the following integral converges or diverges.∫ ∞
2

1

(x5 − 4x3)1/4
dx

27.6 Answers to Selected Examples

1. Since the left endpoint is not in the domain of 1
x , the integral becomes∫ 2

0

dx

x
= lim

T→0+

∫ 2

T

dx

x

= lim
T→0+

ln x

∣∣∣∣2
T

= lim
T→0+

(ln(2)− ln(T )) .

This limit does not exist because limT→0+ ln(T ) diverges. Hence, the original integral does not exist.

(Return)

2. The integral becomes ∫ 3

1

dx

(x − 3)2
= lim

T→3−

∫ T

1

dx

(x − 3)2

= lim
T→3−

−
1

x − 3

∣∣∣∣T
1

= lim
T→3−

−
1

T − 3
− (−

1

−2
).

This limit does not exist since limT→3−
1

T−3 diverges. Hence, the integral does not exist.

(Return)
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3. The only point not in the domain of the function 1
x4/5 is 0. Thus, the integral becomes∫ 1

−1

dx

x4/5
=

∫ 0

−1

dx

x4/5
+

∫ 1

0

dx

x4/5

= lim
T→0−

∫ T

−1

dx

x4/5
+ lim
U→0+

∫ 1

u

dx

x4/5

= lim
T→0−

5x1/5

∣∣∣∣T
−1

+ lim
U→0+

5x1/5

∣∣∣∣1
u

= lim
T→0−

(
5T 1/5 − 5(−1)1/5

)
+ lim
U→0+

(
5− 5u1/5

)
= 0 + 5 + 5− 0

= 10.

So the integral exists and equals 10.

(Return)

4. Because the top bound is ∞, the integral becomes∫ ∞
0

dx

1 + x2
= lim

T→∞

∫ T

0

dx

1 + x2

= lim
T→∞

arctan(x)

∣∣∣∣T
0

= lim
T→∞

arctan(T )− arctan(0)

= lim
T→∞

arctan(T )

=
π

2
.

So the integral exists and equals π
2 .

(Return)

5. First, if p 6= 1, then we can use the power rule on x−p. Here we find∫ ∞
x=1

x−p dx = lim
T→∞

x−p+1

−p + 1

∣∣∣∣T
x=1

= lim
T→∞

T−p+1

1− p −
1

1− p .

Note that T−p+1 diverges to infinity if p < 1, since in this case we have a positive power of T , which goes

to infinity as T goes to infinity. On the other hand, T−p+1 goes to 0 if p > 1, since in that case it is a

negative power of T . Putting this together with the above equations, we have∫ ∞
x=1

x−p dx =

{
1
p−1 if p > 1

∞ if p < 1.

Finally, consider the case p = 1. In this case,∫ ∞
x=1

1

x
dx = lim

T→∞
ln x

∣∣∣∣T
1

= lim
T→∞

lnT

=∞.
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And so the cases are as claimed above.

(Return)

6. As in the previous example, we first consider when p 6= 1 and use the power rule:∫ 1

x=0

x−p dx = lim
T→0+

x1−p

1− p

∣∣∣∣1
x=T

= lim
T→0+

1

1− p −
T 1−p

1− p .

Now, note that the limit is as T → 0+. So we have T 1−p diverges if p > 1 (since a negative power of T

diverges as T → 0+), and converges to 0 if p < 1. Putting this together with the previous computation

gives ∫ 1

x=0

x−p dx =
{

1
1−p if p1.

Finally, if p = 1, then ∫ 1

x=0

1

x
dx = lim

T→0+
ln x

∣∣∣∣1
x=T

= lim
T→0+

0− lnT

which diverges to infinity. Thus, the original integral diverges for all p ≥ 1, as claimed.

(Return)

7. This is not a function for which we can easily find an antiderivative. However, since we are interested in

the behavior of the function near 0 (that is where the blow-up occurs), we can do a little bit of algebra

to see that

1√
x2 + x

=
1√
x
·

1√
x + 1

=
1√
x
· (1 + x)−1/2

=
1√
x

(1 +O(x)) ,

by the binomial expansion. Therefore, the leading order term of this function as x → 0 is 1√
x

. This is a

convergent p-integral, because p = 1
2 and from the above example∫ 1

x=0

dx

xp

converges when p < 1.

(Return)

8. We must do a slightly different analysis for this integral, since we are interested in the behavior as x →∞.

Because we want to take advantage of the binomial series again (which requires its argument to be less
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than 1), we do the following algebra:

1√
x2 + x

=
1√
x2
·

1√
1 + x−1

=
1

x

(
1 +

1

x

)−1/2

=
1

x

(
1 +O

(
1

x

))
.

So for this integral, the leading order term is 1
x , which is the p-integral with p = 1. This diverges, as the

above example shows, and so the original integral diverges.

(Return)

9. As mentioned above, it is not valid to do this with a single limit such as

lim
T→∞

∫ T

x=−T

2x

1 + x2
dx.

The integral must be split and treated as two separate integrals with limits at infinity:∫ ∞
x=−∞

2x

1 + x2
dx = lim

S→−∞

∫ 0

x=S

2x

1 + x2
dx + lim

T→∞

∫ T

x=0

2x

1 + x2
dx.

Again, a little bit of asymptotic analysis with the help of the geometric series helps determine the behavior

of this function:

2x

1 + x2
=

2x

1 + x2
·
x−2

x−2

=
2

x
·

1

1 + x−2

=
2

x

(
1 +O(x−2)

)
.

Here, the geometric series was used to write

1

1 + x−2
= 1− x−2 + x−4 − · · · = 1 +O(x−2),

which is justified since x → ∞ and so x−2 is very small. So the original integrand behaves like 2
x , which

diverges when integrated to infinity. Therefore

lim
T→∞

∫ T

x=0

2x

1 + x2
dx

diverges, and (but for a sign change) the same reasoning shows

lim
S→−∞

∫ 0

x=S

2x

1 + x2
dx

diverges too, so the original integral diverges.

(Return)
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28 Trigonometric Integrals

A trigonometric integral is an integral involving products and powers of trigonometric functions: cosine, sine,

tangent, secant, cosecant, and cotangent. Many of these integrals can be handled with u-substitution, but

there are other methods which are outlined in this module. The three families of integrals discussed in this

module are ∫
sinm θ cosn θ dθ∫
tanm θ secn θ dθ∫
sin(mθ) cos(nθ) dθ.

28.1 Product of sines and cosines

Consider the integral ∫
sinm θ cosn θ dθ.

There are several cases to consider based on whether m and n are odd and even.

m is odd

If m is odd, then one factor of sin θ can be set aside. This leaves behind an even power of sin θ, which can be

expressed in terms of cos θ using the Pythagorean identity. Then the substitution u = cos θ can be made.

Example

Find ∫
sin3(x) cos(x) dx.

(See Answer 1)

n is odd

If n is odd, the procedure is very similar. This time, we set aside a factor of cos θ. This leaves an even power

of cos θ which can be expressed in terms of sin θ using the Pythagorean identities.
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Example

Find ∫
sin2(x) cos3(x) dx.

(See Answer 2)

Both m and n are even

If neither m nor n is odd, then both are even. This is a bit more difficult and requires using the power reduction

formulas:

Power reduction

sin2(θ) = 1−cos(2θ)
2

cos2(θ) = 1+cos(2θ)
2

Example

Find ∫
sin2 x dx.

(See Answer 3)

Example

Find ∫
sin2 θ cos2 θ dθ.

(See Answer 4)

Example

Find ∫
cos4(x) dx.

(See Answer 5)

28.2 Product of tangents and secants

Next consider the integral ∫
tanm θ secn θ dθ.

As with the product of sines and cosines, the method will depend on whether m and n are odd or even.
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m is odd

If m is odd, we will set aside a factor of tan θ sec θ. Note that this is the derivative of sec θ and so this sets up

a substitution of u = sec θ. After setting aside these factors, we are left with an even power of tan θ, which can

be expressed in terms of sec θ using the Pythagorean identity

tan2 θ = sec2 θ − 1.

Now, the integral can be computed using the substitution u = sec θ.

Example

Compute ∫
tan3 θ sec θ dθ.

(See Answer 6)

n is even

If n is even, then we can set aside a factor of sec2 θ. Note that this is the derivative of tan θ and therefore sets

up the substitution u = tan θ. Setting aside sec2 θ leaves an even power of sec θ, which can be expressed in

terms of tan θ using the Pythagorean identity

sec2 θ = 1 + tan2 θ.

Then the substitution u = tan θ allows the computation of the integral.

Example

Compute ∫
tan2 θ sec6 θ dθ.

(See Answer 7)

m is even, n is odd

If neither of the above cases holds, then the integral is a bit more difficult. It typically requires a bit of algebra

and several applications of a reduction formula (or integration by parts). A general method is to rewrite the

even power of tangent entirely in terms of secant by using the Pythagorean identity

tan2 θ = sec2 θ − 1.

This gives an integral which is sums of powers of sec θ. Each of these can be solved using the reduction formula

for secant: ∫
secn θ dθ =

1

n − 1
secn−2 θ tan θ +

n − 2

n − 1

∫
secn−2 θ dθ,

along with the fact that ∫
sec θ dθ = ln | sec θ + tan θ|+ C.
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Example

Compute ∫
tan2 θ sec θ dθ.

(See Answer 8)

28.3 Product of sine and cosine with constants

Finally, consider the integral ∫
sin(mθ) cos(nθ) dθ.

This integral requires some algebra to simplify the integrand. One can verify using the sum and difference

formulas for sine that

sin(mθ) cos(nθ) =
1

2
(sin((m + n)θ) + sin((m − n)θ)) .

This expression can be integrated term by term to find∫
sin(mθ) cos(nθ) dθ =

∫
1

2
(sin((m + n)θ) + sin((m − n)θ)) dθ

=
1

2

(
−

cos((m + n)θ)

m + n
−

cos((m − n)θ)

m − n

)
+ C.

There are similar formulas for related integrals:∫
sin(mθ) sin(nθ) dθ = −

sin((m + n)θ)

2 (m + n)
+

sin((m − n)θ)

2 (m − n)
+ C∫

cos(mθ) cos(nθ) dθ =
sin((m + n)θ)

2 (m + n)
+

sin((m − n)θ)

2 (m − n)
+ C.

These formulas need not be memorized, but be aware they exist and look them up when necessary.

Example

Compute ∫
sin(3θ) cos(4θ) dθ.

(See Answer 9)

28.4 Additional examples

Example

Compute ∫ π/2

θ=−π/2

cosn θ dθ.
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Use the fact (which is proven using integration by parts) that∫
cosn θ dθ =

cosn−1 θ sin θ

n
+
n − 1

n

∫
cosn−2 θ dθ.

(See Answer 10)

Example

Compute ∫
tan3 θ dθ

(See Answer 11)

28.5 EXERCISES

Compute the following indefinite integrals. You may need to use reduction formulae or coordinate changes.

•
∫

sin2 x cos2 x dx

•
∫

sin3 x

2
cos3 x

2
dx

•
∫

x3 dx√
9− x2

•
∫

5 tan5 x sec3 x dx

•
∫

7 tan4 x sec4 x dx

•
∫

9 sin3 3x dx

•
∫

cos4 x dx

•
∫

sin x sec x tan x dx

•
∫

tan5 2x sec4 2x dx

•
∫

cos x
√

1− sin x dx

•
∫

x2 dx√
1 + x2

•
∫

tan4(2x) sec4(2x) dx
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28.6 Answers to Selected Examples

1. Following the above outline, set aside one factor of sin x , which gives∫
sin3 x cos x dx =

∫
(sin2 x)(cos x)(sin x) dx.

Now, there is an even power of sine remaining, which can be rewritten using the Pythagorean identity

sin2 x = 1− cos2 x.

This gives ∫
sin3 x cos x dx =

∫
(sin2 x)(cos x) sin(x) dx

=

∫
(1− cos2 x)(cos x) sin(x) dx.

Now, the integral can be handled by letting u = cos(x) (and du = − sin(x)dx).∫
(1− cos2 x)(cos x)(sin x) dx =

∫
(1− u2)u(−du)

=

∫
(u3 − u) du

=
u4

4
−
u2

2
+ C

=
cos4 x

4
−

cos2 x

2
+ C.

(Return)

2. Following the procedure outlined above, we set aside a factor of cosine and use the Pythagorean identity,

which gives ∫
sin2(x) cos3(x) dx =

∫
sin2(x) cos2(x) cos(x) dx

=

∫
sin2(x)(1− sin2 x) cos(x) dx.

Now, we are ready to make the substitution u = sin(x), du = cos(x) dx . This gives∫
sin2(x)(1− sin2 x) cos(x) dx =

∫
u2(1− u2) du

=

∫
u2 − u4 du

=
u3

3
−
u5

5
+ C

=
sin3 x

3
−

sin5 x

5
+ C.

(Return)
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3. Using the first power reduction formula gives∫
sin2 x dx =

∫
1

2
(1− cos(2x)) dx

=
1

2

(
x −

sin(2x)

2

)
+ C.

(Return)

4. Using both the power reduction formulas and doing some algebra gives∫
sin2 θ cos2 θ dθ =

∫
1

2
(1− cos 2θ)

1

2
(1 + cos 2θ) dθ

=
1

4

∫
(1− cos 2θ)(1 + cos 2θ) dθ

=
1

4

∫
(1− cos2 2θ) dθ

=
1

4

∫
sin2 2θ dθ

=
1

4

∫
1

2
(1− cos 4θ) dθ

=
1

8

(
θ −

sin 4θ

4

)
+ C.

(Return)

5. Using the second power reduction formula (and then again in a later step) gives∫
cos4(x) dx =

∫
(cos2(x))2 dx

=

∫
(

1

2
(1 + cos(2x))2 dx

=
1

4

∫ (
1 + 2 cos(2x) + cos2(2x)

)
dx

=
1

4

∫ (
1 + 2 cos(2x) +

1

2
(1 + cos(4x))

)
dx

=
1

4

(
x + sin(2x) +

1

2
x +

1

8
sin(4x)

)
+ C

(Return)

6. Since the power of tangent is odd, we set aside a factor of tan θ sec θ, and use the Pythagorean identity

to find ∫
tan3 θ sec θ dθ =

∫
tan2 θ(tan θ sec θ) dθ

=

∫
(sec2 θ − 1)(tan θ sec θ)dθ.

Now, we can make the substitution

u = sec θ

du = sec θ tan θ dθ,
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which gives ∫
(sec2 θ − 1)(tan θ sec θ)dθ =

∫
(u2 − 1) du

=
1

3
u3 − u + C

=
1

3
sec3 θ − sec θ + C.

(Return)

7. Because the power of secant is even, we set aside sec2 θ and use the Pythagorean identity to find∫
tan2 θ sec6 θ dθ =

∫
tan2 θ sec4 θ(sec2 θ) dθ

=

∫
tan2 θ(1 + tan2 θ)2(sec2 θ) dθ.

Now, we are prepared for a substitution of

u = tan θ

du = sec2 θ dθ.

Making this substitution and simplifying gives∫
tan2 θ(1 + tan2 θ)2(sec2 θ) dθ =

∫
u2(1 + u2)2 du

=

∫
u2(1 + 2u2 + u4) du

=

∫
(u2 + 2u4 + u6) du

=
1

3
u3 +

2

5
u5 +

1

7
u7 + C

=
1

3
tan3 θ +

2

5
tan5 θ +

1

7
tan7 θ + C.

(Return)

8. Using the Pythagorean identity gives∫
tan2 θ sec θ dθ =

∫
(sec2 θ − 1) sec θ dθ

=

∫
(sec3 θ − sec θ) dθ

=

∫
sec3 θ dθ −

∫
sec θ dθ.

Now, using the reduction formula on the first of these integrals gives∫
sec3 θ dθ =

1

2
sec θ tan θ +

1

2

∫
sec θ dθ.
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Combining this with the above expression and using the integral of secant, we find∫
tan2 θ sec θ dθ =

∫
sec3 θ dθ −

∫
sec θ dθ

=

(
1

2
sec θ tan θ +

1

2

∫
sec θ dθ

)
−
∫

sec θ dθ

=
1

2
sec θ tan θ −

1

2

∫
sec θ dθ

=
1

2
sec θ tan θ −

1

2
ln | sec θ + tan θ|+ C.

(Return)

9. Using the formula given, we have∫
sin(3θ) cos(4θ) dθ = −

cos(7θ)

14
−

cos(−θ)

−2
+ C

= −
cos(7θ)

14
+

cos θ

2
+ C,

where we have used the fact that cosine is even to simplify the final expression.

(Return)

10. Applying the limits of integration in the above reduction formula gives∫ π/2

θ=−π/2

cosn θ dθ =
cosn−1 θ sin θ

n

∣∣∣∣π/2

−π/2

+
n − 1

n

∫ π/2

θ=−π/2

cosn−2 θ dθ.

Now, notice that

cosn−1 θ sin θ

n

∣∣∣∣π/2

−π/2

= 0

because cosine is 0 at ±π/2. Therefore,∫ π/2

θ=−π/2

cosn θ dθ =
n − 1

n

∫ π/2

θ=−π/2

cosn−2 θ dθ.

This is itself a reduction formula. By computing the base cases n = 0 and n = 1, respectively, we find∫ π/2

θ=−π/2

dθ = θ

∣∣∣∣π/2

−π/2

= π,

and ∫ π/2

θ=−π/2

cos θ dθ = sin θ

∣∣∣∣π/2

−π/2

= 2.
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Now the value of the integral for any higher value of n can be found by repeatedly using the above formula

until the integral reduces to one of the base cases above. Using induction, one finds∫ π/2

θ=−π/2

cosn θ dθ =

{
1·3·5···(n−1)

2·4·6···n π if n is even
2·4·6···(n−1)

3·5·7···n · 2 if n is odd.

(Return)

11. Here the power of tangent is odd, so the method calls for setting aside a factor of sec θ tan θ. However,

there is no factor of secant in this integral! It turns out that this is not a problem; we can multiply the

top and the bottom by secant to introduce a factor of secant, and the algebra works out:∫
tan3 θ dθ =

∫
tan2 θ

sec θ
(sec θ tan θ) dθ

=

∫
sec2 θ − 1

sec θ
(sec θ tan θ) dθ

=

∫ (
sec θ −

1

sec θ

)
(sec θ tan θ) dθ.

Now, proceed as usual with the substitution

u = sec θ

du = sec θ tan θ dθ.

Thus, ∫ (
sec θ −

1

sec θ

)
(sec θ tan θ) dθ =

∫ (
u −

1

u

)
du

=
1

2
u2 − ln |u|+ C

=
1

2
sec2 θ − ln | sec θ|+ C.

(Return)
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29 Tables And Computers

This module discusses some of the shortcuts available by using tables of integrals and mathematical software.

Many integrals can be easily computed by a computer algebra system, but it is still important to know the

underlying concepts so as to be able to use these tools efficiently and accurately.

29.1 Tables of integrals

Most calculus textbooks have an appendix containing one hundred or more integral formulas. All of these

formulas can be derived using the techniques of the previous modules (possibly with some additional technical

algebra), and it is a good exercise to try to derive some of them.

Using the table is sometimes difficult, because finding the correct form can be tricky. And even with the correct

form, an integral may not match the form precisely. It may take some algebra and a u-substitution to match

the form.

Example

Use the formula ∫
dx

x2
√
x2 − a2

=

√
x2 − a2

a2x
+ C

to evaluate the integral ∫
dx

(4x2 + 4x + 1)
√

4x2 + 4x − 3
.

(See Answer 1)

Other table entries are more inductive in nature, like the reduction formulas mentioned in the integration by

parts module.

Example

Use the formulas ∫
sec ax dx =

1

a
ln | sec ax + tan ax |+ C,

and (for n ≥ 2) ∫
secn ax dx =

secn−2 ax tan ax

a(n − 1)
+
n − 2

n − 1

∫
secn−2 ax dx + C
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to find ∫
sec3(x) dx.

(See Answer 2)

29.2 Mathematical software

Expensive computer algebra systems such as Maple and Mathematica can quickly and accurately dispense with

most integrals that can be done by hand. One free alternative, from the makers of Mathematica, is Wolfram

Alpha, which for most purposes is as good as its more costly relatives, and in many cases it can explain the

intermediate steps of longer computations (though it now only provides three such explanations per day for a

user without a paid subscription).

Note that the form of the answer given by computer systems may look different from what one gets by hand

or by a table, so care should be taken when comparing answers.

Example

Compute
∫

sec3(x) dx using Wolfram Alpha, or other computer algebra system. Note the syntax of the entry

(though it is pretty good at parsing other forms of entry). Also note that the answer given is in a different form

than that found in the earlier example.

Answer

Example

There are limits to what a computer algebra system can do. Consider the integral∫ π/2

x=0

sinn x

sinn x + cosn x
dx.

It turns out that the value of this integral is π
4 for all n, although Wolfram Alpha is not able to compute it.

But if we enter small particular values of n into Wolfram Alpha, then it does give the answer, although sometimes

only in decimal form.

29.3 Answers to Selected Examples

1. Although it is not exactly in the correct form, completing the square should get it closer. Indeed, factoring

and completing the square gives∫
dx

(4x2 + 4x + 1)
√

4x2 + 4x − 3
=

∫
dx

(2x + 1)2
√

(2x + 1)2 − 4
.

Now, making the u-substitution u = 2x + 1 (hence dx = 1
2 du) gives∫

dx

(2x + 1)2
√

(2x + 1)2 − 4
=

1

2

∫
du

u2
√
u2 − 4

=
1

2

√
u2 − 4

4u
+ C

=
1

2
·

√
(2x + 1)2 − 4

4 (2x + 1)
+ C.
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(Return)

2. Reducing using the second formula, and then using the first formula gives∫
sec3x =

sec x tan x

2
+

1

2

∫
sec x dx

=
sec x tan x

2
+

1

2
ln | sec x + tan x |+ C.

(Return)
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30 Simple Areas

We know the basic standard formulae for the area of basic shapes, but why are they true? From the point of

view of calculus, area A is the integral of dA, the area element.

In this chapter, we will use the following procedure to determine a quantity U:

1. Determine the differential element dU.

2. Integrate to compute U =
∫
dU.

30.1 Length of an interval

Before getting to areas, first consider how this method works for computing the length L of the interval from

a to b. If the length is denoted L, then the length element will be denoted dL, and L =
∫
dL. In this context,

the appropriate length element would be dx if we’re working along the x-axis.

So, we want to integrate dx as x goes from a to b.

The length,

L =

∫
dL

=

∫ b

x=a

dx

= x

∣∣∣∣b
x=a

= b − a

30.2 Parallelogram

The formula for the area of a parallelogram is base × height (bh). Consider the following rearrangement into

differential elements, where we carve the parallelogram into parallel horizontal strips of width b and height dy ,

where y is the y -axis.
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In this case, the area element, dA = b dy , is the area of this infinitesimal rectangle. The limits on y should go

from 0 to the height, h of the parallelogram.

The area,

A =

∫
dA

=

∫ h

y=0

b dy

= by

∣∣∣∣h
y=0

= bh

We have our familiar answer bh. This means that we’ve done a rearrangement in terms of infinitesimal strips.

Shearing that parallelogram preserves the area element and hence, the area. That is why a parallelogram has

the same area as the corresponding rectangle.

30.3 Triangle

The formula for the area of a triangle is 1
2× base × height ( 1

2bh). Let’s think in terms of a differential area

element. Given the fact that we can shear and preserve the area element, and thus the area, let’s present our

triangle as having a hypotenuse modeled by the line y = h
bx .
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To compute the area element, let’s use a vertical strip.

dA =
h

b
x dx

where the height of that vertical strip is h
bx and the width is the length element dx .

The area,

A =

∫
dA

=

∫ b

x=0

h

b
x dx

=
h

b

x2

2

∣∣∣∣b
x=0

=
hb2

2b

=
1

2
bh

30.4 Disc

We will use three ways to find the area of a circular disc of radius r :

1. Using an angular area element.

2. Using a radial variable.

3. Using a lateral, or a vertical rectangular strip.

1. Angular In this case, we’ll use an angular area element. We will take a wedge with angle dθ. If we look at

that close up, it’s modeled fairly well as a triangle. It’s not a perfect triangle, there’s a bit of curvature at

the end. This is a triangle with two sides of length r whose included angle is dθ. Such a triangle has area
1
2 r

2 sin(dθ) ≈ 1
2 r

2dθ, since dθ is very small. If we model that as a triangle with height r , and width r dθ,

we can ignore the higher order terms in the Taylor expansion of that area. We obtain an area element

dA = 1
2 r(r dθ).

Integrating to get the area, θ has to spin all the way around the circle from 0 to 2π.
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The area,

A =

∫
dA

=

∫ 2π

θ=0

1

2
r2 dθ

=
1

2
r2

∫ 2π

θ=0

dθ

=
1

2
r2θ

∣∣∣∣2π
θ=0

=
1

2
r2(2π)

= πr2.

2. Radial Let’s consider a radial variable. We can sweep out the area of the circular disk using annuli with a

radial coordinate t. Then, we’re looking at an annular strip of width dt. The corresponding area element

is the circumference (2πt) × thickness (dt).

dA = 2πt dt

Integrating this from 0 to the radius r gives us the area.

A =

∫
dA

=

∫ r

t=0

2πt dt

= πt2

∣∣∣∣r
t=0

= πr2.

3. Lateral We will use a vertical rectangular strip. Again, it is not a perfect rectangle and there’s a little

bit of curvature at the end. But, these are higher order terms, and we just care about the differential

element. So, using a vertical strip with width dx , and knowing that the formula for the boundary circle is

x2 + y2 = r2, we solve for y along the upper and lower branches.

y = ±
√
r2 − x2

We then obtain an area element that is the area of this rectangular strip.

dA = 2
√
r2 − x2 dx

In the case of strips, assume the circle is centered at the origin, and let x keep track of where the strip

intersects the x-axis. Thus, x ranges from −r to r . Integrating, and using a trigonometric substitution
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x = r sin u gives

A =

∫
dA

=

∫ r

−r
2
√
r2 − x2 dx

= 2

∫ π/2

−π/2

√
r2(1− sin2 u) r cos u du

= 2r2

∫ π/2

−π/2

cos2 u du

= 2r2

∫ π/2

−π/2

1

2
(1 + cos(2u))du

= r2(u +
1

2
sin 2u)

∣∣∣∣π/2

−π/2

= πr2

30.5 The area between two curves

Let’s say the f is on top and the g is below. Then as we sweep a vertical strip from left to right, we obtain the

area. In this case, the area element is a vertical rectangle of width dx and of height f (x)− g(x), the length of

the interval between the two.

dA = (f (x)− g(x))dx
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The general formula for the area between two curves f (x) and g(x),

A =

∫
dA

=

∫ b

x=a

(f (x)− g(x))dx

Example

Find the area of the region bounded above by f (x) = 4 + x − x2 and below by g(x) = 1− x . (See Answer

1)

30.6 Gini Index (An application of area formula)

In economics, this ratio is used to quantify income inequality in a population.

Let f (x) = Fraction of total income earned by the lowest x fraction of the populace, 0 < x < 1.

The Gini index quantifies how far f is from a “flat” distribution. This means that f(0) = 0, f(1) = 1.

f

is probably going to be below the flat distribution where y = x , the lowest x fraction earns the lowest x fraction.

The Gini index, G(f ) is measuring the difference between these two distributions, in terms of area. It’s the ratio

of the area between the flat distribution y = x and the given population’s income distribution y = f (x). One

normalizes that by the area between the flat distribution y = x and y = 0, namely the area of that triangle, or
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1
2 .

G(f ) =
Area between the y = x and y = f (x)

Area between y = x and y = 0

= 2

∫ 1

x=0

(x − f (x)) dx.

Example

Compute G for a power law distribution f (x) = xn. (See Answer 2)

The Gini Index doesn’t tell you the income distribution, but we could approximate it in the assumption of a

power law. For example, in the year 2010, in the state of New York in USA, the Gini Index was very close to
1
2 . If we assume that it went by a power law distribution, that would imply a cubic distribution of income.

30.7 EXERCISES

• What is the area between the curve f (x) = sin3 x and the x-axis from x = 0 to x =
π

3
?

• Find the area of the bounded region enclosed by the curves y =
√
x and y = x2.

• What is the area between the curve y = sin x and the x-axis for 0 ≤ x ≤ π ?

• Calculate the Gini index of a country where the fraction of total income earned by the lowest x fraction

of the populace is given by

f (x) =
2

5
x2 +

3

5
x3.

• Compute the area between the curves f (x) = ex sec2 x and g(x) = ex tan2 x for 0 ≤ x ≤ π.

• Consider a cone of height h with base a circular disc of radius r . Let’s compute the “surface area” – the

area of the “outside” of the cone, not including the bottom. Following how we computed the area of a

circular disc (which is, indeed, such a cone with h = 0 ), we can decompose its area into infinitesimal

triangles with base rdθ and height the slant length L =
√
h2 + r2. The area element dA is then the area

of this infinitesimal triangle. Integrating dA from θ = 0 to θ = 2π gives the “surface area” of the cone.

What is its value?

• Compute the area between the curves sin(x) and cos(x) from x = 0 to x = π/2.

• Compute the area of a triangle with vertices at (0,0), (2,1), (3,6)

30.8 Answers to Selected Examples

1. The logical choice for area element is a vertical strip:
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The height of this strip is f (x) − g(x) = 3 + 2x − x2, and the width of the strip is dx . So the area

element is dA = (3 + 2x − x2)dx . To find the intersection points, set the curves equal, which gives

1 − x = 4 + x − x2. This implies x2 − 2x − 3 = 0, which factors to (x + 1)(x − 3) = 0. Thus, the

intersections are x = −1 and x = 3. It follows that

A =

∫
dA

=

∫ 3

−1

(3 + 2x − x2)dx

=

(
3x + x2 −

1

3
x3

) ∣∣∣∣3
−1

= (9 + 9− 9)−
(
−3 + 1 +

1

3

)
=

32

3
.

(Return)

2.

G(f ) = 2

∫ 1

x=0

(x − f (x)) dx

= 2

∫ 1

x=0

(x − xn) dx

= 2(
x2

2
−
xn+1

n + 1
)

∣∣∣∣1
x=0

= 1−
2

n + 1

=
n − 1

n + 1

(Return)
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31 Complex Areas

31.1 Complex regions

Some regions in the plane are more complicated and cannot be evaluated with a single integral. This happens

when the area element is not bounded by the same curves throughout the region. For instance, consider the

region bounded by a parabola and two lines:

In this case, the only way to find the area of the region is to divide it into regions which can be integrated

separately:
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31.2 Horizontal strips

Other regions are difficult to integrate using vertical strips as the area element, but work well with horizontal

strips as the area element. For example, consider the following region bounded on the left by x = g(y) and on

the right by x = f (y):

In this case, the area of a horizontal strip is a function of y , namely (f (y) − g(y))dy , where x = f (y) is the

curve on the right and x = g(y) is the curve on the left.

Example

Find the area between the curves

y − x = 0

y2 + x = 2.

(See Answer 1)

Example

Find the area of the region bounded by x = 3y and x = y2 − 4. (See Answer 2)

Example

Find the area of the region bounded by y = ln(x) and the lines y = 0, y = 1, and x = 0. (See Answer 3)

31.3 Polar shapes

A polar shape is the graph of a polar function r = f (θ). Here, the input to the function is θ, which is the angle

formed with the positive x-axis (known as the pole). The output r is the distance from the origin (or radial
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distance). For example, the following shows the graph of the polar function r = 1 + cos θ, which is known as a

cardioid :

The area of such a region is not usually easy to compute by integrating with respect to x or y (for one thing,

the polar equation would need to be expressed in terms of x and y first!). Instead, the way to integrate over

such regions is to use a polar area element, which is a wedge shaped region. Here are several examples of the

polar area element for various values of θ:

To compute what the polar area element is in terms of θ, r , and dθ, note that the region is roughly triangular

(the curved portion at the base of the triangle can be ignored since it is a higher order term). The angle at the

tip of the triangle is dθ, the height of the triangle is r , and the base of the triangle is r dθ:

125



Thus, the polar area element is

dA =
1

2
(r)(r dθ) =

1

2
(f (θ))2 dθ,

since r = f (θ). Thus, the area of a polar region defined by r = f (θ), where a ≤ θ ≤ b, is

A =

∫ b

θ=a

1

2
(f (θ))2 dθ.

Example

Compute the area of the cardioid r = 1 + cos θ. (See Answer 4)

Example

Find the area of a single petal of the polar curve r = sin(3θ):

Hint: To find the bounds on θ, compute when r = 0. (See Answer 5)

Example

Find the area inside the circle r = 2 sin θ and outside the circle r = 1:
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(See Answer 6)

31.4 EXERCISES

• Find the area enclosed by the curves y = 1, x = 1, and y = ln x .

• Find the area of the bounded region enclosed by the x-axis, the lines x = 1 and x = 2 and the hyperbola

xy = 1.

• Compute the area in the bounded (i.e., finite) regions between y = x(x − 1)(x − 2) and the x-axis.

• Find the area of the sector of a circular disc of radius r (centered at the origin) given by 1 ≤ θ ≤ 3 (as

usual, θ is in radians).

• Use polar coordinates to find an area within r = 3− 2cos(θ) and outside r = 3.

• Find the area of the overlap between two circles of radius 2 that pass through each others’ centers. You

can do so with either cartesian or polar coordinates (though one might be easier than the other!).

• Find the area bound by the curves y = cos2 x and y =
8x2

π2
.

• Kepler’s First Law states that the orbit of every planet is an ellipse with the Sun at one of its two foci. If

we think of the Sun as being situated at the origin, we can describe the orbit with the equation:

r =
p

1 + ε cos θ

The point at which the planet is closest to the Sun (the perihelion) corresponds to θ = 0, while the planet

is furthest away from the Sun at θ = π (the aphelion). Knowing the distance between the Sun and the

planet at these two points would allow you to fix the values of the constants p and ε. Notice that ε = 0

describes a perfect circle, so that the “eccentricity” ε measures how far the orbit is from being a circle.
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Kepler’s Second Law states that the line joining a planet and the Sun sweeps out equal areas during equal

intervals of time. Another way of expressing this fact is by saying that the “areal velocity”

vA =
dA

dt

of that line is constant in time.

Express the area element dA in terms of the angle element dθ and use Kepler’s Second Law to deduce

the differential equation governing the time evolution of θ.

• Let C1 be the circle given by r = sin(θ). Let C2 be the circle given by r = cos(θ). Find the area of region

in C2 that is not in C1.

31.5 Answers to Selected Exercises

1. Expressing these curves as functions of y , we find

x = y

x = 2− y2.

Graphing these curves, one finds the bounded region:

To find the intersections, set the curves equal to one another. This gives

y = 2− y2.

A rearranging and factoring gives

y2 + y − 2 = (y − 1)(y + 2) = 0,

and so we find that the intersection points are at y = 1 and y = −2 (the x-coordinates are the same,

since they are on the line x = y). Note that using a vertical rectangle as the area element here would

not be so easy, because the area element depends on the value of x . Sometimes the strip goes from

the parabola below to the line above, as shown in blue, and sometimes the strip goes from parabola to

parabola, shown in red:
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In particular, the area element for a vertical strip is

dA =

{
(x +

√
2− x) dx if − 2 ≤ x ≤ 1

2
√

2− x dx if 1 ≤ x ≤ 2

But using a horizontal strip as the area element works much better because throughout the region the

strip is always going from the line on the left to the parabola on the right. So using a horizontal strip

gives the area element

dA = ((2− y2)− y) dy.

Integrating this over the range of −2 ≤ y ≤ 1 gives the area:

A =

∫
dA

=

∫ 1

y=−2

2− y2 − y dy

= 2y −
y3

3
−
y2

2

∣∣∣∣1
y=−2

=

(
2−

1

3
−

1

2

)
−
(
−4 +

8

3
− 2

)
=

9

2
.

(Return)

2. The region looks roughly as in the following:
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By setting 3y = y2 − 4, collecting like terms, and factoring, one finds the intersection points at y = −1

and y = 4, as indicated in the figure. The area element is a horizontal rectangle, which has area

dA = (3y − (y2 − 4))dy .

Thus, the area between the curves is

A =

∫
dA

=

∫ 4

−1

(3y − y2 + 4)dy

=
3

2
y2 −

1

3
y3 + 4y

∣∣∣∣4
−1

=
125

6

(Return)

3. The region looks roughly like the following:

Note that using vertical rectangles would not be ideal because this would require two integrals (for x from

0 to 1 and from 1 to e). Instead, one can express the curve y = ln x as x = ey . Now, using horizontal

rectangles gives an area element of dA = eydy . Thus

A =

∫
dA

=

∫ 1

0

eydy

= ey
∣∣∣∣1
0

= e − 1.

(Return)

4. In this case, f (θ) = 1 + cos θ, and so the area element is

dA =
1

2
(1 + cos θ)2 dθ

=
1

2
(1 + 2 cos θ + cos2 θ) dθ
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Because θ ranges from 0 to 2π to trace out the entire cardioid, it follows that the area is

A =

∫
dA

=
1

2

∫ 2π

θ=0

(1 + 2 cos θ + cos2 θ) dθ

=
1

2

∫ 2π

θ=0

(1 + 2 cos θ +
1

2
(1 + cos(2θ))) dθ

=
1

2

(
θ + 2 sin θ +

1

2
θ +

1

4
sin(2θ)

) ∣∣∣∣2π
θ=0

=
3π

2
.

(Return)

5. The area element is dA = 1
2 sin2(3θ) dθ. To find the bounds on θ, set r = 0, which gives sin(3θ) = 0.

The smallest values of θ for which this occurs is θ = 0 and θ = π
3 :

Thus, the area of a single petal is

A =

∫
dA

=

∫ π/3

θ=0

1

2
sin2(3θ) dθ

=
1

2

∫ π/3

θ=0

1

2
(1− cos(6θ)) dθ

=
1

4

(
θ −

1

6
sin(6θ)

) ∣∣∣∣π/3

θ=0

=
π

12

(Return)

6. First, we find the intersections by setting the curves equal, which gives

2 sin θ = 1 ⇒ sin θ =
1

2
,
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and so the intersections are at π
6 and 5π

6 . The area element of the region is the polar area element of the

circle r = 2 sin θ minus the polar area element of the circle r = 1:

So we have that

dA =

(
1

2
(2 sin θ)2 −

1

2
(1)2

)
dθ.

Thus, the area is

A =

∫
dA

=
1

2

∫ 5π/6

θ=π/6

(4 sin2 θ − 1) dθ

=
1

2

∫ 5π/6

θ=π/6

2(1− cos(2θ))− 1 dθ

=
1

2
(θ − sin(2θ))

∣∣∣∣5π/6

π/6

=
π

3
+

√
3

2
.

From the second to the third line above, we used the power reduction formula for sine:

sin2 θ =
1

2
(1− cos(2θ)).

(Return)
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32 Volumes
32.1 Finding the volume element

Just as area was computed by finding the area element and integrating, volume is computed by determining the

volume element (i.e. the volume of a slice) and then integrating:

V =

∫
dV.

The difficulty is in finding a suitable volume element dV . Once that is chosen, the rest is a matter of evaluating

the integral.

Example

Compute the volume of a cylinder of radius R and height H using several different volume elements dV :

(See Answer 1)
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Example

Find the volume of a sphere of radius R. First, by using discs as the volume element (shown on left below).

Then use cylindrical shells as the volume element (shown in the middle below). Finally, use a spherical shell

for the volume element, as shown in the third diagram.

(See Answer 2)

Example

Find the volume of a cone of base radius R and height H.

(See Answer 3)

Example

Find the volume of a square pyramid of base edge S and height H.
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(See Answer 4)

Example

Show that the volume of a generalized cone of base area B and height H is 1
3BH. Explain the reason for

the factor of 1
3 .

(See Answer 5)
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32.2 EXERCISES

• Find the volume of the following solid: for 1 ≤ x < ∞, the intersection of the this solid with the plane

perpendicular to the x-axis is a circular disc of radius e−x .

• The base of a solid is given by the region lying between the y-axis, the parabola y = x2, and the line

y = 16 in the first quadrant. Its cross-sections perpendicular to the y-axis are equilateral triangles. Find

the volume of this solid.

• The base of a solid is given by the region lying between the y-axis, the parabola y = x2, and the line

y = 4. Its cross-sections perpendicular to the y-axis are squares. Find the volume of this solid.

• Find the volume of the solid whose base is the region enclosed by the curve y = sin x and the x-axis from

x = 0 to x = π and whose cross-sections perpendicular to the x-axis are semicircles.

• Consider a cone of height h over a circular base of radius r . We computed the volume by slicing parallel to

the base. What happens if instead we slice orthogonal to the base? What is the volume element obtained

by taking a wedge at angle θ of thickness dθ ?

• Consider the following solid, defined in terms of polar coordinates: 0 ≤ r ≤ R; 0 ≤ θ ≤ 2π; 0 ≤ z ≤ r .

Can you describe this shape? Compute its volume.

• Consider the following solid, defined in terms of polar coordinates: 0 ≤ r ≤ R; 0 ≤ θ ≤ 2π; 0 ≤ z ≤ θ.

Can you describe this shape? Compute its volume.

• Challenge: compute the volume intersection of the (infinite) cylinders of radius R centered along the x

and y axes in 3-d. That is, compute the volume of intersection of

x2 + z2 ≤ R2

x2 + z2 ≤ R2

in the 3-dimensional (x, y , z) space.

32.3 Answers to Selected Examples

1. First, consider making a slice perpendicular to the base of the cylinder:
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This gives a rectangular slice whose height is H, the same as the cylinder. The width of the rectangle

can be determined by looking at an overhead view of the cylinder. Let x be the distance of the slice from

the center of the cylinder (so x ranges from −R to R as the slice sweeps across the cylinder):

Doing a little algebra, we find that the width of the rectangle is 2
√
R2 − x2. Finally, the thickness of the

slice is dx , and so the volume element in this case is

dV = 2H
√
R2 − x2 dx.

Integrating this requires the trigonometric substitution x = R sin θ. There are easier volume elements we

could choose, as we shall see.

Another way to slice is to make cuts parallel to the base of the cylinder. Let y denote the distance of the

slice from the base of the cylinder:

Then each slice is a circle of radius R and thickness dy . Thus

dV = πR2 dy,
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and y ranges from 0 to H, so the volume is

V =

∫
dV

=

∫ H

y=0

πR2 dy

= πR2y

∣∣∣∣H
y=0

= πR2H.

Another possible choice is a wedge shaped volume element. Let θ be the angle that the wedge forms with

a fixed axis (so θ ranges from 0 to 2π):

Here, the area of the sector of the circle is 1
2R

2 dθ. Thus the volume of the wedge is

dV =
1

2
R2H dθ.

Thus the volume is

V =

∫
dV

=

∫ 2π

θ=0

1

2
R2H dθ

=
1

2
R2Hθ

∣∣∣∣2π
θ=0

= πR2H.

One final option is to use cylindrical shells. Let t be the radius of the shell, so that t ranges from 0 to R

as the shells sweep through the cylinder.

138



The height of the cylindrical shell is H and the thickness of the shell is dt. Recalling that the lateral

surface area of a cylinder is 2πRH, we have

dV = 2πtH dt.

Integrating gives that the volumes is

V =

∫
dV

=

∫ R

t=0

2πtH dt

= 2πH
t2

2

∣∣∣∣R
t=0

= πR2H.

(Return)

2. Let x be the distance from the center of the disc to the center of the sphere (so x ranges from −R to R

as the discs sweep across the sphere). Then drawing a right triangle shows that the radius of the disc is√
R2 − x2 (since the radius of the sphere is R). See the diagram below:
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The thickness of the disc is dx , and so the volume of the disc is π(
√
R2 − x2)2dx (the area of the disc

times its thickness), and so the volume of the sphere is

V =

∫
dV

=

∫ R

x=−R
π(R2 − x2)dx

= π

(
R2x −

x3

3

) ∣∣∣∣R
x=−R

= π

((
R3 −

R3

3

)
−
(
−R3 +

R3

3

))
=

4

3
πR3.

For the cylindrical shell, let t be the radius of the cylinder (so t ranges from 0 to R as the cylinders

sweep out the sphere). Then by drawing in a right triangle, one finds that the height of the cylinder is

2
√
R2 − t2:

Recall that the lateral surface area of a cylinder with radius r and height h is 2πrh. Thus, the lateral

surface area of the cylinder is 4πt
√
R2 − t2. The thickness of the shell is dt, and so the volume element

is 4πt
√
R2 − t2dt. It follows (after making the u-substitution u = R2−t2) that the volume of the sphere

is

V =

∫
dV

=

∫ R

t=0

4πt
√
R2 − t2dt

= 4π

∫ 0

u=R2

−1

2

√
udu

= −2π

(
2

3
u3/2

∣∣∣∣0
u=R2

)

= −2π

(
0−

2

3
R3

)
=

4

3
πR3.
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Finally, for the spherical shell, let ρ denote the radius of the spherical shell:

Recall that the surface area of a sphere of radius ρ is 4πρ2. Therefore, the volume of the spherical shell

(i.e. our volume element) is

dV = 4πρ2 dρ.

Note that to sweep over the entire sphere, ρ must range from 0 to R. Therefore,

V =

∫
dV

=

∫ R

ρ=0

4πρ2 dρ

= 4π
1

3
ρ3

∣∣∣∣R
ρ=0

=
4

3
πR3.

(Return)

3. The easiest choice for volume element is a slice parallel to the base of the cone, which gives a disc. Let

y be the distance from the tip of the cone to the center of the disc (so y ranges from 0 to H as the disc

sweeps across the cone), and x be the radius of the disc:
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The volume element is the area of the disc, πx2, times the thickness of the disc, dy . It remains to find x

in terms of y . In the cutaway in the figure on the right above, one sees that by similar triangles, x
y = R

H ,

and so x = R
H y . Thus, the volume element is

dV = πx2dy

= π

(
R

H
y

)2

dy.

Thus, the volume of the cone is

V =

∫
dV

=

∫ H

y=0

π
R2

H2
y2dy

=
πR2

H2

(
y3

3

∣∣∣∣H
y=0

)

= π
R2

H2
·
H3

3

=
1

3
πR2H.

(Return)

4. Again, use slices parallel to the base. Let y be the distance from the tip of the cone to the center of the

slice (so y ranges from 0 to H), and let x be half of the side length of the slice.

As shown in the above cutaway, one finds by similar triangles that x
y = S/2

H , and so x = S
2H y . Therefore,

the area of a slice is (2x)2 = S2

H2 y
2, and the thickness of a slice is dy , so the volume element is

dV =
S2

H2
y2dy.
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And so the volume of the pyramid is

V =

∫
dV

=

∫ H

y=0

S2

H2
y2dy

=
S2

H2

(
y3

3

∣∣∣∣H
y=0

)

=
S2

H2
·
H3

3

=
S2H

3
.

(Return)

5. Let y be the distance from the tip of the cone to the slice.

Because the linear dimensions of the slice grow proportionally with y (e.g. the length of the slice is y
H

times the length of the base), the area of the slice will grow proportionally with the square of y . This

means that

Area of the slice =
( y
H

)2

B

Thus, the volume element is dV = B y2

H2 dy , and it follows that the volume of the cone is

V =

∫
dV

=

∫ H

y=0

B
y2

H2
dy

=
B

H2

(
y3

3

∣∣∣∣H
y=0

)

=
B

H2
·
H3

3

=
1

3
BH.

The factor of 1
3 comes from the fact that the volume element is proportional to the square of y , hence

the integral has a y2, which produces a factor of 1
3 by the power rule.

(Return)
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33 Volumes Of Revolution

33.1 Volume element for solid of revolution

Consider a region R in the plane and a line L. The solid of revolution of R about the axis L is the solid which

results from taking the region R and revolving it around the line L:

(Solid of Revolution Animated GIF)

The result is typically something doughnut shaped. The question of this module is to find the volume of the

solid:

The method is the same as the previous modules: find the volume element (the contribution of a small slice of

the region to the total volume) and integrate. Just as area can be computed using vertical or horizontal slices,

volume can be computed using corresponding methods: shells or washers, respectively.

The basic outline of finding the volume element for a solid of revolution is

1. Find a convenient area element for the region R in the plane

2. Determine the volume as that area element gets revolved around the axis L.
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33.2 Cylindrical shells

When the area element is parallel to the axis of rotation, the volume element is a cylindrical shell. Here, the

region is bounded by two parabolas. The natural area element for such a region is a vertical rectangle (shown

in red). As the region is revolved about the y -axis, the volume element traces out a cylindrical shell, whose

volume becomes the volume element of the solid of revolution.

Recall that a cylinder has lateral surface area 2πrh. The thickness of the cylindrical shell is dx (if the axis of

rotation is a vertical line) or dy (if the axis of rotation is a horizontal line). Here r and h will generally be

functions of x or y (again, depending on whether the axis of rotation is vertical or horizontal).

If a horizontal rectangle is the natural area element (for instance, the region between two horizontal parabolas),

and the axis of revolution is the x-axis, then cylindrical shells again arise naturally as the volume element:
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Example

Suppose the region bounded by y = 3x − x2 and y = x is revolved about the y -axis. What is the volume of

the resulting solid? (See Answer 1)

33.3 Washers

When the area element is perpendicular to the axis of rotation, the volume element is a washer. So when the

area element is a horizontal rectangle (as in a region bounded by horizontal parabolas) and the axis of revolution

is vertical, the region traced out by the rectangle is a washer:

A washer is just an annulus (a circle with a circle cut out of it) which has been thickened. The volume of the

washer is the area of the annulus times the thickness of the washer. The area of the annulus is πR2 − πr2,

where R is the radius of the outer circle and r is the radius of the inner circle. The thickness of the washer is

dx or dy (depending on the orientation of the washer. Thus, the volume element when using washers is

dV = π(R2 − r2) dx or dy.

Example

Given the region bounded by y = 3x − x2 and y = x , find the volume of the solid resulting from revolving

the region about the x-axis. (See Answer 2)

33.4 Additional Examples

Example

Find the volume of a doughnut formed by rotating a disc of radius a about the y-axis. Let the radius of the

doughnut be R, as shown in this cutaway:
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Use a vertical area element (which leads to a cylindrical shell). (See Answer 3)

Example

Compute the volume of the doughnut again, this time using a horizontal area element (which leads to a

washer). (See Answer 4)

33.5 EXERCISES

• Let D be the region bounded by the curve y = x3, the x-axis, the line x = 0 and the line x = 2. Find the

volume of the region obtained by revolving D about the x-axis.

• Let D be the same region as above. What is the volume of the region formed by rotating this D about

the line x = 3?

• Let D be the region between the curve y = −(x − 2)2 + 1 and the x-axis. Find the volume of the region

obtained by revolving D about the y-axis.

• Find the volume obtained by revolving the region between the curves y = x3 and y = 3
√
x in the first

quadrant about the x-axis.

• Let D be the region under the curve y = ln
√
x and above the x-axis from x = 1 to x = e. Find the

volume of the region obtained by revolving D about the x-axis.

• Let D be the region bounded by the graph of y = 1− x4, the x-axis and the y-axis in the first quadrant.

Which of the following integrals can be used to compute the volume of the region obtained by revolving

D around the line x = 5?

• Challenge: compute the volume of the region obtained by rotating the disc x2 + y2 ≤ ε2 about the axis

given by y = 1− x for ε ≤ 1
2 .

• Let D be the region under the curve
√
x − 1 above the x-axis from x = 1 to x = 2. Compute the volume

of solid obtained by rotating D about the x-axis. Compute the volume twice, using both methods.

33.6 Answers to Selected Examples

1. The first step in such a calculation is to draw a decent picture of the region. Then determine whether a

vertical or horizontal rectangle would make the best area element. In this case, a vertical rectangle is the

best choice.

Since a vertical rectangle is being revolved about a vertical axis, the result is a cylindrical shell:
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The radius of the shell is x (the distance from the y -axis), and the height of the shell is the distance

from the top curve to the bottom curve: h = (3x − x2)− x = 2x − x2. The thickness of the shell is dx .

Recalling that the surface area of a cylinder is 2πrh, it follows that the volume element is just the surface

area multiplied by the thickness dx :

dV = 2πrh dx

= 2πx(2x − x2) dx.

A little algebra shows that the intersections occur at x = 0 and x = 2, so the volume is

V =

∫
dV

=

∫ 2

x=0

2πx(2x − x2) dx

= 2π

∫ 2

x=0

(2x2 − x3) dx

= 2π

(
2

3
x3 −

1

4
x4

) ∣∣∣∣2
x=0

=
8

3
π.

(Return)

2. As in the previous example, the optimal area element is a vertical rectangle. A vertical rectangle revolved

about a horizontal axis results in a washer:
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The outer radius R is the upper curve: R = 3x − x2, and the inner radius r is the inner curve: r = x .

The thickness of the washer is dx , and so

dV = π(R2 − r2) dx

= π((3x − x2)2 − x2) dx.

As in the last example, the intersections are at x = 0 and x = 2, so

V =

∫
dV

=

∫ 2

x=0

π(9x2 − 6x3 + x4 − x2) dx

= π

(
8

3
x3 −

3

2
x4 +

1

5
x5

) ∣∣∣∣2
x=0

=
56

15
π.

(Return)

3. First, suppose we use a vertical area element. Since we are rotating about a vertical axis, the area element

and axis of rotation are parallel, and so the resulting volume element is a cylindrical shell. Let x be the

distance of the area element (the rectangle) from the y-axis. This also happens to be the radius of the

cylindrical shell:
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The equation of the circle is

(x − R)2 + y2 = a2,

and solving for y gives

y = ±
√
a2 − (x − R)2.

Therefore, the height of the area element (and hence the height of the cylindrical shell) is

2
√
a2 − (x − R)2.

Now, the volume of the cylindrical shell (our volume element) is

dV = 2πrh dx

= 2πx(2
√
a2 − (x − R)2) dx

= 4πx
√
a2 − (x − R)2 dx.

Note that x ranges from R − a to R + a as it sweeps across the circle. Therefore the volume is

V =

∫
dV

=

∫ R+a

x=R−a
4πx

√
a2 − (x − R)2 dx.

This is a bit messy, but with a substitution of

u = x − R
du = dx,

we find ∫ R+a

x=R−a
4πx

√
a2 − (x − R)2 dx =

∫ a

u=−a
4π(u + R)

√
a2 − u2 du

=

∫ a

u=−a
4πu

√
a2 − u2 du +

∫ a

u=−a
4πR

√
a2 − u2 du.

Here, we have used linearity to split the integral into two integrals. Notice that the first integrand is an

odd function of u, and since it is integrated over a symmetric interval, the first integral is 0:∫ a

u=−a
4πu

√
a2 − u2 du = 0.

The second integral can be found by noting that∫ a

u=−a
2
√
a2 − u2 du

gives the area of a disc of radius a (this was an integral done in the simple areas module). Therefore, the

volume is ∫ a

u=−a
4πR

√
a2 − u2 du = 2πR

∫ a

u=−a
2
√
a2 − u2 du

= 2πR(πa2)

= 2π2Ra2.

(Return)
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4. Carefully drawing and labeling the outer and inner radii of the washer gives the following diagram:

The outer and inner radii can be found by solving the equation of the circle for x :

(x − R)2 + y2 = a2 ⇒ x = R ±
√
a2 − y2.

Thus, the volume element is the area of the washer times its thickness, dy . Computing this and doing a

little algebra gives

dV =
[
π(R +

√
a2 − y2)2 − π(R −

√
a2 − y2)2

]
dy

= 4πR
√
a2 − y2 dy.

Note that y ranges from −a to a, and so the volume integral is the same one arrived at above:

V =

∫
dV

=

∫ a

y=−a
4πR

√
a2 − y2 dy

= 2πR(πa2)

= 2π2Ra2.

(Return)
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34 Volumes In Arbitrary Dimension

The motivation for this module is to find the volume (often referred to as hypervolume) of an object in dimension

n. This has physical meaning for n ≤ 3, but what happens for n ≥ 4?

34.1 The cube in dimension n

Consider the unit cube (i.e. the cube of side length 1) in n dimensions, sometimes called the n-hypercube or

just the n-cube. Formally, this is defined to be the set of n-tuples (i.e. lists of length n) (x1, x2, . . . , xn) such

that 0 ≤ xi ≤ 1 for all 1 ≤ i ≤ n. For n = 0, 1, 2, 3, these are familiar figures: the point, line segment, square,

and cube, respectively.

Now, consider some of the various measurements for each of these cubes.

Volume of the cube

For n = 0, the cube is just a point, and volume is defined to just be the number of points. So a single point

has volume 1.

For n = 1, the cube is a line segment. The volume in one dimension is just length, so the one dimension cube

has volume 1.

For n = 2, the cube is a square of side length 1. In two dimensions, volume is area, so the cube in two dimensions

has volume w × h = 1× 1 = 1.

For n = 3, the cube is a (traditional) cube of side length 1, which has (traditional) volume l×w×h = 1×1×1 = 1.

For higher values of n, this pattern continues. The intuition is that each additional dimension adds an extra

factor of 1, thus the volume of each unit n-cube is 1.
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Surface area of cubes

Consider the surface area of the cube in dimension n. As with volume, this has physical meaning for n = 2 and

n = 3.

For n = 2, the surface area of a square is really its perimeter, which is 4.

For n = 3, the surface area is the total area of the faces which bound the cube. There are 6 faces each with

area 1, so the surface area is 6.

In general, the n dimension cube will have 2n boundary faces, and each face is a cube of dimension n − 1, so

the surface area (really the hypervolume of the boundary) is 2n.

Other features

The diagonal of the n-cube can be defined to be the distance from (0, 0, . . . , 0) to (1, 1, . . . , 1). Using the

distance formula, one finds that the diagonal of the n-cube is
√
n.

The number of corners is fairly easy to count. For n = 0, 1, 2, 3, the number of corners is 1, 2, 4, and 8

respectively. Since the n-cube can be thought of as two copies of the (n− 1)-cube, one can show by induction

that there are 2n corners in the n-cube.

34.2 Simplex

A simplex is a generalization of a triangle or a pyramid. In dimension n, the simplex is defined to be the set

of n-tuples (x1, x2, . . . , xn) such that 0 ≤ xi ≤ 1 and
∑
xi ≤ 1. This can be thought of as the corner of

the n dimension cube where the sum of the coordinates is less than 1. Here are the simplices of dimension

n = 0, 1, 2, 3:

34.3 Volume of spheres in arbitrary dimension

Now, consider a sphere of radius r in n dimensions. This is the set of points (x1, x2, . . . , xn) such that x2
1 +

x2
2 + . . . + x2

n ≤ r2. Let Vn(r) be the volume of the sphere of radius r in n dimensions (as above, volume

means length, area, volume, hypervolume for n = 1, 2, 3, . . ., respectively). With some careful integration and

induction, one finds that

Vn(r) =

{
πk

k! r
n if n = 2k

2nπkk!
n! rn if n = 2k + 1

.

Now, note that as n → ∞ (and r stays fixed), the volume goes to 0 (since factorial grows faster than

exponentials).
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34.4 EXERCISES

• Consider a four-dimensional box (or “rectangular prism”) with side-lengths 1, 1/2, 1/3, and 1/4. What

is the 4-dimensional volume of this box?

• What is the “diameter” – i.e., the farthest distance between two points – in this 4-d box? Hint: think in

terms of diagonals.

• High-dimensional objects are everywhere and all about. Let’s consider a very simple model of the space

of digital images. Assume a planar digital image (such as that captured by a digital camera), where each

pixel is given values that encode color and intensity of light. Let’s assume that this is done via an RGB

(red/green/blue) model. Though there are many RGB model specifications, let us use one well-suited for

mathematics: to each pixel on associates three numbers (R,G,B), each taking a value in [0, 1].

Since the red/green/blue values are independent, each pixel has associated to it a 3-d cube of possible

color values. Consider a (fairly standard) 10-megapixel camera. If I were to consider the “space of all

images” that my camera can capture, what does the space look like? How many dimensions does it have?

Note: there’s no calculus in this problem...just counting!

• Consider an n-dimensional “hypercube” C of all side-lengths equal to 1. Its n-dimensional volume is, clearly,

1. Now consider what happens when you shrink the hypercube’s side-lengths by 1 percent (concentrically,

so that the shrunken cube has the same center as the original) and remove it from the original cube.

By subtracting the n-dimensional volume of this slightly smaller hypercube, conclude how much volume

remains in the 1-percent outer “shell.”

• In the previous question, what happens to the volume of the 1-percent shell as n →∞?

• We have seen that the n-dimensional volume of a unit radius ball in dimension n converges to zero as

n →∞. But what about a really large ball? For a ball of radius R = 1010 meters in dimension n, what is

the limit as n →∞ of its volume? (in unit of meters-to-the-nth)

• For the brave: so, as n →∞, the volume of the n-ball all concentrates near the surface shell. OK, you’ve

got that. Now answer this: what proportion of the volume is concentrated along the “equatorial plane”?

Let’s make that specific. Recall, we computed the volume Vn as In · Vn−1, where

In =

∫ π
2

θ=− π
2

cosn θ dθ.

We can compute the volume of the equatorial slice of thickness 2ε (for some small but fixed ε > 0) as

Vn,2ε = Vn−1

∫ ε

−ε
cosn θ dθ.

So, here is the (hard!) problem. Compute the limit as n →∞ of the ratio of Vn,2ε to Vn:

lim
n→∞

Vn,2ε
Vn

= lim
n→∞

1

In

∫ ε

−ε
cosn θ dθ.

If you can do this (a very big if...) you will get a surprise...
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35 Arclength

Consider the graph of a function y = f (x) for a ≤ x ≤ b. The purpose of this module is to find the length of

this piece of the curve, known as the arclength of the function f from a to b.

As in previous modules, the basic method is to find the arclength element dL and then integrate it:

L =

∫
dL.

By zooming in on a portion of the curve, it begins to look like a straight line. Then one can express dL in terms

of the infinitesimal horizontal change dx and vertical change dy :

Now, by the Pythagorean theorem one finds that dL =
√
dx2 + dy2. A little algebra and the chain rule gives

that

dL =
√
dx2 + dy2

=

√
dx2 +

(
dy

dx
dx

)2

=

√
1 +

(
dy

dx

)2

dx

=
√

1 + (f ′(x))2dx.

So the arclength of the function f from a to b is given by

L =

∫ b

a

√
1 + (f ′(x))2dx.
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Example

Find the arclength of the curve

y = ln sin x ;
π

4
≤ x ≤

π

2
.

Hint: recall the facts that

1 + cot2 x = csc2 x∫
csc x dx = − ln | csc x + cot x |+ C.

(See Answer 1)

Example

Find the arclength of the curve

y = x2 −
1

8
ln(x); 1 ≤ x ≤ 4.

(See Answer 2)

35.1 Parametric curves

If a curve is defined parametrically, i.e. x = x(t) and y = y(t) for a ≤ t ≤ b, then the arclength element can

be written as

dL =
√
dx2 + dy2

=

√(
dx

dt
dt

)2

+

(
dy

dt
dt

)2

=

√(
dx

dt

)2

+

(
dy

dt

)2

dt

=
√
x ′(t)2 + y ′(t)2dt.

So the arclength of a parametric curve (x(t), y(t)) for a ≤ t ≤ b is given by

L =

∫ b

a

√
x ′(t)2 + y ′(t)2dt.

Example

Find the arclength for a circle of radius r . (See Answer 3)

Example

Find the arclength for the spiral x(t) = t cos(t), y(t) = t sin(t) for 0 ≤ t ≤ 2π. (See Answer 4)

156



35.2 Additional Examples

Example

Compute the arclength of the curve

y =
2

3
x3/2; 0 ≤ x ≤ 3

(See Answer 5)

Example

A catenary is the curve that is formed by hanging a cable between two towers. It is a fact that the rate of

change of the slope of a hanging cable is proportional to the rate of change of arclength with respect to x .

Mathematically,
d

dx

(
dy

dx

)
= κ ·

dL

dx
,

for some constant κ. Use this fact to find the equation of the catenary. Then find the length of the catenary

for −l ≤ x ≤ l . (See Answer 6)

Example

Show that the spiral

x =
1

t
cos t

y =
1

t
sin t

for 2π ≤ t has infinite arclength. (See Answer 7)

35.3 EXERCISES

• Compute the arclength of y = x3

3 + 1
4x , from x = 1 to x = 2.

35.4 Answers to Selected Exercises

1. Computing the arclength element from the above formula gives

dL =

√
1 +

(
dy

dx

)2

dx

=

√
1 +

(
1

sin x
cos x

)2

dx

=
√

1 + cot2 x dx

=
√

csc2 x dx

= csc x dx.
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Therefore, we find that the arclength is

L =

∫
dL

=

∫ π/2

x=π/4

csc x dx

= − ln | csc x + cot x |
∣∣∣∣π/2

x=π/4

= − ln(1 + 0) + ln(
√

2 + 1)

= ln(1 +
√

2).

(Return)

2. First, one finds dy
dx = 2x − 1

8x . So, with some careful algebra one sees that√
1 +

(
dy

dx

)2

=

√
1 +

(
2x −

1

8x

)2

=

√
1 + (2x)2 − 2

2x

8x
+

1

(8x)2

=

√
1 + (2x)2 −

1

2
+

1

(8x)2

=

√
(2x)2 +

1

2
+

1

(8x)2

Now note that by reversing the cancellation done in an earlier step when simplifying −2 2x
8x = − 1

2 , one

finds that 1
2 = 2 2x

8x . And so, continuing the computation, one finds√
1 +

(
dy

dx

)2

=

√
(2x)2 + 2

2x

8x
+

1

(8x)2

=

√(
2x +

1

8x

)2

= 2x +
1

8x
.

Thus, dL =
(

2x + 1
8x

)
dx , and it follows that

L =

∫
dL

=

∫ 4

x=1

(
2x +

1

8x

)
dx

=

(
x2 +

1

8
ln(x)

) ∣∣∣∣4
x=1

= (16 +
1

8
ln(4))− (1 +

1

8
ln(1))

= 15 +
ln(4)

8
.
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(Return)

3. A simple parametrization for the circle of radius r is

x = r cos t

y = r sin t.

Note that t ranges from 0 to 2π. Using the above formula, we find that the arclength element is

dL =

√(
dx

dt

)2

+

(
dy

dt

)2

dt

=
√

(−r sin t)2 + (r cos t)2 dt

=

√
r2(sin2 t + cos2 t) dt

=
√
r2 dt

= r dt.

(we used the Pythagorean identity sin2 t + cos2 t = 1 from line three to line four). Therefore,

L =

∫
dL

=

∫ 2π

t=0

r dt

= r · t
∣∣∣∣2π
t=0

= 2πr,

as desired.

(Return)

4. First, compute x ′(t) = cos(t)− t sin(t) and y ′(t) = sin(t) + t cos(t). Then√
x ′(t)2 + y ′(t)2 =

√
(cos(t)− t sin(t))2 + (sin(t) + t cos(t))2

=

√
cos2(t)− 2t cos(t) sin(t) + t2 sin2(t) + sin2(t) + 2t cos(t) sin(t) + t2 cos2(t)

=
√

1 + t2.

Thus, dL =
√

1 + t2dt. So one finds that

L =

∫ 2π

0

√
1 + t2dt.

This integral was computed in the Trigonometric Substitution module. The answer becomes

L =

(
1

2
sinh−1(t) +

1

2
t
√

1 + t2

) ∣∣∣∣2π
0

=
1

2
sinh−1(2π) + π

√
1 + 4π2.

(Return)
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5. Computing the arclength element, we find

dL =

√
1 +

(
dy

dx

)2

dx

=

√
1 +
√
x

2
dx

=
√

1 + x dx.

Therefore, the arclength is

L =

∫
dL

=

∫ 3

x=0

√
1 + x dx

=
2

3
(1 + x)3/2

∣∣∣∣3
x=0

=
16

3
−

2

3

=
14

3
.

(Return)

6. Using the formula for the arclength element, the fact tells us that

d

dx

(
dy

dx

)
= κ

√
1 +

(
dy

dx

)2

Now, making a substitution of

u =
dy

dx

simplifies the equation to become
du

dx
= κ

√
1 + u2.

This is a separable differential equation. Separating and integrating gives∫
du√

1 + u2
=

∫
κdx.

The left side can be handled with either a trigonometric or hyperbolic trigonometric substitution. We take

the latter approach, and let

u = sinh t

du = cosh t dt.
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So we have (remembering the Pythagorean identity for hyperbolic trigonometric functions from the

trigonometric substitution module) ∫
du√

1 + u2
=

∫
cosh t√

1 + sinh2 t
dt

=

∫
cosh t√
cosh2 t

dt

=

∫
cosh t

cosh t
dt

=

∫
dt

= t

= arcsinh u

(we leave the constant of integration off for now since we will be integrating on the right side as well).

On the right side, we have ∫
κdx = κx + C.

Putting it together, we have

u = sinh(κx + C).

If we pick our coordinates so that x = 0 occurs at the low point of the catenary, then note that at this

point, we have

u =
dy

dx
= 0,

since the slope of the catenary is 0 at the low point. Using this fact and plugging in x = 0 into the earlier

equation gives

u = sinh(C) = 0

and so C = 0. This gives

u =
dy

dx
= sinh(κx).

Now integrating both sides gives

y =
1

κ
cosh(κx) + C,

where C = y0 is the y value of the low point of the catenary.
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To find the length of the catenary, we have

L =

∫
dL

=

∫ l

x=−l

√
1 +

(
dy

dx

)2

dx

=

∫ l

x=−l

√
1 + sinh2 κx dx

=

∫ l

x=−l
coshκx dx

=
1

κ
sinhκx

∣∣∣∣l
x=−l

=
1

κ
(sinhκl − sinhκ(−l))

=
2

κ
sinhκl.

since hyperbolic sine is an odd function. This grows very quickly as l increases, because

2

κ
sinhκl ≈

1

κ
eκl .

(Return)

7. Computing

dx

dt
=
−t sin t − cos t

t2

dy

dt
=
t cos t − sin t

t2
.

Plugging these into the formula for the arclength of a parametric curve and noting the cancellation of

cross terms, we have

dL =

√(
dx

dt

)2

+

(
dy

dt

)2

dt

=

√(
−t sin t − cos t

t2

)2

+

(
t cos t − sin t

t2

)2

dt

=

√
t2 ·

sin2 t + cos2 t

t4
+

cos2 t + sin2 t

t4
dt

=

√
1

t2
+

1

t4
dt

=

√
t2 + 1

t2
dt.

Therefore, the arclength is ∫ ∞
t=2π

√
t2 + 1

t2
dt.
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This integral is difficult to compute exactly, but we only want to show it diverges, which is not as difficult.

Note that √
t2 + 1

t2
≥
√
t2

t2
=
t

t2
=

1

t
.

And so by the dominance of definite integrals,∫ ∞
t=2π

√
t2 + 1

t2
dt ≥

∫ ∞
t=2π

1

t
dt

but the integral on the right diverges to infinity by our earlier discussions of p-integrals. Thus, our integral

on the left, being larger, also diverges to infinity.

(Return)
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36 Surface Area
This module deals with the surface area of solids of revolution. Consider the portion of a curve y = f (x) for

a ≤ x ≤ b revolved about a horizontal axis to create a solid. In earlier modules the goal was to find the volume

of such a solid, but now the focus is on finding the surface area. As always, the method will be to find the

surface area element and integrate it. The surface area element which works well is the thin band shown here:

36.1 Surface area of a cone

The first step towards finding the surface area element is to find the lateral surface area of a more simple solid:

the cone. Consider a cone whose base has radius r and lateral height R (the lateral height is the distance from

the tip of the cone to a point on the circumference of the base; see the left diagram below).
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To find the area, consider cutting the cone along the straight dotted line from base circumference to tip and

unrolling the cone. The result is a portion of a circle whose radius is R, as shown on the right in the diagram

above. Note that the circumference of the base of the cone, 2πr , becomes the length of arc of the unrolled

cone. This means that the unrolled cone is a fraction of the full circle of radius R, and that fraction is 2πr
2πR (the

ratio of the circumference of the partial circle to the circumference of the whole circle). Thus the surface area

of the cone is 2πr
2πRπR

2 = πrR.

The surface area of a cone can be used to find the area of a frustum of a cone whose top radius is r1, bottom

radius is r2, and lateral height l (as in the below diagram). The area of this frustum is π(r1 + r2)l . Expressed

another way, the area is 2πr l , where r = r1+r2
2 is the average of the two radii of the frustum.

36.2 Surface area element

Now, the surface area element can be found. When the curve is partitioned into sufficiently small pieces, the

surface area element is just the area of the frustum formed by rotating the arclength element about the axis

(see the diagram):

Thus, the surface area element is dS = 2πrdL, where r is the distance from the curve to the axis of rotation,

and dL is the arclength element (i.e. dL =
√

1 + (f ′(x))2dx). In the (common) case where the axis of rotation

is the x-axis, one finds that r = f (x).
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Thus, the surface area resulting from revolving the curve y = f (x) for a ≤ x ≤ b about the x-axis is given by

S =

∫ b

a

2πrdL

= 2π

∫ b

a

f (x)
√

1 + (f ′(x))2dx.

Example

Consider the sphere of radius r . If the sphere is cut into slices of equal width, which slice has the most

surface area?

(See Answer 1)

Example

Consider the surface generated by revolving the curve y = 1
xp for x ≥ 1 about the x-axis.

Find the values of p for which the surface has finite surface area. Then find the values of p for which the

solid of revolution has finite volume. (See Answer 2)
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36.3 Rotations about the y-axis

Suppose we want to know the surface area which results from revolving the curve

y = f (x); a ≤ x ≤ b

about the y -axis. There are two main ways one can go about finding this surface area:

1. Express everything as a function of y (including range of inputs), and then use the above formula but

with the roles of x and y switched.

2. Leave things in terms of x , but adjust the formula slightly.

The first method expresses the curve as

x = f −1(y); c ≤ y ≤ d,

where c = f −1(a) and d = f −1(b). Then express the surface area element as

dS = 2πr dL

= 2πf −1(y)

√
1 +

(
dx

dy

)2

dy.

Putting it together, the surface area can be expressed as

S =

∫
dS

= 2π

∫ d

y=c

f −1(y)

√
1 +

(
dx

dy

)2

dy.

Again, this is really just a reuse of the original formula, with the roles of x and y flipped.

The second method is sometimes simpler to apply because it involves less algebra. The main observation to

make is that the radius in the surface area element is simply x when the curve is revolved around the y -axis:
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So the surface area element can be written

dS = 2πr dL

= 2πx

√
1 +

(
dy

dx

)2

dx.

This integral is with respect to x , and so it should be integrated over the original range of x :

S = 2π

∫ b

x=a

x

√
1 +

(
dy

dx

)2

dx.

Example

Compute the surface area of the surface resulting from revolving the curve

y =
1

2
x2; 0 ≤ x ≤ 4.

about the y -axis:

(See Answer 3)
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36.4 EXERCISES

• Compute the surface area resulting from revolving the curve f (x) = cosh(x), 0 ≤ x ≤ 2 about the x-axis.

36.5 Answers to Selected Examples

1. If we center the sphere at the origin, we can think of the sphere as the surface of revolution obtained by

revolving the curve

y =
√
r2 − x2; −r ≤ x ≤ r

about the x-axis. First, we compute the arclength element:

dL =

√
1 +

(
dy

dx

)2

dx

=

√
1 +

(
−x√
r2 − x2

)2

dx

=

√
1 +

x2

r2 − x2
dx

=

√
r2

r2 − x2
dx

=
r√

r2 − x2
dx.

Plugging this into the surface area element, we find

dS = 2πy dL

= 2π
√
r2 − x2 ·

r√
r2 − x2

dx

= 2πr dx.

Note that this is independent of x! This means that every slice of the sphere has equal surface area.

For example, if we were to slice the sphere into four slices of equal thickness, then a middle slice goes

from x = 0 to x = r
2 , and its surface area∫ r/2

x=0

2πr dx = 2πrx

∣∣∣∣r/2

x=0

= 2πr ·
r

2

= πr2.

The end-cap slice, on the other hand, goes from x = r
2 to x = r , so its surface area is∫ r

x=r/2

2πr dx = 2πrx

∣∣∣∣r
x=r/2

= 2πr
(
r −

r

2

)
= 2πr ·

r

2

= πr2.
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So we see that the pieces have equal surface area.

(Return)

2. The surface area, in terms of p, is

S = 2π

∫ ∞
1

1

xp

√
1 + (−px−p−1)2dx

= 2π

∫ ∞
1

1

xp

√
1 +

p2

x2p+2
dx

Unfortunately, this integral is not computable using standard methods, but we can use a binomial expansion

to determine the leading order term of the integrand, which will tell us whether the integral converges or

not. We see that

1

xp

√
1 +

p2

x2p+2
=

1

xp

(
1 +

p2

x2p+2

)1/2

=
1

xp

(
1 +

1

2
·
p2

x2p+2
+O

(
1

x4p+4

))
=

1

xp
+O

(
1

x3p+2

)
.

Therefore, the leading order term in this integral is 1
xp , which we know converges for p > 1 and diverges

for p ≤ 1 (from our study of p-integrals). So this surface of revolution has finite area if and only if p > 1.

Turning to the volume of this solid, it is best to use slices perpendicular to the x-axis, which leads to discs

whose radius is y :

The volume element is therefore

dV = πy2 dx

= π

(
1

xp

)2

dx

= π ·
1

x2p
dx.
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Thus, the volume is

V =

∫
dV

= π

∫ ∞
x=1

1

x2p
dx.

We know this is convergent if 2p > 1, i.e. p > 1
2 . So the volume of the solid is finite if p > 1

2 .

This leads to the surprising fact that for
1

2
< p ≤ 1,

the volume of the solid is finite, but the surface area is infinite.

(Return)

3. Using the first method requires some algebra. The curve becomes

x =
√

2y ; 0 ≤ y ≤ 8.

So the area element is

dS = 2πr dL

= 2πr

√
1 +

(
dx

dy

)2

dy

= 2π
√

2y

√
1 +

(
1√
2y

)2

dy

= 2π
√

2y + 1 dy.

So the surface area is

S =

∫
dS

= 2π

∫ 8

y=0

√
2y + 1 dy

= 2π(2y + 1)3/2 ·
1

3

∣∣∣∣8
y=0

=
2

3
π
(

173/2 − 1
)
.

Using the second method, we have

dS = 2πr dL

= 2πx

√
1 +

(
dy

dx

)
dx

= 2πx
√

1 + x2 dx.
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So the surface area is

S =

∫
dS

= π

∫ 4

x=0

2x
√

1 + x2 dx

= π(1 + x2)3/2 ·
2

3

∣∣∣∣4
x=0

=
2

3
π
(

173/2 − 1
)
.

So we get the answer with (perhaps) slightly less algebra involved.

(Return)
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37 Work
Recall that work is the amount of energy required to perform some action. When the amount of force is

constant, work is simply

work = force × distance.

For example, if a book weighing 22 Newtons (about 5 pounds) is lifted 2 meters, the total work done is

22N × 2m = 44J (J is the Joule, which equals one Newton-meter).

Consider a situation where the force is not constant. For instance, if one were to lift a weight using a non-

negligible rope, there is less rope being pulled up (and hence less force) as the weight goes further up. It is in

situations like these that we need a better formula to compute work.

37.1 Work element

Computing work when the force is not constant requires integration. As in previous sections, the first step is

to determine the work element dW , and then integrate:

W =

∫
dW.

Because work arises in a variety of situations, there is not one simple formula for the work element. For different

applications the work element will look different. In some situations, it is best to consider a small movement

dx , where the force can be thought of as constant for that small movement, which allows the work element to

be expressed as dW = F · dx .

Springs

The force required to displace a spring varies with the displacement. The further the spring is stretched, the

more resistant it becomes to being stretched further. Consider three types of springs:

• Linear. A spring is linear if the force of resistance grows linearly with the displacement. That is,

F (x) = κx.

for some constant κ, which represents the stiffness of the spring.

• Hard. A spring is hard if the force of resistance grows faster than linearly with the displacement:
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F (x) = κx +O(x2).

• Soft. A spring is soft if the force of resistance grows slower than linearly with the displacement:

F (x) = κx −O(x2).

Consider for any of these springs what the work element dW is. When the spring is stretched to x , the force

of resistance is F (x). For the next infinitesimal amount of stretching dx , the force can be presumed to be

constant:

(Stretching Spring Animated GIF)

Therefore, the work element (i.e. the amount of work to stretch the spring the additional amount dx) is

dW = F (x) dx.

Example

Compute the amount of work it takes to stretch a linear spring from rest (when x = 0) to x = a. (See

Answer 1)

Example

Consider a nonlinear, soft spring which exerts a force of F (x) = 3x−x2 Newtons when the spring is stretched

to x meters. Determine how much work is required to stretch the spring from 1 meter to 3 meters. (See

Answer 2)

Pulling up a rope

In some situations, one must do a little work to determine what F (x) is, and then one can integrate, as in the

above examples.

Example

Consider a rope which is 100 feet long and density 1 pound/foot. It hangs from a wall which is 50 feet high

(so 50 feet of rope runs down the length of the wall and the remaining 50 feet is coiled at the bottom of

the wall). How much work (in foot-pounds) is required to pull the rope to the top of the wall?
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(See Answer 3)

37.2 Work element by slices

In other situations, such as pumping liquid, digging a hole, or piling gravel, a fruitful method for determining

the work involved is to consider a slice of the material which is being moved. Determining the weight of the

slice, and multiplying by the distance the slice has to be lifted gives the amount of work required for that slice.

That is precisely the work element. Integrating over all the slices in the object gives the total amount of work

to move that object.

Example

Pumping Liquid Consider an inverted conical tank (so the tip of the cone points downward) with base

radius 5 feet and height 10 feet. Water is pumped into the tank through a valve at the tip of the cone:

How much work is required to fill the tank with water? Leave the weight density of water as the constant

ρ. (See Answer 4)

Example

Digging a Hole Consider two workers digging a hole. How deep should the first worker dig so that each

does the same amount of work? Let the weight density of the dirt be the constant ρ, the depth of the hole

is D, and the cross-sectional area of the hole is the constant A (so we assume that the hole does not get

any wider or narrower as the workers dig). (See Answer 5)

Example

Gravel Pyramid Compute the amount of work required to build a pyramid of gravel. Assume the gravel is

infinitesimal with weight density ρ, and that the pyramid has a square base of side length s, and height h:
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(See Answer 6)

Example

Rope Revisited Consider the rope example from above, but this time suppose l total feet of rope are hanging

from a h foot building, where l ≥ h, and let ρ be the weight density of the rope. Compute the work required

to lift the rope to the top of the building.

For a different perspective, this time, use a work element which equals the amount of work required to lift

an infinitesimal length of rope to the top of the building (this will depend on whether the infinitesimal length

of rope is hanging at the beginning or is part of the coil at the bottom of the building). Then integrate

along the entire length of rope. (See Answer 7)

37.3 EXERCISES

• Consider a conical tank of height 10m. The vertex of the cone is at the bottom, and the base of cone

(which is at height 10m) has radius 2m. Let ρ denote the weight density of water. The water inside the

tank has height 4m. How much work would it take to pull all the water to the top of the tank?

37.4 Answers to Selected Examples

1. As shown above, the work element (i.e. the amount of work to stretch the spring a short distance dx) is

dW = F (x) dx = κx dx.

It follows that

W =

∫
dW

=

∫ a

x=0

κx dx

= κ
x2

2

∣∣∣∣a
x=0

= κ
a2

2
.

(Return)

2. The work element is

dW = F (x) dx

= (3x − x2) dx.
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Thus, the total work to stretch the spring from 1 meter to 3 meters is

W =

∫
dW

=

∫ 3

x=1

(3x − x2) dx

=
3

2
x2 −

1

3
x3

∣∣∣∣3
x=1

=

(
27

2
− 9

)
−
(

3

2
−

1

3

)
=

10

3
Joules.

(Return)

3. As the first 50 feet of rope are brought up, there is always precisely 50 feet of rope hanging from the

building (because every foot of rope brought onto the top of the building is replaced by a rope which is

coiled below). These 50 feet of rope weigh 50 lbs, so that is the force required to support them. If x

denotes the amount of rope which has been taken onto the roof, then

F (x) = 50; 0 ≤ x ≤ 50.

After the first 50 feet of rope have been brought to the roof, there is now 50 feet of rope dangling with

nothing left coiled below. Therefore, as we bring up these last 50 feet, there is less and less rope hanging,

and so the weight of the rope (and hence the force we exert) is decreasing. It decreases linearly, since the

rope has constant density. Each foot of rope we bring up decreases the weight by 1 lb, and so

F (x) = 100− x ; 50 ≤ x ≤ 100

(to see that this is right, note that it is linear and matches at the endpoints). We can graph the force as

a function of the amount of rope we have brought up:

Now, we can find the work by integrating the work element

W =

∫
dW

=

∫ 100

x=0

F (x) dx.
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Note that this is the area under the graph of the force (highlighted above), which is easier to compute

than to do it algebraically. Splitting it into a square and a triangle, the area (and hence the work) is

50 lb× 50 ft +
1

2
50 lb× 50 ft = 3750 ft-lb.

(Return)

4. Consider a slice of the water in the tank. Let x be the distance of the slice from the tip of the tank. That

is, x is the distance that the slice of water has to be lifted. Let r be the radius of the slice:

Above, we said that it is the weight of the slice multiplied by the distance the slice had to be moved. But

the weight of a slice is just the volume of the slice times the density of the slice. Letting ρ denote the

weight density of the substance (in this case water), we have

dW = weight of slice × distancesl icetravels
= ρ · dV · distance slice travels .

In the problem at hand, we have

dV = πr2 dx,

and the distance the slice is lifted is x , by the way we labeled our diagram. To finish, we must get r in

terms of x , which requires a little bit of geometry. If we flatten our cone and look at it from the side, we

get similar triangles:
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Therefore,
r

x
=

5

10
=

1

2
,

and so r = x
2 . Putting this together, we have

dW = ρ · dV · distance slice travels

= ρ(πr2 dx)x

= πρ
1

4
x3 dx.

Note that x ranges from 0 to 10, so the work required to fill the tank is

W =

∫
dW

=

∫ 10

x=0

πρ
1

4
x3 dx

=
πρ

4

x4

4

∣∣∣∣10

x=0

= 625πρ.

(Return)

5. Let x be the distance down to to the layer of dirt currently being dug:

This is convenient because this is the distance that the current slice of dirt has to be lifted to get out of

the hole. The area of the slice of dirt is A, its thickness is dx , and the density is ρ, so we have

dW = weight of slice × distance slice moves

= (ρ · dV ) · x
= (ρA dx) · x
= ρAx dx.
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Note that x varies from 0 to D as the hole gets dug. Thus, the total work required to dig the hole is

W =

∫
dW

=

∫ D

x=0

ρAx dx

=
1

2
ρAD2.

To find the depth D̃ where the work done is half, we set∫ D̃

x=0

ρAx dx =
1

2
W =

1

4
ρAD2.

Computing the integral on the left, we find

1

2
ρAD̃2 =

1

4
ρAD2.

Solving for D̃ gives

D̃ =
1√
2
D.

(Return)

6. If we think of building the pyramid slice by slice, let y be the distance from the base of the pyramid to

the slice. This is convenient because this is the distance that the slice must be lifted to be put in place.

Also, let x be the side length of the slice:

Then using similar triangles, as shown on the right above, we find that

x

s
=
h − y
h

.

So we find that

x =
h − y
h

s.
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Thus, the volume of a slice is just the area x2 multiplied by the thickness dy , and so we have

dW = ρdV y

= ρ(x2 dy) y

= ρ

(
h − y
h

s

)2

y dy

=
ρs2

h2
(h − y)2y dy .

Because y ranges from 0 to h, we have

W =

∫
dW

=
ρs2

h2

∫ h

y=0

(h − y)2y dy

=
ρs2

h2

∫ h

y=0

(h2y − 2hy2 + y3) dy

=
ρs2

h2

(
1

2
h2y2 −

2

3
hy3 +

1

4
y4

) ∣∣∣∣h
y=0

=
ρs2

h2

(
1

2
h4 −

2

3
h4 +

1

4
h4

)
=
ρs2

h2
·

1

12
h4

=
ρs2h2

12
.

(Return)

7. Let L be the distance along the rope of the infinitesimal piece being considered:

So L is the distance that the infinitesimal piece must be lifted to get to the top of the building. The

weight of the infinitesimal piece is density multiplied by length, and so the work element for a piece of

rope which is hanging is

dW = ρL dL; 0 ≤ L ≤ h.
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For a piece of rope which is part of the coil at the bottom, the distance it must be lifted is always h, so

the work element there is

dW = ρh dL; h ≤ L ≤ l .

So the work can be computed by integrating these work elements over their respective ranges and then

adding:

W =

∫
dW

=

∫ h

L=0

ρL dL+

∫ l

L=h

ρh dL

= ρ
1

2
L2

∣∣∣∣h
L=0

+ ρhL

∣∣∣∣l
L=h

=
ρh2

2
+ ρh(l − h).

Another way to think about this is to treat the coiled rope at the bottom of the wall as a single solid

object. The rope in the coil has length l − h, and so its weight is ρ(l − h). The distance the coil (as a

unit) must be lifted is h. It follows that the work to lift the coiled portion of the rope is ρh(l − h), the

result of the second integral above.

(Return)
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38 Elements
This module deals with various problems that can be modeled using integral calculus. As in the previous sections,

the problem will be to find the total accumulation of some quantity U, and the method will be to determine a

slice of the quantity, the U element dU, and integrate.

38.1 Mass

Mass of a rod

Consider the problem of determining the mass of a rod. Suppose the rod’s density varies along the length of

the rod (but the rod is uniform in cross section). Let ρ(x) denote the linear density (i.e. the mass per unit of

length) of the rod at position x :

Then the mass element dM is the density ρ(x) times the thickness of the slice dx , as shown above, and it

follows that the mass of the rod is

M =

∫
dM

=

∫ L

x=0

ρ(x)dx.

Mass of the earth

Consider the problem of finding the mass of the earth. Suppose the density of the earth ρ(r) is given as a

function of the distance from the center of the earth. Assume that there are just three layers (inner core, outer

core, and mantle) and that the density is constant within each layer.
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What is the mass element in this case? It is important to note that in this example we are measuring the

contribution of a spherical shell to the mass of the earth. This contribution is the volume of the spherical shell

multiplied by the density of the shell. Mathematically,

dM = ρ(r) · dV.

Recalling that the surface area of a sphere of radius r is 4πr2, we have that the volume element is

dV = 4πr2 dr,

and so the mass element is

dM = 4πρ(r)r2 dr.

Example

Using the approximate graph of density above, estimate the mass of the earth. (See Answer 1)

38.2 Torque

Imagine a rod of variable density which is attached to a hinge. The torque at the hinge depends not just on the

weight of the rod but on the distribution of the weight.

If there were just a mass-less rod with a single point mass, the torque would be Force × Distance . This can

be used to determine the torque element dT by thinking of each slice of the rod as a point mass. What is the

torque on such a slice?
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First, the torque element is the distance from the hinge, x , times the force element dF (the force on the slice).

The force element is the mass of the slice dM times the gravitational constant g. Finally, as in the previous

example, the mass element dM = ρ(x) dx . Putting it all together, one finds

dT = x · g · ρ(x) dx.

Integrating this over the length of the rod gives the torque.

38.3 Hydrostatic force

The next application is to compute the total force exerted by a tank of fluid on a surface submerged in the

tank, often called the hydrostatic force. For a tangible example, consider a large aquarium with a circular glass

viewing window (see the diagram below). If the viewing window has radius r , and the top of the viewing window

is at depth h, then the problem is to find the total force of the water on the viewing window.

As always, the method will be to find the force element dF (the force on a small strip of the window), and then

use integration to find the total force.

Recall that if pressure is constant across a surface, the force on the surface is area × pressure. Hydrostatic

pressure is given by

P = weight density of fluid × depth.

Note the units: N
m3 ·m = N

m2 , which is the correct unit for pressure (force per unit of area). Since the density of

the fluid is assumed to be constant, the pressure only depends on the depth.Therefore, the most logical choice

for the force element is a horizontal strip, since the depth, and hence the pressure, will be constant across the

strip. Letting dA denote the area of the strip, we find that the force element is given by

dF = P dA = ρx dA,

where ρ is the weight density of the fluid and x is the depth of the strip.
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Example

Compute the total force exerted on the circular viewing window in the aquarium shown above. (See Answer

2)

Example

Compute the force on the endcap of a full cylindrical tank of radius R on its side.

(See Answer 3)

Example

Consider a dam in the shape of a trapezoid with height h, top edge l1 and bottom edge l2. Find the total

force exerted on the dam by the water:

(See Answer 4)

38.4 Present value

Consider the problem of determining the present value of some amount of money at a future time. Turning the

problem around, first consider the value of an initial amount of money P0 at a future time t. Assuming a constant

186



annual nominal interest rate r and continuous compounding, this problem was an example of exponential growth,

and had solution

P (t) = P0e
r t ,

where t is the time in years. Given some amount of money, P , at time t, finding its present value is a matter

of solving P = P0e
r t for P0. In other words, solving for present value in this simple case is the same as finding

the initial investment P0 which yields P after t years of continuous compounding interest. Solving this equation

gives that the present value of a future amount P at time t is given by

P0 = Pe−r t .

Example

Find the present value of $1000000 in 30 years, assuming an interest rate of r = .08. (See Answer 5)

Now consider an income stream, say from a job. If I(t) is the rate of income at time t, what is the present

value of that income stream? Let PV be the present value. Then consider the income earned over a small

amount of time t years in the future:

dI = I(t) dt

(the income element). This small bit of income at time t contributes e−r t I(t)dt to the present value of the

income stream. Thus the present value element is given by

dPV = e−r t I(t)dt.

Integrating this over the range of values of t (the time period of the income stream) gives the present value of

that income stream.

Example

The Bigbucks lottery has an option of either a single lump sum payment today or an annuity which pays a

constant amount each year for 20 years. Suppose the annuity pays $3 million a year (for 20 years), and that

the interest rate will remain steady at r = .05. What is the fair lump sum payout today? (See Answer 6)

38.5 EXERCISES

• Consider a dam with the shape of an isosceles triangle. The base of the triangle, which is parallel to the

ground, is 5m long, and the height of the triangle is 10m. The weight density of water is given by ρ.

Compute the force exerted on the dam by water.

38.6 Answers to Selected Examples

1. Note that our volume is being measured in cubic kilometers, but the density ρ(r) is in grams per cubic

centimeter. We need a conversion factor C to make sure the units come out correctly. A little unit

conversion gives us that

C = 1
g

cm3
= 1012 kg

km3 .

So we need to multiply by this so that the units are correct (and the final answer will be in kilograms).
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Splitting the integral based on the values of r for which ρ(r) is constant, we find

M =

∫
dM

= C

∫ 6400

r=0

4πr2ρ(r) dr

= 4πC

(∫ 1200

r=0

r2ρ(r) dr +

∫ 3400

r=1200

r2ρ(r) dr +

∫ 6400

r=3400

r2ρ(r) dr

)
= 4πC

(
13 ·

r3

3

∣∣∣∣1200

0

+ 10 ·
r3

3

∣∣∣∣3400

1200

+ 5 ·
r3

3

∣∣∣∣6400

3400

)
≈ 6.3 · 1024 kilograms

According to Wolfram Alpha, the mass of the earth is approximately 5.97 · 1024 kilograms, so our rough

estimate is not too far off.

(Return)

2. As mentioned above, we will use horizontal strips of the window as the area element. The force element

is the amount of force on that strip of the window. Let x be the distance from the center of the window

to the horizontal strip. Let up be negative, down be positive (so the top of the window is x = −r and

the bottom of the window is x = r :

Then the depth of the strip is h+ r +x , and the area of the strip is 2
√
r2 − x2 dx . Thus the force element

in this example is

dF = (h + r + x)ρ · 2
√
r2 − x2 dx
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where ρ is the weight density of water. So

F =

∫
dF

= 2ρ

∫ r

−r
(h + r + x)

√
r2 − x2 dx

= 2ρ

∫ r

−r
(h + r)

√
r2 − x2 dx + 2ρ

∫ r

−r
x
√
r2 − x2 dx.

Now, notice that x
√
r2 − x2 dx is an odd function, so its integral from −r to r is 0. Thus

F = 2ρ(h + r)

∫ r

−r

√
r2 − x2 dx

= 2ρ(h + r)
πr2

2

= ρ(h + r)πr2,

since
∫ √

r2 − x2 dx gives half the area of a circle of radius r .

It is worth observing that with a very symmetric window such as the circle in this example, one can take

the area of the window, πr2, and multiply by the pressure at the center of the window ρ(h + r), to find

the hydrostatic force:

F = ρπr2(h + r).

The reason this works is that the pressure on a horizontal strip above the center of the window averages

with the pressure on the strip’s mirror image below the center to give the pressure at the center of the

window.

(Return)

3. Using the knowledge gleaned from the previous example, we can take the area of the endcap, πR2, and

multiply by the hydrostatic pressure at the center of the endcap, which is ρR, to find that the force is

F = πR2 · ρR = ρπR3.

We could also note that this is really a special case of the aquarium window example above, by setting

h = 0 in that example.

(Return)

4. As above, the force element dF is the force exerted on a horizontal strip. Let x be the distance of the

horizontal strip from the top of the dam, and l(x) be the length of the strip
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Since the shape is a trapezoid, l(x) is a linear function of x , and from the top and the bottom of the

dam, one finds that l(0) = l1 and l(h) = l2. It follows from the slope intercept form of a line that

l(x) = l1 + l2−l1
h x .

So the force acting on the strip is dF = ρx dA, where ρ is the weight density of the water, x is the depth

of the strip, and dA = (l1 + l2−l1
h x) dx is the area of the strip. Putting it all together, one finds

F =

∫
dF

=

∫ h

0

ρx

(
l1 +

l2 − l1
h

x

)
dx

= ρ

(
l1x

2

2
+
l2 − l1

3h
x3

) ∣∣∣∣h
0

= ρ

(
l1h

2

2
+
l2 − l1

3h
h3

)
=
ρh2

6
(l1 + 2l2).

(Return)

5. From the above equation one finds that

P0 = Pe−r t

= 1000000e(−.08)·30

≈ 90717.

(Return)

6. The income stream I(t) is constant at 3 · 106. Thus,

PV =

∫
dPV

=

∫ 20

t=0

e−r t I(t)dt

= 3 · 106

∫ 20

t=0

e−.05tdt

= 3 · 106

(
1

−.05
e−.05t

∣∣∣∣20

t=0

)
= 3 · 106 · (−20)(e−1 − 1),

which is approximately $38 million.

(Return)
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39 Averages

Consider the problem of finding the average test score in a class of 100 students. The answer is to add up all

the scores and divide by 100. But what would happen if there were infinitely many students? This module deals

with the problem of finding the average value of a function.

39.1 Average value of a function

The definition of the average value of a function f (x) over the interval [a, b], denoted f , is

f =

∫ b
a f (x) dx

b − a .

One way to interpret the average value is to find the rectangle of length b− a whose area equals the area under

the curve f over the interval [a, b]. The height of this rectangle is f . Put another way, f is the height of the

horizontal line such that the area above the line and below f (x) equals the area which is below the line and

above f (x). These areas are shown in red and blue, respectively, in the following diagram:

A better formulation of the average value, which will be useful in other situations and higher dimensions, is

f =

∫ b
x=a f dx∫ b
x=a dx

.

This emphasizes that the average value over a region is the integral of the function over the region divided

by the volume of that region (in this case, the 1-dimensional volume is just the length of the interval). This

generalizes nicely to higher dimensions.
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If we go down a dimension to the discrete average, if fi denotes the ith data point out of n, then the average

value of the data is

f =

∑n
i=1 fi
n

=

∑n
i=1 fi∑n
i=1 1

.

This shares a common feature with the earlier formula for average value. Namely, it is the sum (integral) of

the function values over a range of inputs divided by the sum (integral) of 1 over that range of inputs.

Example

Compute the average value of sin2 x over the interval [0, 2π]. (See Answer 1)

Example

Compute the average of xn and ex over 0 ≤ x ≤ T . Compute the average of ln x over 1 ≤ x ≤ T . (See

Answer 2)

Example

Suppose we are given the density function ρ(r) for the density of the earth at a distance r from the center.

Find a formula for the average density of the earth, but do not try to evaluate the integral. (See Answer

3)

39.2 Root mean square

There is another type of average of a function called the root mean square. The root mean square of f , denoted

fRMS is defined by

fRMS =
√
f 2.

So the root mean square is the square root of the average value of the square of the function. This is a useful

metric when the average value of f is uninteresting.

Example

Compute and compare the average value and the root mean square of f (x) = sin x on the interval [0, 2π].

(See Answer 4)

39.3 EXERCISES

• Consider the polar function f (θ) = cos2(θ). Compute the average value of f from θ = 0 to θ = 2π.
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39.4 Answers to Selected Exercises

1. From the definition,

f =

∫ 2π

0 sin2 xdx

2π

=
1

2π

∫ 2π

0

1

2
(1− cos(2x)) dx

=
1

2π

(
x

2
−

1

4
sin(2x)

) ∣∣∣∣2π
0

=
1

2π
·

2π

2

=
1

2
.

(Return)

2. For f (x) = xn, one finds

f =
1

T

∫ T

0

xn dx

=
1

T

xn+1

n + 1

∣∣∣∣T
0

=
T n

n + 1
.

For f (x) = ex , the average value is

f =
1

T

∫ T

0

ex dx

=
eT − 1

T

For f (x) = ln x , recalling the integral using integration by parts, one finds

f =
1

T − 1

∫ T

1

ln x dx

=
1

T − 1
(x ln x − x)

∣∣∣∣T
1

=
1

T − 1
(T lnT − T + 1).

(Return)

3. Note that we cannot simply integrate the density function and divide by the radius of the earth, for the

same reason that we could not integrate the density function to find the mass of the earth in the previous

module.

One way to logically think about it is to note that the average density times the volume of the earth

should give the mass of the earth. That is,

ρ · V = M.
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Remember that when we found the mass of the earth, we had dM = ρ dV , where the volume element

dV is a spherical shell. So we can write

ρ =
M

V
=

∫
ρ dV∫
dV

.

Then, remembering that the volume of the spherical shell (i.e. the volume element) is 4πr2 dr , we have

ρ =

∫ R

r=0

4πr2ρ(r) dr∫ R

r=0

4πr2 dr

.

(Return)

4. The average value of sin x is

f =

∫ 2π

x=0

sin x dx

2π

=
1

2π
(− cos x)

∣∣∣∣2π
x=0

=
1

2π
(−1− (−1))

= 0.

Using the result of an example from above, the root mean square of sin x is

fRMS =

√√√√√∫ 2π

x=0

sin2 x dx

2π

=

√
1

2

=
1√
2
.

(Return)
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40 Centroids And Centers Of Mass
The motivation for this module are the questions:

• what is the average of several locations (e.g. cities on a map)?

• what is the average of an entire region?

The centroid and center of mass give answers to these questions. The formulas for the centroid and the center

of mass of a region in the plane seem somewhat mysterious for their apparent lack of symmetry. So before

giving the formulas, a brief aside is helpful.

40.1 The area element revisited

In future courses, the area element of a region will not be a strip of area but a small rectangle with width dx

and height dy :

The area of the region, then, is the limit of the sum of the areas of all these small rectangles as the rectangles

get infinitely small. The notation used to express this is called a double integral, written

Area =

∫∫
R

dx dy.

Think of the double integral as a nested integral:
∫∫
dx dy =

∫
(
∫
dx) dy . The inner integral is performed first,

with respect to x (since the dx is left of the dy). Then the result is integrated with respect to y . Conceptually,
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the inner integral is adding up the contribution of a row of boxes, and then the outer integral is adding up the

rows:

Double integrals can be computed in the other order too:
∫∫
dy dx . First the inner integral is performed

with respect to y , which adds up the contribution of a column of boxes. Then the outer integral adds up the

contribution of the columns:

Example

Express the area of the region bounded by the curves y = x2 − 4x + 5 and y = x + 1 as a double integral

and evaluate the integral. (See Answer 1)

40.2 Centroid

The centroid of a region R in the plane is defined to be the point (x, y), where x is the average x-coordinate

of R and y is the average y -coordinate of R. One interpretation is that if the region were cut out of a sheet

of uniform density metal and a pin were placed at its centroid, the region would balance on the pin.
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The centroid is best expressed mathematically using double integrals:

x =

∫∫
R x dx dy∫∫
R dx dy

y =

∫∫
R y dx dy∫∫
R dx dy

.

Suppose the region R is bounded above by the curve y = f (x) and below by the curve y = g(x), and the

intersection points are at x = a and x = b. Then integration is easier in the dy dx order, and the centroid can

be written more explicitly as

Centroid of a region

The centroid of the region bounded above by y = f (x) and below by y = g(x) is given by

x =

∫ b
a

∫ f (x)

g(x) xdydx∫ b
a

∫ f (x)

g(x) dydx

=

∫ b
a x(f (x)− g(x))dx∫ b
a (f (x)− g(x))dx

.

Similarly,

y =

∫ b
a

∫ f (x)

g(x) y dy dx∫ b
a

∫ f (x)

g(x) dy dx

=

∫ b
a

1
2 (f (x)2 − g(x)2) dx∫ b
a (f (x)− g(x)) dx

.

Note that the denominator in each case is the area of the region.
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Example

Find the centroid of a triangle with vertices at (a, 0), (b, 0), and (0, c). (See Answer 2)

Example

Compute the centroid of the upper half circle of radius R.

(See Answer 3)

Example

Compute the centroid of the quarter circle of radius R:

(See Answer 4)

Symmetry

It is important to note that centroids respect symmetry. What that means is that if there is an axis of symmetry

(i.e. a line where if we reflect the region about the line we get the same region back), then the centroid must lie

on the axis of symmetry. If there is more than one axis of symmetry, then the centroid will lie at the intersection

of these axes:
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40.3 Center of mass

Now consider a region R of the plane cut from a sheet of metal of variable density ρ(x, y). Again, the problem

is to find the balancing point (x, y), but in this context it is called the center of mass. Again, it is expressed as

a double integral:

x =

∫∫
R ρ(x, y)x dx dy∫∫
R ρ(x, y) dx dy

y =

∫∫
R ρ(x, y)y dx dy∫∫
R ρ(x, y) dx dy

.

The only difference between these and the centroid formulas is that instead of the area element dA = dx dy ,

the mass element dM = ρ(x, y) dx dy is used (multiplying the area element by the density of that point gives

the mass contributed by that small rectangle). Indeed, if the density is constant, then ρ(x, y) = ρ factors out

of both the numerator and denominator and cancel, leaving the formula for centroid.

Note that the denominator for both x and y is the mass of the region.

Example

Compute the center of mass of the region bounded above by y = 4x − x2 and below by the x-axis, where

the density function is given by ρ(x, y) = 2x :
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(See Answer 5)

40.4 Centroids using point masses

Given a complex region which consists of the union of simpler regions, there is a method for finding the centroid:

1. Find the centroid of each simple region.

2. Replace each region with a point mass at its centroid, where the mass is the area of the region.

3. Find the centroid of these point masses (this is done by taking a weighted average of their x and y

coordinates).

(Centroids and Point Masses Animated GIF)

This is easiest to see with an example:

Example

Find the centroid of a region consisting of a rectangle of width 2R and height H which has a semicircle of

radius R on one end:

(See Answer 6)

40.5 Application: Pappus’ theorem

One application of the centroid is known as Pappus’ theorem, after the Greek mathematician Pappus of Alexan-

dria. It uses the centroid to find the volume and surface area of a solid of revolution.
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Pappus’ theorem

Consider the solid which results from rotating the plane region R about the axis L.

The volume of this solid is equal to the area of R times the distance the centroid travels (as it gets revolved

around the axis).

The surface area of the solid is equal to the perimeter of R times the distance the centroid travels.

Example

Find the volume and surface area of a torus (i.e. a doughnut) with cross sectional radius r and main radius

R:

(See Answer 7)

40.6 EXERCISES

• Compute the area of region bounded by curves x = (y − 2)2 + 2 and y = x − 2 using double integrals.

• Consider the region under the graph y = x2, above the x-axis, from x = 0 to x = 1. Let S be the solid

obtained by revolving this region about the y-axis. Compute the average height (average y-coordinate) of

S.

• Let R1 denote the region inside the triangle with vertices at (0,1), (-2,0), (0,-1). Given a unit circle

centered at the origin, let R2 denote the region inside the semicircle for x ≥ 0. Let R denote the union

R1 and R2. compute the centroid of R.

40.7 Answers to Selected Exercises

1.
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The easier order of integration is dy dx because every vertical strip is bounded on top by y = x + 1 and

bounded below by y = x2 − 4x + 5; whereas a horizontal strip would sometimes be bounded on the left

by y = x + 1, and other times be bounded by y = x2 − 4x + 5.

Setting the curves equal gives the intersections at x = 1 and x = 4. So the area can be found by

computing ∫ x=4

x=1

∫ y=x+1

y=x2−4x+5

dy dx =

∫ x=4

x=1

(
y

∣∣∣∣x+1

x2−4x+5

)
dx

=

∫ x=4

x=1

(x + 1− (x2 − 4x + 5)) dx

=

∫ x=4

x=1

(−x2 + 5x − 4) dx

= −
x3

3
+

5

2
x2 − 4x

∣∣∣∣4
1

=
9

2
.

(Return)

2. The easier order of integration is dx dy because a horizontal strip is always bounded on the left by

x = −b
c y + b and on the right by x = −a

c y + a (see the diagram below). So one finds that

x =

∫ y=c

y=0

∫ x=−a
c
y+a

x=−b
c
y+b

x dx dy∫ y=c

y=0

∫ x=−a
c
y+a

x=−b
c
y+b

dx dy

=

∫ y=c

y=0

∫ x=−a
c
y+a

x=−b
c
y+b

x dx dy

Area

Noting that the area of the triangle is 1
2 (a − b)c , one finds

x =
2

(a − b)c

∫ y=c

y=0

∫ x=−a
c
y+a

x=−b
c
y+b

x dx dy

=
2

(a − b)c

∫ y=c

y=0

1

2

(
(
−a
c
y + a)2 − (

−b
c
y + b)2

)
dy

=
1

(a − b)c
·

1

3

(
(
−a
c
y + a)3−c

a
− (
−b
c
y + b)3−c

b

) ∣∣∣∣c
0

=
1

3(a − b)c
(a2c − b2c)

=
1

3(a − b)c
c(a + b)(a − b)

=
1

3
(a + b).

A similar computation gives that y = c
3 .
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More generally, the centroid of a triangle with coordinates (x0, y0), (x1, y1), and (x2, y2) is

(x, y) =

(
x0 + x1 + x2

3
,
y0 + y1 + y2

3

)
.

In other words, the centroid of a triangle is the average of the x coordinates and the average of the y

coordinates.

(Return)

3. By the symmetry about the y -axis, the x-coordinate of the centroid is 0.

To find the y -coordinate, note that the equation of the curve is y =
√
R2 − x2. Also, note that the area

of the region is 1
2πR

2. Thus,

y =
2

πR2

∫ R

x=−R

1

2
(
√
R2 − x2)2 dx

=
1

πR2

(
R2x −

1

3
x3

) ∣∣∣∣R
x=−R

=
1

πR2
·

4R3

3

=
4R

3π
.

(Return)

4. We know that the area of the region is 1
4πR

2. So we have that

x =
1

A

∫
x(f (x)− g(x)) dx

=
4

πR2

∫ R

x=0

x(
√
R2 − x2 − 0) dx.

Making a substitution of

u = R2 − x2

du = −2x dx
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gives

4

πR2

∫ R

x=0

x
√
R2 − x2 dx =

4

πR2

∫ 0

u=R2

−
1

2

√
u du

=
−2

πR2

2

3
u3/2

∣∣∣∣0
u=R2

=
2

πR2
·

2

3
R3

=
4R

3π
.

Because the region is symmetric about the line y = x , we predict that y = 4R
3π as well. We can verify this

by integrating:

y =
1

A

∫
1

2
(f (x)2 − g(x)2) dx

=
2

πR2

∫ R

x=0

(R2 − x2) dx

=
2

πR2

(
R2x −

1

3
x3

) ∣∣∣∣R
x=0

=
2

πR2

(
R3 −

1

3
R3

)
=

2

πR2
·

2

3
R3

=
4R

3π
,

as claimed.

(Return)

5. Setting y = 0, we find that the curve intersects the x-axis at x = 0 and x = 4. First, we compute the

mass of the region, which is the denominator for both x and y . It is easier to integrate in the dy dx order,

so we will do that here, and in the integrals that follow.

M =

∫∫
R

ρ(x, y) dy dx

=

∫ 4

x=0

∫ 4x−x2

y=0

2x dy dx

=

∫ 4

x=0

(
2xy

∣∣∣∣4x−x2

y=0

)
dx

=

∫ 4

x=0

2x(4x − x2) dx

=

∫ 4

x=0

(8x2 − 2x3) dx

=
8

3
x3 −

1

2
x4

∣∣∣∣4
x=0

=
512

3
− 128 =

128

3
.
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So to compute x , we find

x =
1

M

∫∫
R

ρ(x, y)x dy dx

=
3

128

∫ 4

x=0

∫ 4x−x2

y=0

(2x)x dy dx

=
3

128

∫ 4

x=0

(
2x2y

∣∣∣∣4x−x2

y=0

)
dx

=
3

128

∫ 4

x=0

2x2(4x − x2) dx

=
3

128

(
2x4 −

2

5
x5

) ∣∣∣∣4
x=0

=
3

128
512−

2048

5

=
3

128
·

512

5
=

12

5
.

Similarly,

y =
1

M

∫∫
R

ρ(x, y)y dy dx

=
3

128

∫ 4

x=0

∫ 4x−x2

y=0

(2x)y dy dx

=
3

128

∫ 4

x=0

xy2

∣∣∣∣4x−x2

y=0

dx

=
3

128

∫ 4

x=0

x(4x − x2)2 dx

=
3

128

∫ 4

x=0

(16x3 − 8x4 + x5) dx

=
3

128

(
4x4 −

8

5
x5 +

1

6
x6

) ∣∣∣∣4
x=0

=
3

128
· 1024

(
1−

8

5
+

2

3

)
=

8

5
.

(Return)

6. From an earlier example, the centroid of the semicircle is (0, 4R
3π ), and the weight (the area of the

semicircle) is 1
2πR

2.

The rectangle is symmetric, so its centroid (as it is drawn in the coordinate plane) is (0,−H2 ), and its

weight is 2RH:
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By symmetry,

x = 0.

Taking the weighted average of the y-coordinates of the points gives

y =
1
2πR

2 · 4R
3π + 2RH ·

(
−H2

)
1
2πR

2 + 2RH

=
2
3R

3 −H2R
1
2πR

2 + 2RH

=
4R2 − 6H2

3πR + 12H
.

We can check that this is reasonable by noting that if H = 0 we get the y-coordinate of the centroid of

the semicircle, and when R = 0 we get the y-coordinate of the centroid of the line segment from (0, 0)

to (0,−H).

(Return)

7.

Here, the region being rotated is a circle, which is easy to work with because a circle’s centroid is just

its center. For convenience, center the circle at (R, 0) and revolve around the y -axis. Then the distance

which the centroid travels is 2πR (the path of the centroid is just a circle of radius R).
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Therefore the surface area of the torus is

Surface area = Perimeter · Centroid travel distance

= (2πr) · (2πR)

= 4π2r · R.

And the volume of the torus is

Volume = Area · Centroid travel distance

= (πr2) · (2πR)

= 2π2r2R.

(Return)
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41 Moments And Gyrations

This module deals with the moment of inertia and the radius of gyration, which are two properties of an object

with physical interpretations.

41.1 Moment of inertia

The moment of inertia of an object, usually denoted I, measures the object’s resistance to rotation about an

axis. To get an intuitive understanding of moment of inertia consider swinging a hammer by its handle (higher

moment of inertia, harder to swing) versus swinging a hammer by its head (lower moment of inertia, easier to

swing). So moment of inertia depends on both the object being rotated and the axis about which it is being

rotated.

(Hammer Animated GIF)

Consider first a particle of mass. The bigger the mass, the more resistant it will be to rotation about an axis.

Similarly, the further the particle is from the axis, the more resistant it will be to rotation. For a point mass,

the moment of inertia is given by

I = r2M,

where r is the distance of the particle from the axis of rotation, and M is the mass of the particle:

(Particle Animated GIF)

The next question is how to calculate the moment of inertia when all the mass is not at a single point. As in

previous modules, the method will be to break the object into slices of mass, and consider the contribution of

each slice to the moment of inertia:
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Each slice can be thought of as an individual particle of mass which contributes to the moment of inertia. The

contribution of the slice becomes the moment of inertia element dI:

dI = r2 dM.

Example

Consider a solid disc of radius R and constant density ρ rotated about its central vertical axis:

(Disk Rotating Around Diameter Animated GIF)

Compute its moment of inertia. (See Answer 1)

Example

Consider a solid disc of radius R and constant density ρ rotated about its center:

(Disk Rotating Around Center Animated GIF)

Compute its moment of inertia. (See Answer 2)

Example

Consider a rectangle of length l and height h. Compute the moment of inertia about the vertical axis

through its center. Then compute the moment of inertia about the horizontal axis through its center. Hint:

use symmetry to find the second answer from the first.

(See Answer 3)
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41.2 Radius of gyration

Another property of an object, radius of gyration, denoted Rg, can be expressed in terms of the moment of

inertia. Imagine replacing the object being rotated about an axis by a single point mass being rotated about

that same axis. The radius of gyration is the radius at which the point mass has the same moment of inertia

as the object. More specifically, I = MR2
g, and solving for Rg gives

Rg =

√
I

M
.

Note that because

I =

∫
r2 dM

we can write

Rg =

√∫
r2 dM∫
dM

=
√
r2

= rRMS

So the radius of gyration is really the root mean square of the radius.

41.3 Higher mass moments

In the centroid module, we computed
∫
x dM as part of computing the x-coordinate of the center of mass,

x .The moment of inertia I from this module is given by
∫
x2 dM. These are respectively known as the first

mass moment and the second mass moment (first and second referring to the powers of x).

There are higher mass moments:
∫
xn dM, for n ≥ 3, as well as the lower mass moment

∫
x0dM, which is just

mass. These moments each give more information about how the mass of the object is distributed.

This is similar, in a sense, to how knowledge of the derivative of a function at a point leads to an approximation

of the function using the Taylor series. The more derivatives one knows, the better the approximation. A logical

question, then, is if one knows all the mass moments of an object, can one perfectly describe the distribution

of mass?

41.4 Additivity of moments

One nice feature of moments is that, being integrals, they are additive. This means that a complex region can

be split into simpler regions for which we already know the moment of inertia, and these moments can be added

to find the moment of inertia for the entire region.

Example

Compute the moment of inertia for each of the following figures about a horizontal axis through their centers.
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Which has the greater moment of inertia, the I-shaped figure or the H-shaped figure? (See Answer 4)

41.5 EXERCISES

• Consider a right triangle with vertices at (0,0), (5,0), (0,10). Consider rotating the triangle about the

y-axis. The density is given by ρ(x, y) = x . Compute the moment of inertia. Compute the radius of

gyration.
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41.6 Answers to Selected Examples

1. Because the distance to the axis is part of the inertia element, a good area element to use is a vertical

rectangle, where every point has the same distance to the center axis. Let x be the distance from the

central axis to the rectangle (thus, r = x):

The area of this rectangle, as has been computed several times previously, is dA = 2
√
R2 − x2 dx . Then

the mass element dM = ρ dA, and it follows that

dI = r2 dM

= 2x2ρ
√
R2 − x2 dx.

so integrating the inertia element gives

I =

∫
dI

=

∫ R

x=−R
2ρx2

√
R2 − x2 dx

= 4ρ

∫ R

x=0

x2
√
R2 − x2 dx

(using the fact that the integrand is an even function allows the final step). Now the substitution

x = R sin θ, and some of the trig integral methods gives the answer ρπ
4 R

4, which can also be written
1
4MR

2, where M = πR2ρ is the mass of the disc.

(Return)

2. In this example, a good area element to use is a ring (also called an annulus), because every point in a

ring has the same distance to the origin, which is the axis of rotation (one can imagine the axis sticking

out of the page perpendicular to the center of the disc):
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As before, dM = ρ dA. In this case, dA is the area of the ring, which is 2πr dr (the circumference of the

ring times the width of the ring). It follows that

I =

∫
dI

=

∫ R

r=0

r2ρ2πr dr

= 2πρ

∫ R

r=0

r3 dr

= 2πρ
r4

4

∣∣∣∣R
r=0

=
πρR4

2
.

This can be expressed as 1
2MR

2, where M is again the mass of the disc. Note that the answer in this

example is twice that of the previous example. This can be explained (using the answer from the previous

example) by noting that r2 = x2 + y2 in this example. Therefore,

I =

∫
r2 dM

=

∫
(x2 + y2) dM

=

∫
x2 dM +

∫
y2 dM,

and these two integrals are, respectively, the moment of inertia about a vertical axis (from the previous

example) and the moment of inertia about a horizontal axis. By symmetry, these are equal, which explains

why this answer is twice the answer of the previous example.

(Return)

3. Center the rectangle at the origin. About the vertical axis, it is again best to use vertical rectangles. Let

r denote the distance of this rectangle from the y -axis:
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Then r = x , and dM = ρh dx . Thus

I =

∫
dI

= ρh

∫ l/2

x=−l/2

x2 dx

= ρh
x3

3

∣∣∣∣l/2

x=−l/2

=
1

12
ρhl3

=
1

12
Ml2,

where M = ρlh is the mass of the rectangle. By symmetry, the moment of inertia about a horizontal axis

through the center is 1
12Mh

2.

(Return)

4. For the first figure, we can divide it into two rectangles (in light blue) and a square which are all being

rotated about their horizontal center axis:
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From the above example, we know that the moment of inertia for a rectangle about its horizontal axis is

1

12
Mh2 =

1

12
lh3,

where l is the length and h is the height of the rectangle. So for each of the tall rectangles we have

I = 1
12a

3 a−b
2 and for the square in the middle we have I = 1

12b
4. Putting it together, we have the moment

of inertia for the entire region is

I = 2 ·
1

12
a3 a − b

2
+

1

12
b3b

=
1

12
(a4 − a3b) +

1

12
b4

=
1

12

(
a4 + b4 − a3b

)
.

For the other region, we cannot divide it up into rectangles in the same exact way, because we do not

know the moment of inertia for a rectangle rotated about an axis other than one through its center.

Instead, we can take the entire square of side length a, and compute its moment of inertia. Then we can

subtract off the inertia for the small rectangles we do not want to include, shown in red:

215



Again, using the fact from the previous example, the moment for the whole square is 1
12a

4, and the

moment for each of the smaller rectangles (which we will subtract) is 1
12 ·

a−b
2 · b

3, so the moment of

inertia for the whole region is

I =
1

12
a4 − 2 ·

1

12
·
a − b

2
· b3

=
1

12
a4 −

1

12
(ab3 − b4)

=
1

12
(a4 + b4 − ab3).

So the I-shaped figure has the greater moment of inertia.

This is important when considering whether to use an H-beam or and I-beam in construction. According

to a fact mentioned in higher derivatives, the deflection u(x) (the amount the beam sags at location x)

satisfies the equation

EI
d4u

dx4
= q(x),

where E is the elasticity of the material (a constant), and q(x) is a static load at location x along the

beam. Because the I-beam has the greater moment of inertia, it follows that their deflection will be less,

and so I-beams are more common in building construction.

(Return)
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42 Fair Probability

Probability is the study of the likelihood of certain events occurring in a random experiment. A simple example

is a coin flip. There are two outcomes: heads (H) or tails (T). If the coin is fair, then the probability of each

outcome is 1
2 , written P (H) = P (T ) = 1

2 . Another example is a roll of a standard die. There are six outcomes:

1 through 6. If the die is fair then the probability of each outcome is 1
6 .

In these types of problems, one can find the probability of an event occurring by counting the number of desired

outcomes and dividing by the total number of outcomes.

Example

What is the probability that a pair of dice sums to seven or eleven? (See Answer 1)

Example

Alice and Bob play a game where they take turns flipping a fair coin, with Alice going first. The first player

to get heads wins. What is the probability that Alice wins?

Hint: find the probability that Alice wins on her first flip, and the probability that she wins on her second

flip, and the probability that she wins on her third flip, etc. Add up all these (infinitely many) probabilities

to find the probability that she wins.

Second hint: For Alice to win on her second flip, it means that both Alice and Bob got tails on their

respective first flips (otherwise the game would have ended in the first round). So the probability of Alice

winning on her second flip is

P (A got tails) · P (B got tails) · P (A got heads) =
1

2
·

1

2
·

1

2
=

(
1

2

)3

.

(See Answer 2)

42.1 Uniform distribution

The above examples refer to a fair coin and a fair die. A discrete experiment (i.e. the possible outcomes can

be listed) is said to have the uniform distribution if the experiment is fair in the sense that every outcome is

equally likely.

What about experiments which are not discrete? For instance, a spinner gives a point along the circumference

of a circle, and the individual points of the circle cannot be enumerated. Throwing a dart at a circular dartboard

likewise has as many outcomes as there are points in the interior of the disk. What does it mean for such an
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experiment to be fair, i.e., what does the uniform distribution mean in an experiment with continuous outcomes?

To answer this question, consider the probability of a range of outcomes of the experiment. So, for instance,

what is the probability of the spinner landing in the first quarter of the circle? If the experiment is fair, then

this probability should be the same as landing in any other quarter of the circle: 1
4 :

(Spinner Animated GIF)

Thus an experiment is fair (i.e. has the uniform distribution) if for any set of outcomes D,

P (D) =
volume of D

total volume of all outcomes
.

Here “volume” depends on the dimension of the experiment. For instance, the spinner has dimension 1 (where

volume is really just the length) since any point on the circumference can be specified by a single value (say,

the angle of the arrow relative to the positive x-axis). So a spinner is considered fair if the probability of the

arrow landing in a certain range along the circumference equals the length of that range divided by the total

circumference of the circle.

Length

Example

Find the probability that a randomly chosen angle θ has sin θ > 1
2 ? (See Answer 3)

Example

Find the probability that a randomly chosen angle θ has tan θ > 0. (See Answer 4)

Area

In two dimensions, volume is really area, and so when computing the probability that a randomly chosen point

in a region R in the plane lies within the region D, we have

P =
Area of D

Area of R
.
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Example

A dartboard is circular with radius 9 inches:

The bullseye is a small circle at the center of the board. Find the radius of the bullseye so that the probability

of hitting it is 1
100 (assuming a throw hits the board uniformly at random). (See Answer 5)

Example

Find the probability that a randomly chosen point in a square lies within the circle inscribed in the square:

(See Answer 6)
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Example

Find the probability that a randomly chosen point in a circle lies in the equilateral triangle inscribed in the

circle:

Hint: the area of an equilateral triangle of side length s is

A =
s2
√

3

4
.

(See Answer 7)

There are some probability problems that do not seem geometric in nature but can be solved by graphing the

possible outcomes and taking the ratio of the areas.

Example

Xander and Yolanda want to meet up to study calculus. Each friend will arrive at the library at some random

time between 5 pm and 6pm, wait 20 minutes for the other person, and then leave if the other person does

not arrive in that time. Find the probability that the friends successfully meet up.

Hint: Let x be the number of minutes after 5 pm that Xander arrives and y be the number of minutes after

5 pm that Yolanda arrives. Now plot the possible arrival times as a region in the plane and determine the

region which corresponds to them successfully meeting up. (See Answer 8)

Volume

Finally, in dimension 3, volume is volume as we traditionally know it. In this case, we imagine picking a point

from within a 3D region and know the probability that the point lies within some subset of that region.

Example

Find the probability that a randomly chosen point from within a cube lies within the inscribed sphere:
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(See Answer 9)

Example

What is the probability that a randomly chosen point in a ball lies within 10% of the boundary (as measured

by radius)? (See Answer 10)

42.2 Buffon needle problem

The Buffon needle problem, named after the Count of Buffon, asks for the probability that a needle of length

l , dropped uniformly at random onto a sheet with parallel lines spaced l units apart, will cross a line.

To simplify the problem, consider two parameters which determine whether the needle crosses:

1. h, the distance from the left tip of the needle to the next line to its right

2. θ, the angle that the needle makes with a vertical line:
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Note that 0 ≤ h ≤ l and 0 ≤ θ ≤ π. Now, for what values of h and θ is there a crossing? Note that by right

triangle trigonometry, the horizontal distance from the left end of the needle to the right end of the needle is

l sin θ:

Thus, there is a crossing if h ≤ l sin θ, and there is no crossing if h > l sin θ. Graphing this inequality shows that

the region below the curve (shown in purple) is where a crossing occurs. The region above the curve is where

a crossing does not occur.
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Dropping a needle at random is like randomly picking a point in this rectangle. Thus, the probability of a

random needle creating a crossing equals the probability of randomly picking a point below the curve in the

above rectangle. That probability is given by dividing the area under the curve by the area of the entire rectangle.

P (crossing) =

∫ π
0 l sin θ dθ

lπ

=
1

π

(
− cos θ

∣∣∣∣π
0

)
=

2

π
.

42.3 Answers to Selected Examples

1. By listing the desired outcomes, one finds that (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1) are the possible

pairings which give 7, and (6, 5) and (5, 6) are the possible pairings which give 11. So there are 8 desired

outcomes. The total number of outcomes is 6× 6 (six outcomes for the first die paired with each of the

six outcomes for the other die). So the probability is

# desired

# total
=

8

36
=

2

9
.

(Return)

2. Proceeding as the hint suggests, we look for a pattern.

P (A wins on 1st flip) = P (A gets heads) =
1

2
.

And then

P (A wins on 2nd flip)

= P (A gets tails) · P (B gets tails) · P (A gets heads)

=
1

2
·

1

2
·

1

2

=

(
1

2

)3

.

Next,

P (A wins on 3rd flip)

= P (A gets tails) · P (B gets tails) · P (A gets tails) · P (B gets tails) · P (A gets heads)

=
1

2
·

1

2
·

1

2
·

1

2
·

1

2

=

(
1

2

)5

.

In general, for Alice to win on the nth flip, she must get a head on that flip, and both Alice and Bob must

have gotten tails on each of their previous n − 1 flips. Thus, there are a total of 2(n − 1) + 1 = 2n − 1

coin flips that must come out in a precise way, and the probability of each of these is 1
2 , so we have

P (A wins on nth flip) =

(
1

2

)2n−1

.
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Adding these up for all n, and using the geometric series, gives

P (A wins) =

∞∑
n=1

(
1

2

)2n−1

=
1

2
+

(
1

2

)3

+

(
1

2

)5

+ · · ·

=
1

2
·

(
1 +

(
1

2

)2

+

(
1

2

)4

+ · · ·

)

=
1

2
·

(
1 +

1

4
+

(
1

4

)2

+ · · ·

)

=
1

2
·

1

1− 1/4

=
2

3
.

(Return)

3. We can visualize the sine of the angle by considering a unit circle, and noting that sine is the y -coordinate

of a point on the circle:

Then one finds that the angles for which sin θ > 1
2 are

π

6
< θ <

5π

6
.

The length of this portion of the circumference of the circle is 4π
6 , and so the probability of a random

angle θ satisfying sin θ > 1
2 is

P =
4π/6

2π

=
1

3
.
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(Return)

4. Note that tangent is positive when sine and cosine have the same sign, i.e. if sine and cosine are both

positive or if sine and cosine are both negative. This corresponds to the first and third quadrants of the

unit circle:

The length of each these arcs is π
2 , and so the probability that tan θ > 0 is

P =
2 · π/2

2π

=
1

2

(Return)

5. Ignoring the unnecessary detail of the dartboard, let the radius of the bull’s eye be r . Then

P (( bullseye ) =
A( bullseye )

A( board )

=
πr2

π · 92

=
r2

81
.

Setting equal to 1
100 and solving gives r = 0.9 inches. (In reality, the bullseye is much smaller, but the

numbers worked out nicer in this example).

(Return)

6. If the radius of the circle is r , then the side length of the square is 2r . Thus, the area of the circle is πr2

and the area of the square is (2r)2 = 4r2. And so the probability that a point chosen at random within

the square also lies within the circle is

P =
πr2

4r2

=
π

4
.
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(Return)

7. By doing a little bit of right triangle trigonometry:

we find that the side length of the triangle is

s = r
√

3.

Therefore, the area of the triangle is

A =
s2
√

3

4

=
3r2
√

3

4
.

And so the probability of a point within the circle being within the triangle is the ratio of the areas:

Area of triangle

Area of circle
=

1

πr2

3r2
√

3

4

=
3
√

3

4π

(Return)

8. The possible outcomes form a square for 0 ≤ x ≤ 60 and 0 ≤ y ≤ 60. For the friends to meet, we must

have that Yolanda arrives no later than 20 minutes after Xander and that Xander arrives no later than 20

minutes after Yolanda arrives. Mathematically,

y ≤ x + 20

x ≤ y + 20

The two will successfully meet if and only if these two conditions are met. Graphing these inequalities,

the points they have in common are shown below in dark blue:
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So the probability of them meeting is the area of the dark blue region divided by the total area of the

square. It is easier to determine the area of the region we do not want and subtract. There are two

isosceles right triangles of side length 40, so the area of the region we do not want is

bad area = 2 ·
1

2
· 40 · 40 = 1600

Therefore, the probability of the friends meeting is

P =
area of dark blue region

total area

=
total area− light blue area

total area

=
3600− 1600

3600

=
2000

3600

=
5

9
.

(Return)

9. If r is the radius of the inscribed sphere, then the side length of the cube is 2r . Therefore, the volume

of the sphere is 4
3πr

3 and the volume of the cube is (2r)3 = 8r3. So the probability that a random point

within in the cube lies within the sphere is

P =
(4/3)πr3

8r3

=
π

6
.

(Return)

10. Let r be the radius of the ball. Then the volume of the ball (the volume of all the possible outcomes) is
4
3πr

3.

To find the volume of the desired outcomes, consider the volume of the undesired outcomes: those

points which lie within 90% of the center. These points form a ball of radius 9
10 r , hence their volume is
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4
3π
(

9
10 r
)3

. So the desirable outcomes have the complementary volume

volume of desired outcomes = total volume− volume of undesired outcomes

=
4

3
πr3 −

4

3
π(

9

10
r)3

=
4

3
πr3

(
1− (9/10)3

)
.

Thus, the probability of a point being within 10% of the boundary is

volume of desired outcomes

total volume
=

4
3πr

3(1− (9/10)3)
4
3πr

3

= 1− (9/10)3

= 0.271

(Return)
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43 Probability Densities

The last module dealt with the uniform distribution, where any one outcome is as likely as another. This module

deals with experiments whose outcomes have different probabilities. For example, consider an unfair coin which

has a 2
3 probability of landing heads and a 1

3 probability of landing tails. Another example is time spent on hold

with customer service, where it is more likely that the call is answered in the first hour than in the second hour.

43.1 Random variable and probability density function (PDF)

A random variable X is a function whose output should be thought of as the outcome of an experiment.

Associated with a random variable is a probability density function (PDF) ρ(x), which is defined by P (a ≤ X ≤
b) =

∫ b
a ρ(x)dx . That is, the probability that the random variable falls in a certain range of values is given by

integrating the PDF over that range of values.

Phrased another way, we can think of probability P as the quantity we want to compute over a certain range

of values, and the probability element is given by

dP = ρ(x) dx.

Example

Consider the spinner from the last module. The outcome of a spin is some angle (relative to the positive

x-axis) between 0 and 2π. If X is the random variable which gives the output of a spin, then

P (a ≤ X ≤ b) =
b − a

2π
,

since the spinner was assumed to be fair. This holds for all 0 ≤ a ≤ b ≤ 2π. Then the associated PDF is

ρ(x) =

{
1

2π if 0 ≤ x ≤ 2π

0. otherwise

Note

Sometimes a PDF ρ(x) is only defined on a certain domain D. D can be thought of as the set of all possible

outcomes of the experiment X. In this case, it is assumed that ρ(x) = 0 for x not in that domain. So another

way of defining the PDF for the spinner is ρ(x) = 1
2π for 0 ≤ x ≤ 2π.
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43.2 Properties of a probability density function

The following are defining properties of a PDF. In other words, a function ρ(x) is a PDF on the domain D if

and only if it satisfies these properties.

1. ρ(x) ≥ 0 for all x ∈ D.

2.
∫
D ρ(x) dx = 1.

The first property is necessary since probabilities must be non-negative. The second property reflects the fact

that the random variable X associated with ρ(x) must have some outcome in the domain D (since D is the set

of all possible outcomes), and so integrating over all of these outcomes should give 1.

Note

If ρ(x) is defined on some specific domain D, then the integral over that specific domain should equal 1. This

is because ρ(x) = 0 outside of that domain, as mentioned in the above note.

Example

Find the value of the constant c so that ρ(x) = c
1+x2 for all x is a PDF. (See Answer 1)

43.3 Several specific density functions

Uniform density

Hinted at above and in the previous module, the uniform density function (or uniform distribution) on [a, b] is

given by ρ(x) = 1
b−a (and ρ(x) = 0 if x is not in [a, b]):

More generally, the uniform distribution on the domain D (whatever the dimension) is given by

ρ(x) =
1

Volume of D
.

In dimension 0, where outcomes are discrete (as in the rolling of a die or the flipping of a coin), remember that

volume is just counting. So in this case the probability of a particular outcome is

ρ(x) =
1

n
,

where n is the number of outcomes in the domain D (e.g. n = 6 for the roll of a die; n = 2 for a coin flip).
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Exponential density

Another density function used to model many common experiments is the exponential density function. This is

actually a whole family of density functions given by ρ(t) = αe−αt for t ≥ 0 and α > 0 some constant. The

reason a parameter t is used is that the exponential density is often used to model experiments with a time

outcome.

Example

Show that the exponential density ρ(t) = αe−αt (for t ≥ 0) satisfies the properties of a density function.

(See Answer 2)

Example

Consider a call made to customer service at Acme company. The number of minutes spent on hold before

the call is answered is often modeled with an exponential density function

ρ(t) = αe−αt .

Find, in terms of α, the probability that the waiting time for a call is less than 30 minutes. (See Answer 3)

Example

Again consider customer service call waiting time at Acme company, and again assume an exponential density

function

ρ(t) = αe−αt .

Suppose half of all customers are answered within 5 minutes. Find α and then find the probability that a

call takes more than 10 minutes to be answered. (See Answer 4)

Gaussian density

The last probability density function is the ’Gaussian, or normal, density function. This is an important density

function and is expanded on in the next module. Like the exponential, the Gaussian density function usually has

parameters (see the next module), but in its simplest form, the Gaussian is given by

ρ(x) =
1√
2π
e−x

2/2.
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The Gaussian has all real x as its domain, but because it tails off so quickly in both directions, the probability

of getting values far from the center (in this case x = 0) is very small.

43.4 EXERCISES

• Which of the following are probability density functions?

a. f (x) =1/2 on D = [0, 2]

b. f (x) =
sin(x)

2
on D = [0, 3π]

c. f (x) =5e−2x on D = [0,∞)

d. f (x) =
1

π(1 + x2)
on D = (−∞,∞)

e. f (x) =
x

2
for 0 ≤ x ≤ 1

1

2
for 1 ≤ x ≤ 2

3

2
−
x

2
for 2 ≤ x ≤ 3

43.5 Answers to Selected Examples

1. As long as c ≥ 0, the first property for a PDF will be met, since 1 + x2 > 0 for all x . To satisfy the

second property, compute ∫ ∞
−∞

c

1 + x2
dx = c

(
arctan(x)

∣∣∣∣∞
−∞

)
= c

(π
2
− (−

π

2
)
)

= cπ.

Since this integral is supposed to be 1, we find that c = 1
π .

(Return)
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2. The exponential function is never negative, so one need only check the integral. One finds∫ ∞
t=0

αe−αt dt = α
1

−αe
−αt
∣∣∣∣∞
t=0

= −(0− 1)

= 1,

as desired. So the exponential density is in fact a density.

(Return)

3. To find the probability that 0 ≤ X ≤ 30, use the relationship between probability and the PDF, which is

P (0 ≤ X ≤ 30) =

∫ 30

0

ρ(x) dx

=

∫ 30

0

λe−λx dx

= −e−λx
∣∣∣∣30

0

= −e−30λ − (−1)

= 1− e−30λ.

(Return)

4. Since half of all customers are answered within 5 minutes, we have that

P (0 ≤ X ≤ 5) =
1

2
.

On the other hand, we know that this can be expressed as the integral of the density function, so we have

1

2
=

∫ 5

t=0

ρ(t) dt

=

∫ 5

t=0

αe−αt dt

= −e−αt
∣∣∣∣5
t=0

= −e−5α − (−1)

= 1− e−5α.

So we have that

e−5α =
1

2
.

Taking the log of both sides, dividing by −5 and simplifying, we have

α =
1

−5
ln

(
1

2

)
=

1

−5
(− ln 2)

=
1

5
ln 2.
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For the second part, we want to know the probability of waiting more than 10 minutes. This is (leaving

α as a constant for now)

P (X ≥ 10) =

∫ ∞
t=10

ρ(t) dt

=

∫ ∞
t=10

αe−αt dt

= −e−αt
∣∣∣∣∞
t=10

= 0−
(
−e−α·10

)
.

Now plugging in the value of α, we have

P (X ≥ 10) = e−(ln 2/5)·10

= e−2 ln 2

= 2−2

=
1

4
.

(Return)
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44 Expectation And Variance

When performing an experiment, it is useful to know what the expected outcome will be as well as how much

variation one can expect among the outcomes. The notions of expected outcome and variation are made formal

in this module by the terms expectation,variance, and standard deviation.

This module will also show some of the connections of these statistical metrics with the applications of the

previous modules.

44.1 Expectation

Consider a random variable X with probability density function (PDF) ρ(x) defined on some domain D. The

expectation of X, denoted by E, is defined by

E =

∫
D

xρ(x) dx

=

∫
D

x dP,

where dP is the probability element. The expectation of X is sometimes called the mean of X, the expected

value, or the first moment. In some books it is denoted µX . It is best to think of the expectation as the number

one gets by repeating the experiment many times and taking the average of the outputs.

The notion of expectation is more general than the mean because one can also take the expectation of a

function of X. The expectation of f (X) is defined by

E[f (X)] =

∫
D

f (x)ρ(x) dx.

Example

Find the expectation of X, where X is uniformly distributed on the interval [a, b]. (See Answer 1)

Example

Recall that the random variable X is said to have the exponential distribution if the PDF associated with

X is ρ(t) = αe−αt for t ≥ 0, where α > 0 is some constant. Find the expectation of the exponential

distribution (in terms of α). (See Answer 2)
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44.2 Variance

Consider a random variable X with PDF ρ(x). The variance of X, denoted V, is defined by

V = E
[

(X − E[X])2
]

= E[X2]− E[X]2.

In the notation of the lecture,

V =

∫
D

(x − E)2 dP

=

∫
D

x2 dP − E2.

Note: it requires some calculation to show the second equality above holds. Either of the above expressions may

be taken as the definition of variance, and the second one might be slightly simpler for the sake of computation.

(See Justification 3)

Example

Compute the variance of the exponential density function ρ(x) = αe−αx . (See Answer 4)

44.3 Standard deviation

Consider a random variable X with PDF ρ(x). Then the standard deviation of X, denoted σX , is defined by

σX =
√
V [X]

=
√
E[X2]− E[X]2

=

√∫
D

x2ρ(x) dx −
(∫

D

xρ(x) dx

)2

.

Example

Find the standard deviation of X, where X is uniformly distributed over [a, b]. (See Answer 5)

44.4 Interpretations

If one interprets the PDF ρ(x) as the density of a rod at location x , then:

1. The mean, µ =
∫
xρ(x) dx , gives the center of mass of the rod.

2. The variance, V =
∫

(x − µ)2ρ(x) dx , gives the moment of inertia about the line x = µ.

3. The standard deviation, σ =
√
V , gives the radius of gyration about the line x = µ.
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44.5 The normal distribution

A random variable X is said to have the normal distribution, or to be normally distributed, with mean µ and

standard deviation σ if its PDF is of the form

ρ(x) =
1

σ
√

2π
e−

1
2 ( x−µ

σ )
2

.

Due to its ubiquity throughout the sciences, the normal distribution is one of the most well-known probability

distributions. However, because its PDF does not have an elementary anti-derivative, it is not easy to calculate

exact probabilities associated with the normal distribution. Instead, there are is a rule of thumb which can be

used.

The 68-95-99.7 rule

Given a random variable X which is normally distributed with mean µ and standard deviation σ, the following

hold:

1. P (µ− σ ≤ X ≤ µ+ σ) ≈ .68.

2. P (µ− 2σ ≤ X ≤ µ+ 2σ) ≈ .95.

3. P (µ− 3σ ≤ X ≤ µ+ 3σ) ≈ .997.

In other words, 68% of samples will fall within 1 standard deviation of the mean. 95% of samples will fall within

2 standard deviations of the mean. And 99.7% of samples will fall within 3 standard deviations. These rules,

along with the symmetry of the normal PDF, can be used to approximate many probabilities relating to the

normal distribution:
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Example

The height of men in a certain population is normally distributed with mean µ = 70 inches and standard

deviation σ = 2 inches. If a man is chosen at random from the population, what is the probability that he

is taller than 72 inches? (See Answer 6)

44.6 EXERCISES

• Compute the expected value of normally distributed random variable with probability density function

ρ(x) = 1√
2π
e−

x2

2 on −∞ < x <∞.

44.7 Answers to Selected Examples

1. Recall that the PDF associated with X is given by ρ(x) = 1
b−a for a ≤ x ≤ b. Thus, the mean is given by

E =

∫ b

a

x ·
1

b − a dx

=
1

b − a
x2

2

∣∣∣∣b
a

=
1

b − a ·
1

2
(b2 − a2)

=
1

b − a ·
1

2
(b + a)(b − a)

=
1

2
(a + b).

(Return)
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2. From the definition of expectation, one finds

E =

∫ ∞
0

tαe−αt dt

= α

∫ ∞
0

te−αt dt.

Using integration by parts, with

u = t du = dt

dv = e−αt v =
1

−αe
−αt ,

we find that

α

∫ ∞
0

te−αt dt = α

(
t

−αe
−αt −

∫ ∞
0

1

−αe
−αt dt

)
=

(
−te−αt −

1

α
e−αt

) ∣∣∣∣∞
0

= (0− 0)− (0−
1

α
)

=
1

α
.

(Return)

3. Expanding out the expression and using the linearity of the integral, we find∫
D

(x − E)2 dP =

∫
D

(x − E)2ρ(x) dx

=

∫
D

x2 dP −
∫
D

2xE dP +

∫
E2 dP

=

∫
D

x2 dP − 2E
∫
D

x dP + E2

∫
dP

=

∫
D

x2 dP − 2E · E+ E2

=

∫
D

x2 dP − E2.

because
∫
x dP = E and

∫
dP = 1, by the definition of expectation and the definition of the probability

density function, respectively.

(Return)

4. The variance requires us to compute

E(X2) =

∫
D

x2 dP

=

∫ ∞
x=0

x2αe−αx dx.
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Using integration by parts, with

u = x2 du = 2x dx

dv = αe−αx dx v = −e−αx ,

we find ∫ ∞
x=0

x2αe−αx dx = −x2e−αx
∣∣∣∣∞
x=0

+

∫ ∞
x=0

2xe−αx dx.

This second integral can be done with integration by parts again, or we can use the fact that this is almost

the integral for the expectation. Namely, we know∫ ∞
x=0

xαe−αx dx =
1

α
,

and so by dividing through by α, we have∫ ∞
x=0

xe−αx dx =
1

α2
.

Putting this together, we have ∫ ∞
x=0

x2αe−αx dx = −x2e−αx
∣∣∣∣∞
x=0

+
2

α2

= (0− 0) +
2

α2

=
2

α2
.

Finally, then, the variance is

V =

∫
D

x2 dP − E2

=
2

α2
−
(

1

α

)2

=
1

α2
.

(Return)

5. Again, recall that the PDF for the uniform distribution is ρ(x) = 1
b−a for a ≤ x ≤ b. Thus,

E[X2] =

∫ b

a

x2 1

b − a dx

=
1

b − a
x3

3

∣∣∣∣b
a

=
1

b − a ·
1

3
(b3 − a3)

=
1

b − a ·
1

3
(b − a)(b2 + ba + a2)

=
b2 + ab + a2

3
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From the previous example, E[X] = µX = a+b
2 . Thus,

σX =
√
E[X2]− E[X]2

=

√
b2 + ba + a2

3
−
b2 + 2ba + a2

4

=

√
b2 − 2ab + a2

12

=
b − a√

12
.

(Return)

6. Let X be the height of a randomly chosen man. Then P (68 ≤ X ≤ 72) = .68 by the above rule. By

symmetry P (68 ≤ X ≤ 70) = P (70 ≤ X ≤ 72) = .34. Also, by symmetry, P (X ≤ 70) = .5. Thus,

P (X ≤ 72) = P (X ≤ 70) + P (70 ≤ X ≤ 72)

= .5 + .34

= .84.

It follows that

P (X > 72) = 1− P (X ≤ 72)

= 1− .84

= .16.

This is best visualized by labeling the various regions under the normal curve with their areas:

So the probability that a randomly chosen man from the population is taller than 72 inches is .16.

(Return)
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45 Sequences

The remainder of the course is a look at discrete calculus, which is a study of all the previous sections (functions,

derivatives, integrals) applied to a different kind of function: sequences. A sequence is a function, but instead

of taking any real number as input, a sequence takes an integer as input.

45.1 Sequence

A sequence a is a function from the non-negative integers 0, 1, 2, 3, . . . to the real numbers R. The usual

functional notation a(n) is sometimes replaced with an. There are several ways to define a sequence. Here are

three of the most common ways, demonstrated on the powers of 2.

1. An explicit formula gives an as a function of n, i.e. an = f (n). This is usually the most convenient, since

it typically gives the most information about the sequence. e.g. an = 2n for n ≥ 0.

2. A recursion relation gives an as a function of previous terms in the sequence. Note that some initial

conditions must be given as well. an = f (an−1, an−2, . . . , an−k). e.g. an = 2an−1; a0 = 1.

3. Finally, listing terms can be used if no explicit or recursive formula is available. This is sometimes used in ex-

perimental settings so that one can study the terms and look for a pattern. e.g. a = (1, 2, 4, 8, 16, 32, . . .).

Example

Write out the first six terms of the sequence defined by an = 2an−1 + 1; a0 = 0. Look for a pattern to try

to find an explicit formula for an. (See Answer 1)

45.2 Limits of sequences

Recall that limits of functions came in two flavors. First, there were limits of the form limx→c f (x). The second

type of limits were of the form limx→∞ f (x).

Only the second type of limit is sensible for a sequence. (To see why the first type of limit does not make sense

for sequences, go back to the definition of a limit.) The definition of limn→∞ an for sequences is the same as

for continuous functions:

5



The Limit of a Sequence

We say that

lim
n→∞

an = L

if for any ε > 0 there exists M such that for all n > M,

|an − L| < ε.

In other words, the sequence an has limit L if an gets arbitrarily close to L for sufficiently large n. If the

limit L exists, then the sequence an is said to converge to L.

Intuitively, a sequence an has a limit if for any band around L, there is some point where all the terms of an are

within the band around L:

Recall that Newton’s method defined a sequence of numbers defined by the recursion relation

xn+1 = xn −
f (xn)

f ′(xn)
.

Here, the sequence hopefully converged to a root of the function f (x). This gives an example of an application

where it is useful to know about the convergence of a sequence.

Example

Let an = 4 + (−1)n
n . Find limn→∞ an, if the limit exists. If the limit does not exist, explain why. (See Answer

2)

Example

Let an = (−1)n. Find limn→∞ an, if the limit exists. If the limit does not exist, explain why. (See Answer

3)

45.3 Methods for computing limits

Many of the methods for computing limits of continuous functions carry over to computing limits of sequences.

In particular, all of the big-O notation still applies.
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Example

Compute the limit of the sequence an = 3n −
√

9n2 + 6n. (See Answer 4)

45.4 Monotone, bounded sequences

In general, it can be difficult to find the limit of a sequence, but for certain sequences it is possible to prove

that the limit exists.

A sequence is monotone increasing if it is non-decreasing, i.e., a0 ≤ a1 ≤ a2 ≤ . . .. A sequence is monotone

decreasing if it is non-increasing, i.e., a0 ≥ a1 ≥ a2 ≥ . . .. A sequence that is either monotone increasing or

monotone decreasing is monotone.

A sequence is bounded above if there exists some real number B such that an ≤ B for all n ≥ 0. Similarly,

a sequence is bounded below if there exists a real number C such that an ≥ C for all n ≥ 0. A sequence is

bounded if it is both bounded above and bounded below.

Monotone Convergence Theorem

If a sequence an is bounded and monotone, then the sequence converges.

Example

Let an be the sequence defined by an = 5+an−1
2 ; a0 = 1. Show that the sequence converges by using the

Monotone Convergence Theorem. (See Answer 5)

45.5 Recursion relations and limits

When a sequence is defined by a recursion relation and the limit of the sequence exists, one can find the limit

by simply taking the limit of both sides of the recursion relation and solving. This is best demonstrated by

example.

Example

Find the limit L = limn→∞ an, where an = 5+an−1
2 ; a0 = 1, as in the previous example. (See Answer 6)

Example

Find

L = 1 +
1

1 + 1
1+ 1

1+...

by expressing L as a limit of a recursively defined sequence an which begins (1, 1 + 1
1 , 1 + 1

2 , . . .). Assume

that the limit exists. (See Answer 7)

Example

Find

√
1 +

√
1 +
√

1 + · · ·. Assume the limit exists. (See Answer 8)
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The golden ratio, often denoted

ϕ =
1 +
√

5

2
,

appears in many settings, both man made and natural. The golden ratio is also deeply connected with the

Fibonacci numbers, as we will see in this example and in the future.

Example

The Fibonacci sequence, Fn is defined by the recursion relation and initial conditions

Fn+2 = Fn+1 + Fn; F0 = 0, F1 = 1.

So the first few Fibonacci numbers are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

Show that

lim
n→∞

Fn+1
Fn

= ϕ.

You may assume that the limit of the sequence exists. Hint: Observe that

Fn+1
Fn

=
Fn + Fn−1

Fn
= 1 +

Fn−1
Fn

.

(See Answer 9)

45.6 EXERCISES

• Compute the limit of the sequence an = 2n2 − (8n6 + 6n4)1/3.

45.7 Answers to Selected Examples

1.

a0 = 0

a1 = 2a0 + 1 = 1

a2 = 2a1 + 1 = 3

a3 = 2a2 + 1 = 7

a4 = 2a3 + 1 = 15

a5 = 2a4 + 1 = 31.

One might notice that adding 1 to each term in the sequence gives the sequence (1, 2, 4, 8, 16, 32, . . .),

which look like the powers of 2. So it appears that an = 2n − 1 for n ≥ 0.

(Return)

2. We claim the limit is 4. We know that

lim
n→∞

1

n
= 0.
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Therefore, for any ε > 0 we can choose M so that 1
M < ε. Then for any n > M, we have

|an − 4| =

∣∣∣∣4 +
(−1)n

n
− 4

∣∣∣∣
=

∣∣∣∣(−1)n

n

∣∣∣∣
=

1

n

<
1

M

< ε,

as desired. For this course, we will not typically be this formal, but it is useful to see this type of argument

at least a few times.

(Return)

3. From the intuitive understanding of a limit, it is clear that the terms of this sequence are not getting

closer together, and so the limit does not exist.

More formally, suppose the limit, say L, existed. Then from the definition of the limit of a sequence, we

could find a number M such that

|an − L| <
1

3

for all n > M. Since the terms of the sequence are −1 and 1, this would imply

| − 1− L| <
1

3

This implies

−
1

3
<− 1− L <

1

3
2

3
<− L <

4

3

−
2

3
>L >

−4

3
.

Similarly,

|1− L| <
1

3

which implies by similar algebra that
4

3
> L >

2

3
.

Since L cannot be simultaneously positive and negative, we have reached a contradiction. And so we see

that the limit L cannot exist.

(Return)
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4. A little factoring from the radical, and using the binomial series gives

an = 3n −
√

9n2 + 6n

= 3n − 3n

√
1 +

2

3n

= 3n

(
1−

√
1 +

2

3n

)

= 3n

(
1− (1 +

1

2

2

3n
+O(1/n2))

)
= −1 +O

(
1

n

)
.

So the limit is −1.

(Return)

5. It is not obvious that this sequence is either bounded or monotone. Writing out the first few terms,

though, gives a = (1, 3, 4, 4.5, 4.75, . . .). It appears that the sequence is increasing, and that an ≤ 5 for

all n ≥ 0.

To show that the sequence is increasing, use induction. The first few terms are increasing, so assume that

an−1 ≤ an for some n. Then adding 5 and dividing by 2 throughout gives 5+an−12 ≤ 5+an
2 , which implies

an ≤ an+1 by the recursive definition of an. Thus, the sequence is increasing.

To see that an ≤ 5, again use induction. Assume an ≤ 5 for some n. Then adding 5 and dividing by 2

gives 5+an2 ≤ 5+5
2 = 5. This means an+1 ≤ 5 by the definition of an. Thus, an ≤ 5 for all n. Finally, note

that any increasing sequence is bounded below. So the sequence is bounded.

Thus, by the Monotone Convergence Theorem, the sequence an converges.

(Return)

6. The limit exists by the previous example, so taking limits of both sides of the recursion relation and

simplifying gives

lim
n→∞

an = lim
n→∞

5 + an−1
2

L =
5 + limn→∞ an−1

2

L =
5 + L

2
.

(Note that lim an−1 = lim an because the limit of a sequence does not depend on the indexing of the

terms.) Now, solving for L gives 2L = 5 + L, so L = 5.

(Return)

7. The sequence an can be defined recursively by an = 1 + 1
an−1

; a0 = 1. Then taking limits of both sides

gives L = 1 + 1
L . Multiplying through and collecting terms gives L2 − L− 1 = 0, and solving for L gives

L = 1±
√
5

2 .

Note though that an > 0 for all n, so it must be that L = 1+
√
5

2 . This is the celebrated golden ratio.

(Return)
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8. One can express this as the limit of a recursively defined sequence an given by a0 = 1 and an =
√

1 + an−1.

Then letting L = lim an, and taking limits of the recursion relation gives

L =
√

1 + L.

Squaring both sides and collecting terms gives L2 − L − 1 = 0, which is the same equation from the

previous example. Thus, the limit is again the golden ratio L = 1+
√
5

2 .

(Return)

9. Let

L = lim
n→∞

Fn+1
Fn

.

Then, beginning with the hint and taking the limit of both sides, we have

lim
n→∞

Fn+1
Fn

= lim
n→∞

(
1 +

Fn−1
Fn

)
= 1 + lim

n→∞

Fn−1
Fn

= 1 + lim
n→∞

1

Fn/Fn−1

= 1 +
1

lim
n→∞

Fn/Fn−1
.

But this means

L = 1 +
1

L
,

which is an equation which we solved in an above example, where we found

L =
1 +
√

5

2
,

as desired.

(Return)
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46 Differences
What is the derivative of a sequence? The original definition will not work because change in input is discrete

and so one cannot take the limit as the change in input goes to 0. Instead, using the interpretation of the

derivative as a rate of change leads to two different discrete derivatives. They are called difference operators,

and are defined below.

46.1 Difference operators

The discrete analog of the derivative is the difference operator, defined as follows.

Difference operators

Given a sequence an, the forward difference of a, denoted (∆a)n, is defined by

(∆a)n = an+1 − an.

The backward difference of a, denoted by (∇a)n, is defined by

(∇a)n = an − an−1.

This can be interpreted as the change in output over the change in input:

(∆a)n =
a(n + 1)− a(n)

(n + 1)− n =
an+1 − an

1
= an+1 − an,

which resembles the definition for the derivative of a continuous function, but without the limit. If we plot the

points of the sequence as if we were graphing the function, and then connect the dots with linear segments,

then the forward difference can also be interpreted as the slope between adjacent points:

12



Example

The sequence (4n) = 0, 4, 8, 12, 16, . . . has forward difference sequence

∆(4n) = 4, 4, 4, 4, . . .

Example

Find the forward difference sequence of the Fibonacci sequence F = 0, 1, 1, 2, 3, 5, 8, 13, 21 . . .. (See

Answer 1)

Example

Find the forward difference of the powers of two: (2n) = 1, 2, 4, 8, 16, 32, . . .. (See Answer 2)

Product rules

These difference operators have their own versions of the differentiation rules for continuous functions. For

example, there is a product rule. For sequences a = (an) and b = (bn), define the new sequence (ab) by

(ab)n = (anbn). Then

∆(ab)n = an∆bn + bn∆an + ∆an∆bn

∇(ab)n = an∇bn + bn∇an −∇an∇bn.

This should be reminiscent of the product rule (f g)′ = f g′ + f ′g.

46.2 Higher order difference operators

Just as the derivative of a function gives another function, the difference operator of a sequence a gives another

sequence ∆a. Then one can take the difference operator of ∆a which gives yet another sequence ∆2a. And so

on. Consider, for instance, the sequence an = n3 for n ≥ 0. Then

a = 0 1 8 27 64 125 216 343 . . .

∆a = 1 7 19 37 61 91 127 . . .

∆2a = 6 12 18 24 30 36 . . .

∆3a = 6 6 6 6 6 . . .

∆4a = 0 0 0 0 . . .

A little bit of pattern matching shows the following:

an = n3

(∆a)n = 3n2 + 3n + 1

(∆2a)n = 6n + 6

(∆3a)n = 6

(∆4a)n = 0

Just as taking higher derivatives of a polynomial eventually gives 0, taking higher order difference operators of

a polynomial eventually gives 0. Moreover, if a is a polynomial of degree p, then ∆p+1a = (0).

Note that the power rule is not quite the same as for regular derivatives (e.g. n3 7→ 3n2 + 3n + 1). This is an

artifact of the binomial expansion. The next section shows a convenient way to avoid these problems.
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46.3 Falling powers

The falling power nk is defined to be

nk = n(n − 1)(n − 2) · · · (n − k + 1), n0 = 1.

The falling power can be thought of as a discrete version of the monomial xk . One nice feature of the falling

power is that

∆nk = (n + 1)k − nk

= (n + 1)n(n − 1) · · · (n − k + 2)− n(n − 1) · · · (n − k + 1)

= n(n − 1) · · · (n − k + 2) (n + 1− (n − k + 1))

= knk−1,

which is the familiar power rule.

Example

Express n3 in terms of falling factorials and use the power rule above to find ∆n3. (See Answer 3)

46.4 Discrete e

With the falling power in hand, consider the discretized version of the exponential function, found by replacing

the usual monomials xk with nk in the Taylor series for the exponential:

∞∑
k=0

nk

k!
= 1 + n +

n(n − 1)

2!
+
n(n − 1)(n − 2)

3!
+ · · ·

If one evaluates this at n = 1 to find the ”discrete e”, note that all the terms after the first two disappear

because of the n− 1 factor in all the higher terms. Thus, the discrete version of e is 2. This is consistent with

the earlier note that 2n acted like the exponential function (it is its own discrete derivative). Indeed, the above

series is 2n, which can be seen by noting it is simply the binomial series (1 + x)n evaluated at x = 1.

46.5 Sequence operators

Just as there were operators on functions (e.g. integration, differentiation, logarithm, exponentiation), there

are operators on sequences:

Operator Notation What it does Notes

Identity I (Ia)n = an I2 = I

Left shift E (Ea)n = an+1 E2 shifts twice, etc.

Right shift E−1 (E−1a)n = an−1 E−1E = I

Forward difference ∆ (∆a)n = an+1 − an ∆ = E − I
Backward difference ∇ (∇a)n = an − an−1 ∇ = I − E−1

14



Higher derivatives

The expressions for the forward and backward differences in terms of I and E can be used to compute the

higher derivatives of sequences more easily than it would be to compute them by hand. For example, the third

derivative can be found by expanding the expression as a binomial:

∆3a = (E − I)3a
= (E3 − 3E2I + 3EI2 − I3)a
= (an+3 − 3an+2 + 3an+1 − an).

More generally, the kth derivative can be written similarly:

∆k = (E − I)k

=

k∑
i=0

(−1)k−i
(
k

i

)
E i

Indefinite integral

As shown above, the forward difference can be expressed in terms of the operators E and I:

∆ = E − I.

A logical question is to ask whether it is possible to take the anti-difference, just as there is the antiderivative

for functions. The claim is that

∆−1 = −(I + E + E2 + E3 + E4 + · · · )

This looks reminiscent of the geometric series. By taking the inverse of ∆ (and a few liberties with the algebra),

we have

∆−1 = (E − I)−1

= −(I − E)−1

= −(I + E + E2 + E3 + · · · ),

by thinking of (I−E)−1 as the reciprocal of 1−E in a sense (because I acts like 1), and applying the geometric

series. This derivation is not rigorous, but the above formula does give the anti-difference (up to an additive

constant), so long as the sequence an is eventually 0.

This is just a hint of the calculus of sequences, which we explore a little bit more in the modules to come.

46.6 Answers to Selected Examples

1. The difference sequence is

∆F = 1, 0, 1, 1, 2, 3, 5, 8, . . .

Note that this is just the Fibonacci sequence again, but slightly shifted. This makes sense since the

difference

(∆F )n = Fn+1 − Fn = Fn−1,

by rearranging the Fibonacci recursion relation.

(Return)
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2. The difference sequence is

∆(2n) = 1, 2, 4, 8, 16, 32, . . .

This shows that 2n can be thought of as the discrete analog of the exponential ex , in the sense that it is

its own (discrete) derivative.

(Return)

3. This requires a little bit of algebra. We know that we need a n3 to get a n3. Note that

n3 = n(n − 1)(n − 2) = n3 − 3n2 + 2n.

So we have our n3, but we also have some unwanted lower order terms. We must add 3n2 to both sides

to cancel the −3n2. Note that

n2 = n(n − 1) = n2 − n,

and so

n3 + 3n2 = (n3 − 3n2 + 2n) + 3(n2 − n)

= n3 − n.

So to get rid of the final term of −n, we note that n1 = n, and so we can add this to both sides to find

n3 + 3n2 + n1 = n3.

This tells us that

∆n3 = ∆
(
n3 + 3n2 + n1

)
= 3n2 + 6n1 + 1

= 3(n2 − n) + 6n + 1

= 3n2 + 3n + 1,

which matches the observation about ∆(n3) in the above section.

(Return)
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47 Discrete Calculus
The previous two modules have laid the groundwork for the discretization, or digitization, of calculus:

1. The discrete version of a function is a sequence.

2. The discrete version of the derivative is the difference operator.

3. The discrete version of the integral is the sum.

4. The discrete version of a differential equation is a recurrence relation.

This module mostly deals with #3, the integral of a discrete function. For continuous functions, there was

the Fundamental Theorem of Integral Calculus which made computing integrals easy under certain conditions.

Essentially, it said that the integral of the derivative is the function itself, evaluated at the endpoints. The

discrete version says the same thing:

The Discrete Fundamental Theorem of Integral Calculus (FTIC)

Given a sequence u,
B∑
n=A

∆u = u

∣∣∣∣B+1
n=A

,

and
B∑
n=A

∇u = u

∣∣∣∣B
n=A−1

(See Answer 1)

Example

Note that

∆
1

n
=

1

n + 1
−

1

n
=
−1

n2 + n
.

Use this, along with FTIC, to find

B∑
n=A

1

n2 + n
. (See Answer 2)
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Example

Use the fact that

∆n! = (n + 1)!− n! = (n + 1)n!− n! = (n + 1− 1)n! = n · n!,

along with the FTIC to find
B∑
n=A

n!n

(See Answer 3)

Example

Let F denote the Fibonacci sequence defined by

Fn+2 = Fn+1 + Fn; F0 = 0, F1 = 1.

Note that

∆(Fn+1) = Fn+2 − Fn+1 = Fn,

by rearranging the above recursion relation. Use this, along with the FTIC, to find

k∑
n=1

Fn.

(See Answer 4)

Power rule for falling powers

Recall from the previous module that the falling power

nk = n(n − 1)(n − 2) · · · (n − k + 1)

has a nice power rule for the difference:

∆(nk) = knk−1.

By running this in reverse, we can find the anti-difference (or antiderivative) of the falling power, which is very

similar to the power rule for integration:

∆−1(nk) =
1

k + 1
nk+1 + C,

where C is a constant. Using this, along with the FTIC, allows one to find closed formulas for the sum of

polynomials.

Example

Using the power rule and the FTIC, find
k∑
n=1

n.

(See Answer 5)
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Example

Find
k∑
n=1

n2.

(See Answer 6)

Example

With a little algebra (shown in the previous module), one finds that

n3 = n3 + 3n2 + n1.

Use this fact, along with FTIC, to find
k∑
n=1

n3

(See Answer 7)

47.1 Integration by parts

There is also a discrete version of integration by parts. First, the following product rule can be established for

the forward difference:

∆(uv) = u∆v + Ev∆u.

(See Details 8) Then, just like for continuous functions, one can integrate both sides (i.e. sum both sides),

rearrange, and apply FTIC to find
B∑
n=A

u∆v = uv

∣∣∣∣B+1
n=A

−
B∑
n=A

Ev∆u.

Example

Find

k∑
n=0

n2n. (See Answer 9)

47.2 Differential equations

The discrete version of a differential equation is a recurrence relation. This is an equation relating one term of

a sequence u with one or more previous terms in the sequence. In this context, the shift operator acts like the

derivative.

Example

Consider the linear first-order recurrence relation

un+1 = λun,

which can be written as

Eu = λu
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or, with some rearrangement,

(E − λI)u = 0.

By inspection, one can see the solution un = Cλn, where C = u0 is some constant (it can be thought of as an

initial condition).

Example

Now, consider using the following linear first-order difference equation

∆u = λu.

This is reminiscent of the differential equation dx
dt = ax , considered earlier in the course. Recall that ∆ = E− I,

and so this difference relation can be written

(E − I)u = λu.

With a little more rearranging one finds

(E − (λ+ 1)I)u = 0,

which is almost identical to the equation from the previous example, but with λ replaced by λ+ 1. Therefore,

the solution is un = C(λ+ 1)n.

Compare this to the solution in the continuous case, which was

dx

dt
= λx =⇒ x = Ceλt .

When λ = 1, we have the solution

x = Cet .

If we let λ = 1 in the discrete difference equation, we have

u = C(λ+ 1)n = C · 2n,

which again shows that 2n is the discrete version of the exponential function et .

47.3 Fibonacci numbers revisited

We can take the recurrence relation for the Fibonacci numbers:

Fn+2 = Fn+1 + Fn

and rearrange it to be rewritten in terms of the shift operator:

Fn+2 − Fn+1 − Fn = 0

(E2 − E − I)F = 0.

Note that the solutions to the equation

x2 − x − 1 = 0

are

ϕ =
1

2
(1 +

√
5) and ψ =

1

2
(1−

√
5).
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So we can factor the operator E2 − E − I to see that

(E2 − E − I)F = 0

(E − ϕI)(E − ψI)F = 0.

It is a fact that solutions to this equation are combinations (that is, a sum) of solutions to

(E − ϕI)F1 = 0

(E − ψI)F2 = 0.

The solutions to these equations are

F1n = c1ϕ
n

F2n = c2ψ
n.

So we have that

Fn = c1ϕ
n + c2ψ

n,

for some constants c1 and c2, which depend on the initial conditions of the sequence. To find those constants,

we can plug in convenient values of n and solve.

Letting n = 0, we have

F0 = 0 = c1 + c2 =⇒ c2 = −c1.

Letting n = 1, we have

F1 = 1 = c1ϕ+ c2ψ

= c1ϕ− c1ψ
= c1(ϕ− ψ)

= c1 ·
√

5.

So we find

c1 =
1√
5

c2 = −
1√
5
.

This gives an explicit, closed form equation for the Fibonacci numbers:

Fn =
1√
5

(
1 +
√

5

2

)n
−

1√
5

(
1−
√

5

2

)n
.

47.4 EXERCISES

• (a) What is ∆( 1n2 )? (b) Using part (a), find
∑B

n=A
−2n−1
n2(n+1)2 .

21



47.5 Answers to Selected Examples

1. To see why this holds, evaluate the sum and carefully note the cancellation. This type of sum is called a

telescoping sum. First, for the forward difference operator, one finds

B∑
n=A

∆u =

B∑
n=A

un+1 − un

= (uA+1 − uA) + (uA+2 − uA+1) + (uA+3 − uA+2) + · · ·+ uB+1 − uB
= −uA + uA+1 − uA+1 + uA+2 − uA+2 + uA+3 + · · · − uB + uB+1

= −uA + uB+1,

as desired. Similarly, with the backwards difference operator, one finds

B∑
n=A

∇u =

B∑
n=A

un − un−1

= uA − uA−1 + uA+1 − uA + uA+2 − uA+1 + · · ·+ uB − uB−1
= −uA−1 + uB,

as claimed.

(Return)

2. By FTIC,

B∑
n=A

1

n2 + n
= −

B∑
n=A

∆
1

n

= −

(
1

n

∣∣∣∣B+1
n=A

)

=
1

A
−

1

B + 1

=
B − A+ 1

A(B + 1)

(Return)

3. By the fact above, we have

B∑
n=A

n!n =

B∑
n=A

∆n!

= n!

∣∣∣∣B+1
n=A

= (B + 1)!− A!.

(Return)
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4. By the above fact, we have

k∑
n=1

Fn =

k∑
n=1

∆(Fn+1)

= Fn+1

∣∣∣∣k+1
n=1

= Fk+2 − F2
= Fk+2 − 1.

(Return)

5. Note that n = n1, and so

k∑
n=1

n =

k∑
n=1

n1

=
1

2
n2
∣∣∣∣k+1
n=1

=
1

2
n(n − 1)

∣∣∣∣k+1
n=1

=
k(k + 1)

2
.

(Return)

6. Note that

n2 = n2 + n1.

Therefore,

k∑
n=1

n2 =

k∑
n=1

n2 + n1

=
1

3
n3 +

1

2
n2
∣∣∣∣k+1
n=1

=
(k + 1) k(k − 1)

3
+

(k + 1)k

2

= (k + 1)k

(
k − 1

3
+

1

2

)
= (k + 1)k

(
2k − 2 + 3

6

)
=
k(k + 1)(2k + 1)

6
.

(Return)

7. Using the above fact and FTIC, one finds

k∑
n=1

n3 =

k∑
n=1

(
n3 + 3n2 + n1

)
=

1

4
n4 + n3 +

1

2
n2
∣∣∣∣k+1
n=1

.
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Now, note that nm = 0 when n = 1 for all m > 1, because of the factor of n − 1. Therefore, the

evaluation at the bottom limit is 0. Continuing with the algebra, we find

k∑
n=1

n3 =
1

4
(k + 1)k(k − 1)(k − 2) + (k + 1)k(k − 1) +

1

2
(k + 1)k

= k(k + 1)

(
1

4
(k − 1)(k − 2) + k − 1 +

1

2

)
= k(k + 1)

(
(k − 1)(k − 2) + 4(k − 1) + 2

4

)
=
k(k + 1)

4

(
k2 − 3k + 2 + 4k − 4 + 2

)
=
k(k + 1)

4
k(k + 1)

=

(
k(k + 1)

2

)2
.

Recalling that 1 + 2 + 3 + · · ·+ k = k(k+1)
2 , this shows the remarkable fact that

13 + 23 + 33 + · · ·+ k3 = (1 + 2 + 3 + · · ·+ k)2 .

(Return)

8. By subtracting and adding a common term and rearranging, one finds

(∆(uv))n = un+1vn+1 − unvn
= un+1vn+1 − unvn+1 + unvn+1 − unvn
= (un+1 − un)vn+1 + un(vn+1 − vn)

= [∆uEv + u∆v ]n .

(Return)

9. Let u = n and ∆v = 2n. It follows that ∆u = 1, v = 2n, and Ev = 2n+1. Thus, by the integration by

parts formula,

k∑
n=0

n2n = n2n
∣∣∣∣k+1
n=0

−
k∑
n=0

2n+1

= (k + 1)2k+1 − (2k+2 − 2)

= (k + 1)2k+1 − 2 · 2k+1 + 2

= (k − 1)2k+1 + 2.

(Return)
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48 Numerical ODEs
The previous few modules have discretized functions, derivatives, and integrals. This module shows how discrete

methods can be used to approximate solutions to problems in the continuous realm. One such application was

Newton’s method for approximating roots of functions, seen back in Linear Approximations. This module deals

with approximating solutions of continuous differential equations.

In certain situations, differential equations can be solved exactly. For example, a separable differential equation

dx

dt
= f (x)g(t)

is solved by rearranging and integrating, as seen in Antidifferentiation. A linear first order differential equation

dx

dt
= f (t)x + g(t)

is solved by an application of the product rule, as seen in More differential equations. However, there are many

differential equations of the form
dx

dt
= f (x, t)

which cannot be solved exactly by the above methods. This is the situation where techniques known as numerical

ordinary differential equations can be used to approximate a solution. There are three methods covered in this

module:

1. Euler’s method

2. Midpoint method

3. Runge-Kutta method

48.1 Euler’s method

Euler’s method uses a difference equation to approximate the solution of an initial value problem. More

specifically, given the differential equation dx
dt = f (x, t), and initial value x0 = x(t0), Euler’s method approximates

x(t∗) for some t∗ > t0.
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One way to visualize the problem is to imagine a river where the water is going in different directions at different

locations. If one drops something that floats (perhaps a very small rock, or a duck) at different locations in the

river, where would the object end up further down the river?

To compute the approximation, first a positive integer N is chosen, and the t axis is split into N intervals, giving

the sequence of time points t = (t0, t1, . . . , tN), where tN = t∗. The time step is h = t∗−t0
N . Then there is a

corresponding sequence x = (x0, x1, . . . , xN) where x0 = x(t0) is the initial condition and each subsequent xn is

an approximation of x(tn), given by the update rule

xn+1 = xn + hf (xn, tn)

tn+1 = tn + h.
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This recurrence is sensible by considering the discretization of the original differential equation:

dx

dt
= f (x, t) ⇒

∆x

∆t
= f (x, t)

⇒
xn+1 − xn

h
= f (xn, tn),

and then rearranging.

This process is using a linearization at each point (tn, xn) to get to the next point (tn+1, xn+1), then this is

repeated to get the next point, and so on:

Remember that a linearization is only good when the change in input, h in this case, is small. Therefore, a

bigger value of N gives a better approximation, but requires more computation.

Example

Let dx
dt = x with x0 = x(0) = 1. Use Euler’s method with N left as a variable to approximate x(1). What

happens as N →∞? (See Answer 1)

Example

Consider the differential equation
dx

dt
= t + x2.

Use Euler’s method to estimate (t∗, x∗), where t∗ = 1, the initial conditions are t0 = 0 and x0 = 1, and the

step size is h = 1
2 . (See Answer 2)

27



Taylor series perspective

If we think of x = x(t) as a function of t, and expand the Taylor series of x about t = t0, we have

x(t0 + h) = x(t0) + h ·
dx

dt

∣∣∣∣
t=t0

+O(h2)

= x0 + h · f (x0, t0) +O(h2),

so Euler’s method can be seen as taking the first order Taylor approximation and using it to form the recursion

relation. The above equation shows that the error for a single step is in O(h2), so the error over all N steps is

Error = N ·O(h2)

=
t∗ − t0
h

·O(h2)

= O(h).

48.2 Midpoint method

Another method for solving the differential equation

dx

dt
= f (x, y)

is known as the midpoint method. There is still an update rule which is similar to the one used in Euler’s rule,

but the function f is evaluated at a different point. The idea is to consider the point where Euler’s rule would

have taken us, and find the midpoint of that with our starting point. Use that midpoint as the point to evaluate

f in the update rule.

As described, it is a little bit complicated, but with some extra notation and a diagram it becomes clearer. Let

κ = h · f (xn, tn). So κ is the quantity which would be added to xn in the update rule for Euler’s rule:

Then the eponymous midpoint which is used in the update rule is(
tn +

h

2
, xn +

κ

2

)
.

So the update rule for the midpoint method is

xn+1 = xn + h · f
(
xn +

κ

2
, tn +

h

2

)
κ = h · f (xn, tn).
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The midpoint method is a bit more complicated than Euler’s method, but it has a benefit. The midpoint method

is a second order approximation, and as a result the error turns out to be O(h3) for an individual step, and

hence O(h2) for the full approximation process. Therefore, it is a more accurate method of approximation.

48.3 Runge-Kutta method

The final method for solving the above differential equation is called the Runge-Kutta method. It is a fourth

order approximation. Its error for an individual step is O(h5) and for the whole process is O(h4). This makes it

the most accurate model of the three in this module. It is difficult to describe in an intuitive manner other than

to say it is a sort of average of Euler’s method, the midpoint method, and other methods. The update rule is

as follows:

xn+1 = xn +
1

6
(κ1 + 2κ2 + 2κ3 + κ4)

κ1 = h · f (xn, tn)

κ2 = h · f
(
xn +

κ1
2
, tn +

h

2

)
κ3 = h · f

(
xn +

κ2
2
, tn +

h

2

)
κ4 = h · f (xn + κ3, tn + h) .

Note that κ1 is the increase used in Euler’s method, and κ2 is the increase used in the Midpoint method.

48.4 Comparison of methods

We already know that Euler’s method is the most basic, then the Midpoint method, and finally Runge-Kutta. We

should expect, then, that Runge-Kutta should give the best approximation, followed by the Midpoint method,

followed by Euler’s method.

Example

Use each of the three methods to approximate the solution of

dx

dt
= x

with initial conditions

t0 = 0 x0 = 1

t∗ = 1 x∗ = e

(we already know that x∗ = e because we have solved this differential equation several times already), using

a step size of h = 1. (See Answer 3)

48.5 EXERCISES

• Given dx
dt = x3 + x2t with initial condition t0 = 0, x0 = 1, approximate x(2) using the midpoint method

with size step h = 1.
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48.6 Answers to Selected Examples

1. Note that

xn+1 = xn +
xn
N

= xn(1 +
1

N
)

(this is independent of t). Iterating this gives xN =
(

1 + 1
N

)N ≈ x(1). As N increases, the approximation

gets better and better, and one finds that

lim
N→∞

xN = lim
N→∞

(
1 +

1

N

)N
.

Call this limit L and take the ln of both sides. Then we find that

lnL = ln

(
lim
N→∞

(
1 +

1

N

)N)

= lim
N→∞

N ln

(
1 +

1

N

)
= lim

N→∞
N

(
1

N
+O

(
1

N2

))
= lim

N→∞
1 +O

(
1

N

)
= 1.

Therefore, L = e. So x(1) = e, which matches the value from solving the problem by separation of

variables.

(Return)

2. Here, we have

f (x, t) = t + x2.

So, using the initial conditions, we have

f (x0, t0) = 0 + 1 = 1.

Then we have that

x1 = x0 + h · f (x0, t0)

= 1 +
1

2
· 1

=
3

2
.

And t1 = 1
2 . So

f (x1, t1) = t1 + x21

=
1

2
+

(
3

2

)2
=

11

4
.
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Thus,

x2 = x1 + h · f (x1, t1)

=
3

2
+

1

2
·

11

4

=
23

8

And thus we have x∗ = 23
8 .

(Return)

3. It may seem ill advised to use a step size equal to the distance from the start time to the end time, but

this is just for the sake of comparison. Note that in this example,

f (x, t) = x.

Euler’s method gives

x1 = x0 + h · f (x0, t0)

= 1 + 1 · 1
= 1 + 1,

which is a pretty rough estimate of e. From this computation we have that κ = 1 for the midpoint

method.

The Midpoint method gives

x1 = x0 + h · f
(
x0 +

κ

2
, t0 +

h

2

)
= 1 + 1 · f

(
1 +

1

2
, 0 +

1

2

)
= 1 + 1 ·

(
1 +

1

2

)
= 1 + 1 +

1

2
,

so we see that we have gotten another term closer to e.

For Runge-Kutta, we need to compute several different κs. From the computations we did in Euler’s

method and the Midpoint method, we have that

κ1 = 1

κ2 =
3

2
.

Computing the other values, we have

κ3 = h · f
(
x0 +

κ2
2
, t0 +

h

2

)
= 1 · f

(
1 +

3

4
, 0 +

1

2

)
= 1 +

3

4

=
7

4
.
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And

κ4 = h · f (x0 + κ3, t0 + h)

= 1 · f
(

1 +
7

4
, 0 + 1

)
= 1 +

7

4

=
11

4
.

Putting these together (and rearranging the fractions a little bit), we have that

x1 = x0 +
1

6
(κ1 + 2κ2 + 2κ3 + κ4)

= 1 +
1

6

(
1 + 2 ·

3

2
+ 2 ·

7

4
+

11

4

)
= 1 +

1

6
+

1

2
+

7

12
+

11

24

= 1 + 1 +
1

2
+

1

6
+

1

24
,

which has two more terms of e, making it a very good approximation, despite only having one step.

(Return)
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49 Numerical Integration

The topic of this module is the discretization of the definite integral. How does one approximate the definite

integral of a function which does not have an easily computable anti-derivative? The answer is with finite sums,

which is the discrete analog of the definite integral.

Recall that one interpretation for the definite integral is area under the curve. The goal is to find a finite

sum which approximates the area under the curve. There are three common techniques for making this ap-

proximation: Riemann sums, trapezoid rule, and Simpson’s rule. Each gives an approximation of the integral∫ b
a f (x)dx .

Another way to think about this problem (and the practical applications) is to consider some sporadic sample

points, thought of as a sequence

x = (xn) = (x0, x1, . . . , xn).

Corresponding to these sample points is the sequence of function values

f = (fn) = (f0, f1, . . . , fn),

where fi = f (xi). The goal is to approximate the definite integral of the underlying function f using these

function values. Of course, in real world applications the function may not be continuous, let alone a familiar

function with an easily computed anti-derivative. The method of numerical integration gives an approximation

of the definite integral in this situation with imperfect information.

Example

Consider the problem of estimating the number of people who pass through a certain busy subway station

each day. One could sit in the station for the entire day and count every person, or one could get an estimate

by going in periodically and counting the number of people who come in over a short time.

This gives a sampling of the rate of passengers entering the station at different times:

The definite integral of the rate of passenger arrival gives the total number of passengers using the station

that day:
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49.1 Riemann Sums

The most rudimentary approximation is given by Riemann sums, which should be familiar from the definition of

the definite integral.

The left Riemann sum uses the left endpoint of the ith subinterval as the sample point to compute the height

of the the ith rectangle:

Thus, the area of the nth rectangle is. So the left Riemann sum is given by∫ b

a

f (x)dx ≈
N−1∑
n=0

fn · (xn+1 − xn)

The right Riemann sum uses the right endpoint of the ith subinterval to compute the height of the ith rectangle:
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In this case, the area of the nth rectangle is fn · (∇x)n. So the right Riemann sum is given by∫ b

a

f (x)dx ≈
N∑
n=1

fn · (xn − xn−1)

An improvement on the left and right Riemann sums, called the trapezoid rule, is given in the next section.

49.2 Trapezoid rule

The trapezoid rule uses trapezoids instead of rectangles to approximate the area above each subinterval:

Recall that the area of a trapezoid with bases (parallel segments) of length p and q, with height h has area
1
2h(p + q). The area of the nth trapezoid, then, is 1

2(∆x)n(fn + fn+1). Thus, the trapezoid rule gives the
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approximation: ∫ b

a

f (x)dx ≈
N−1∑
n=0

1

2
(∆x)n(fn + fn+1)

≈
N−1∑
n=0

1

2
(fn + fn+1)(xn+1 − xn).

If the sample points are evenly spaced uniformly, then the formula for the trapezoid rule simply becomes∫ b

a

f (x)dx ≈ h

(
1

2
(f0 + fN) +

N−1∑
n=1

fn

)
,

where h = b−a
N is the width of each trapezoid. Note that the trapezoid rule is the average of the left and right

Riemann sums.

49.3 Simpson’s rule

Think about how the previous approximations interpolate the function f . The Riemann sum is a piece-wise

constant approximation (also called a step function). The trapezoid rule is a piece-wise linear approximation.

The logical next step is to use piece-wise quadratic approximations. That is how Simpson’s rule works. Another

way to think of it is that Simpson’s rule will compute the area under a parabola exactly (whereas Riemann sums

and trapezoid rule will have errors in general).

One way that Simpson’s rule differs from the above rules is that the sample points must be evenly spaced. Let

h = b−a
N be the distance between sample points. The Simpson’s rule approximation is given by∫ b

a

f (x)dx ≈
h

3
(f0 + 4f1 + 2f2 + 4f3 + . . .+ 2fN−2 + 4fN−1 + fN) .

Here, N must be even. (See Derivation 1)

Example

Approximate the definite integral
∫ 2
0 x
3dx with N = 4 using (uniformly spaced) right and left Riemann sums;

trapezoid rule; and Simpson’s rule. Here is a table of pertinent values to make the computation easier:

n xn fn
0 0 0

1 .5 .125

2 1 1

3 1.5 3.375

4 2 8

(See Answer 2)

49.4 Errors bounds

With any approximation, it is good to get some idea of how far off the approximation is from the true value.

Let ET be the error using the trapezoidal rule, and ES be the error from using Simpson’s rule.
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Using advanced calculus beyond the scope of this course, one can bound these errors as follows.

ET ≤
M(b − a)3

12N2

where M is the maximum value of |f ′′(x)| on the interval [a, b].

ES ≤
M(b − a)5

180N4

where M is the maximum value of |f (4)(x)| on the interval [a, b].

49.5 EXERCISES

• Using the fact that
∑j

n=0 n
2 = j(j+1)(2j+1)

6 , approximate
∫ 2
0 x
2dx using the right Riemann sum with N

number of intervals.

49.6 Answers to Selected Examples

1. Note This derivation is a little bit different from the one in lecture, and perhaps more elementary.

The idea of Simpson’s rule is to fit a parabola to the first three points (x0, f0), (x1, f1), (x2, f2), and

then find the area under that parabola. Then, fit a parabola to the next three points (overlapping the

endpoints) (x2, f2), (x3, f3), (x4, f4), find the area under that parabola, and so on.

Consider the parabola g(x) = ax2+ bx + c determined by the points (−h, fn−1), (0, fn), (h, fn+1). Solving

the resulting system of equations

fn−1 = ah2 − bh + c

fn = c

fn+1 = ah2 + bh + c,

gives the parabola which fits these points. One finds that

a =
1

h2

(
fn−1

2
− fn +

fn+1
2

)
b =

fn+1 − fn−1
2h

c = fn.

And so the area ∫ h

x=−h
g(x)dx =

∫ h

x=−h
ax2 + bx + cdx

= a
x3

3
+ b

x2

2
+ cx

∣∣∣∣h
x=−h

= 2a
h3

3
+ 2ch,
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by using symmetry. Plugging in the earlier values for a and c and simplifying gives∫ h

x=−h
g(x)dx =

h

3
(fn−1 + 4fn + fn+1) .

Carrying this out for all each triplet of points gives the approximation∫ b

x=a

f (x)dx ≈
h

3
(f0 + 4f1 + f2 + f2 + 4f3 + f4 + · · ·+ fN)

≈
h

3
(f0 + 4f1 + 2f2 + 4f3 + · · ·+ fN) ,

as desired.

(Return)

2. Let L, R, T , and S be the respective approximations. Then

L =
1

2
(0 + .125 + 1 + 3.375) = 2.25

R =
1

2
(.125 + 1 + 3.375 + 8) = 6.25

T =
1

2
(0 + .125 + 1 + 3.375 + 4) = 4.25

S =
1

6
(0 + .5 + 2 + 13.5 + 8) = 4.

Note that the true value is ∫ 2
x=0

x3 dx =
1

4
x4
∣∣∣∣2
x=0

= 4,

so Simpson’s rule gets the answer exactly and the trapezoid rule is the next closest.

(Return)
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50 Series
The previous module discussed finite sums as the discrete analog of definite integrals with finite bounds. Then,

logically, the discrete analog of improper integrals with infinite bounds should be infinite sums, referred to as

infinite series or just series when there is no confusion.

50.1 Definition of infinite series

Recall that when computing definite integrals with bounds at infinity, one replaces the infinite bound with a

variable and then takes the limit: ∫ ∞
x=1

f (x)dx = lim
T→∞

∫ T

x=1

f (x)dx.

For infinite series, the definition is analogous:

∞∑
n=1

an = lim
T→∞

T∑
n=1

an.

The expression

T∑
n=1

an is called the T th partial sum of the series

∞∑
n=1

an. Then a series converges if the sequence

of partial sums converges. If the sequence of partial sums does not converge, we say the series diverges.

Example

Give the first few terms of the sequence of partial sums for the infinite series

∞∑
n=1

1

2n
.

(See Answer 1)
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50.2 Taylor series revisited

Recall some of the Taylor series from earlier modules:

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+ . . .

sin(x) = x −
x3

3!
+
x5

5!
− . . .

cos(x) = 1−
x2

2!
+
x4

4!
− . . .

1

1− x = 1 + x + x2 + x3 + . . . (|x | < 1)

ln(1 + x) = x −
x2

2
+
x3

3
− . . . (|x | < 1)

These provide many examples of series which not only converge, but can be evaluated exactly.

Example

Compute 13 + 1
9 + 1

27 + 1
81 + . . .. (See Answer 2)

Example

Compute 1− π2

2! + π4

4! −
π6

6! + . . .. (See Answer 3)

50.3 Classifying series

There are some series which cannot be evaluated exactly, though it is known that the series converges. For

example, the series

∞∑
n=1

1

n3
= 1 +

1

8
+

1

27
+

1

64
+ . . .

≈ 1.2

converges, but it is not known what the exact value is (though one can calculate as many digits as one likes).

This is in contrast with an apparently similar series,

∞∑
n=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+ . . .

=
π2

6
,

for which an exact value is known (though the proof of this value is beyond the scope of this course).

Yet another similar series, called the harmonic series,

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+ . . . ,
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diverges, as will be shown in the next module.

There are two questions then. First, does a series converge or not? Second, if it does converge, to what does

it converge? This course deals mostly with the first question, in this module and the next few modules. More

advanced analysis classes can help answer the second question.

When intuition fails

Determining the convergence of a series using intuition can be dangerous. As one example of how intuition can

fail, consider what happens when we plug x = 1 into the series for ln(1 + x):

ln 2 = 1−
1

2
+

1

3
−

1

4
+

1

5
−

1

6
+ · · · .

Although x = 1 is not in the radius of convergence for this series, it turns out that this series still converges.

Now, consider what happens if we multiply both sides by 12 :

1

2
ln 2 =

1

2
−

1

4
+

1

6
−

1

8
+ · · · .

Adding this equation together with the above one, some of the terms cancel and some combine to show that

3

2
ln 2 = 1 +

1

3
−

1

2
+

1

5
+

1

7
−

1

4
+

1

9
+

1

11
−

1

6
+ · · ·

Now, notice that this series has all the terms of the series for ln 2, but in slightly different order. And yet, the

series evaluates to a different value. That is certainly counter intuitive. Perhaps even more alarming, the terms

of the series for ln 2 can be rearranged so that the resulting series evaluates to any real number. The takeaway

is that we must tread carefully and not trust intuition but instead rely on logic.

50.4 The nth term test for divergence

The first, and usually simplest, test for divergence of a series is the nth term test.

The nth term test for divergence

If lim
n→∞

an 6= 0, then the series

∞∑
n=0

an diverges.

(See Proof 4) This test applies to all series, and it is easy to apply (just take the limit of the terms of the

series). However, many of the series encountered in this course will have terms which go to 0 in the limit, in

which case the test is inconclusive (see the caveat below).

Example

Show that the series
∞∑
n=0

4n − 3n

4n + 2n

diverges. (See Answer 5)
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Example

Show that the series
∞∑
n=0

(−1)n = 1− 1 + 1− 1 + 1− . . .

diverges. (See Answer 6)

Example

Show that the series
∞∑
n=1

cos

(
1

n

)
= cos(1) + cos(1/2) + cos(1/3) + . . .

diverges. (See Answer 7)

Caveat

This is not a test for convergence! In particular, if lim
n→∞

an = 0, then the test is inconclusive (the series might

converge or diverge). If the test is inconclusive, one of the other tests from the upcoming modules must be

used.

In logical terms, this says that the converse of the nth term test does not hold. On the other hand, the

contrapositive does hold:
∞∑
n=0

an converges ⇒ lim
n→∞

an = 0

(The contrapositive of a true statement is always true, but the converse is not always true).

Example

What does the nth term test say about the series
∑∞

n=2
ln(n)
n ? (See Answer 8)

Example

What does the nth term test say about the series

∞∑
n=1

arctan n?

(See Answer 9)

Example

Suppose the series
∞∑
n=1

an = L,
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converges, and that an > 0 for all n. What, if anything, can be said about the convergence of the series

∞∑
n=1

1

an
?

(See Answer 10)

50.5 EXERCISES

• Determine whether the following series converges or diverges

∞∑
n=2

n3

n ln(n100)

∞∑
n=1

2n

n100

50.6 Answers to Selected Examples

1. Adding the first term, then the first two terms, then the first three terms, and so on, gives

1

2
,

1

2
+

1

4
,

1

2
+

1

4
+

1

8
, · · ·

which becomes
1

2
,

3

4
,

7

8
,

15

16
, · · · .

This sequence appears to be converging to 1, which is consistent with what we know this series to be (by

the geometric series).

(Return)

2. Note that by the geometric series,

1

1− 1/3
= 1 +

1

3
+

1

9
+ . . .

=
3

2
.

So 1
3 + 1

9 + . . . = 1
2 .

(Return)

3. Note that this is the Taylor series for cos(x) with x = π. Thus, the series evaluates to cos(π) = −1.

(Return)

4. We give a proof by contrapositive. That is, we prove that if

∞∑
n=0

an converges, then lim
n→∞

an = 0.
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Assume

∞∑
n=0

an converges. Then by the definition of convergence, we know that the sequence of partial

sums sT defined by

sT =

T∑
n=1

an

converges also. Therefore,

lim
T→∞

sT = lim
T→∞

sT−1 = L

for some L. Then we have

lim
T→∞

(sT − sT−1) = 0,

by linearity of the limit. But notice that

sT − sT−1 =

T∑
n=1

an −
T−1∑
n=1

an

= (a1 + a2 + · · ·+ aT−1 + aT )− (a1 + a2 + · · ·+ aT−1)

= aT .

Putting this together with the above limit, we find

lim
T→∞

(sT − sT−1) = lim
T→∞

aT

= 0,

which is what we were trying to prove.

(Return)

5. Here,

an =
4n − 3n

4n + 2n
.

Applying the nth term test, we find

lim
n→∞

an = lim
n→∞

4n − 3n

4n + 2n

= lim
n→∞

4n(1− (3/4)n)

4n(1 + (1/2)n)

= lim
n→∞

1− (3/4)n

1 + (1/2)n

= 1 6= 0,

because both
(
3
4

)n → 0 and
(
1
2

)n → 0. Therefore, by the nth term test, the series diverges.

(Return)

6. Since limn→∞(−1)n does not exist (the sequence oscillates), the series diverges by the nth term test.

(Return)

7. Note that limn→∞ cos
(
1
n

)
= cos(0) = 1 6= 0. Thus, by the nth term test, the series diverges.

(Return)
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8. Note that limn→∞
ln(n)
n = 0, either by using l’Hospital’s rule or by recalling that ln(n) grows much more

slowly than n. Thus, the nth term test is inconclusive.

(Return)

9. Note that

lim
n→∞

arctan n =
π

2
6= 0,

and so by the nth term test, the series diverges.

(Return)

10. By the contrapositive of the nth term test mentioned above, we know that since the series

∞∑
n=1

an

converges, we know that

lim
n→∞

an = 0.

But this implies that

lim
n→∞

1

an
=∞

so by the nth term test, we know that the series

∞∑
n=1

1

an

diverges.

(Return)
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51 Convergence Tests 1

Unlike the nth term test for divergence from the last module, this module gives several tests which, if successfully

applied, give a definitive answer of whether a series converges or not. A common feature of the tests in this

module is that they use a comparison.

51.1 Integral test for convergence and divergence

This is a test which can definitively tell whether a series converges or diverges. However, it can be harder to

apply.

Integral test for convergence and divergence

If f (x) is a positive, decreasing function, then for any integer m,

∞∑
n=m

f (n) converges ⇐⇒
∫ ∞
m

f (x)dx converges.

The double arrow ⇐⇒ means if and only if. So the series and integral either both converge, or they both

diverge.

To see why, visualize the series as a sum of rectangles with base 1 and height f (n). If these rectangles are

drawn to the right of the curve f (x), then the result is the following figure. Each rectangle is labeled with

its area. The combined area of the rectangles completely contains the area under f (x), which establishes the

inequality shown:
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On the other hand, if the rectangles are drawn to the left of the curve f (x), then all the rectangles lie below the

curve. Their combined area is less than the area under the curve f (x), which establishes the inequality shown:

Combining these two inequalities gives∫ ∞
1

f (x)dx ≤
∞∑
n=1

f (n) ≤
∫ ∞
0

f (x)dx.

If the integral diverges, then the series diverges (by the first inequality). And if the integral converges, then the

series converges (by the second inequality). This establishes the integral test.

Example

Use the integral test to determine if
∞∑
n=2

1

n ln(n)

converges or diverges. (See Answer 1)

Example

Use the integral test to determine if
∞∑
n=1

n

en

converges or diverges. (See Answer 2)

51.2 The p-series test

The next example is important enough that it gets its own name: the p-series. This makes use of the p-integrals

that we computed earlier.

47



Example

Find the values of p for which the series
∞∑
n=1

1

np

converges. (See Answer 3)

The p-series test

The p-series

∞∑
n=1

1

np
converges if and only if p > 1.

Harmonic series

The series
∑
1
n , known as the harmonic series, diverges by to the p-series test. This is a significant fact to keep

in mind because the harmonic series diverges even though the terms of the series go to 0. Thus, the harmonic

series is a demonstration that the nth term test is a test for divergence only and cannot be used to show a

series converges.

Note that the harmonic series is a sort of boundary between convergence and divergence. The series
∑

1
n.999

diverges, but the series
∑

1
n1.001 converges.

Example

The p-series test proves the convergence of two examples from the last module:
∑

1
n2 and

∑
1
n3 .

Example

Determine the values of p for which the series

∞∑
n=2

1

n(ln n)p

converges. (See Answer 4)

51.3 Comparison test

The integral test compared a series to its related integral. This test compares one series to another.

Comparison test

Let an and bn be positive sequences such that bn > an for all n. It follows that

1. if
∑
bn converges, then

∑
an converges.

2. if
∑
an diverges, then

∑
bn diverges.

In other words, if a series is smaller than a convergent series, then it converges too. If a series is bigger than a

divergent series, then it diverges too.
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Caveat

It is critical that the inequality be in the correct direction. A series which is larger than a convergent series

might converge or diverge. A series which is smaller than a divergent series might converge or diverge.

Example

Show that
∑ ln(n)

n diverges. (See Answer 5)

Example

Show that ∑
n=4

n3 − 2n2 − 10

n5 + 7

converges. (See Answer 6)

Example

Determine whether
∞∑
n=2

1

ln(n!)

converges or diverges. Hint: try for a rough upper bound or lower bound on n! and see which one gives the

right comparison. (See Answer 7)

51.4 Limit test

The final test of this module is a slightly different type of comparison. Recall that when comparing two functions

f and g to see which is “bigger” asymptotically, one computes the limit

lim
n→∞

f (n)

g(n)
.

If this limit is infinite, then f is bigger. If the limit is 0, then g is bigger. If the limit is L where 0 < L < ∞,

then the two functions are roughly equal (up to a constant multiple). It is this third case that is used for this

test (sometimes called the Limit comparison test):

Limit test

Let an and bn be positive series. If limn→∞
an
bn

= L and 0 < L < ∞, then the series
∑
an and

∑
bn either

both converge or both diverge.

The key to the limit test is finding a suitable sequence bn which is approximately equal to an in the limit. Often,

an will be a ratio, in which case the lower order terms in the numerator and denominator can be dropped, and

what is left will be bn. Ideally, it will be easy to see if
∑
bn converges or diverges. Finally, one must check that

0 < limn→∞
an
bn
<∞.
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Example

Show that ∑ n2 − n
n3 + 7

diverges. (See Answer 8)

Example

Determine whether ∑
sin

(
1

n

)
converges or diverges. (See Answer 9)

51.5 EXERCISES

• Determine whether the following series converges or diverges

∞∑
n=1

n + 4

n(2 + n4)1/3

∞∑
n=1

| sin(n)n|
n2

51.6 Answers to Selected Examples

1. Computing, one finds (using the u-substitution u = ln(x)) that∫ ∞
2

1

x ln(x)
dx =

∫ ∞
ln(2)

1

u
du

= ln(u)

∣∣∣∣∞
ln(2)

,

which diverges since ln(u) → ∞ as u → ∞. Since the integral diverges, the series also diverges by the

integral test.

(Return)

2. The integral test says the series converges if and only if∫ ∞
x=1

x

ex
dx =

∫ ∞
x=1

xe−x dx

converges. We know this integral converges (recall that xe−x is the PDF for the exponential distribution).

But we can also compute it again.

This integral is a good candidate for integration by parts, with

u = x du = dx

dv = e−x dx v = −e−x .
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Thus, ∫ ∞
x=1

xe−x = −xe−x
∣∣∣∣∞
x=1

−
∫ ∞
x=1

−e−x dx

= −xe−x − e−x
∣∣∣∣∞
x=1

= 0− (−e−1 − e−1)

=
2

e
.

Since the integral converges, the series converges too, by the integral test.

(Return)

3. We know from the integral test that
∞∑
n=1

f rac1np

converges if and only if ∫ ∞
x=1

1

xp
dx

converges. But this integral converges if and only if p > 1, as we saw in the module on p-integrals.

Therefore, the p-series converges if and only if p > 1.

(Return)

4. Making the substitution

u = ln x

du =
1

x
dx,

we see that ∫ ∞
x=2

1

x(ln x)p
dx =

∫ ∞
u=ln 2

1

up
du.

This integral (again from our knowledge of the p-integral) converges if and only if p > 1. Therefore, by

the integral test, the series
∞∑
n=2

1

n(ln n)p

converges if and only if p > 1.

(Return)

5. Note that ln(n)n > 1
n . Since

∑
1
n diverges, the series

∑ ln(n)
n diverges too, by the comparison test.

(Return)

6. Note that
n3 − 2n2 − 10

n5 + 7
<
n3

n5
=

1

n2
,

since the numerator on the left is smaller, and the denominator on the left is bigger. So

∞∑
n=4

n3 − 2n2 − 10

n5 + 7
<

∞∑
n=4

1

n2
.
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∑
1
n2 converges (p-series test from above), and so

∞∑
n=4

n3 − 2n2 − 10

n5 + 7

converges as well, by the comparison test.

(Return)

7. A lower bound for n! might be 2n (or any exponential). This gives∑ 1

ln(n!)
<
∑ 1

ln(2n)

=
∑ 1

n ln(2)

=
1

ln 2

∑ 1

n
,

which diverges, since it is a constant multiple of the harmonic series. This comparison does not go in the

right direction, since our original series is smaller than a divergent series. Thus, we should try going in

the other direction to find an upper bound for n!.

A rough upper bound for n! is nn. This gives∑ 1

ln(n!)
>
∑ 1

ln(nn)

=
∑ 1

n ln(n)
.

This series diverges (see the example earlier in this module). Therefore, the original series, which is bigger

than a divergent series, also diverges.

(Return)

8. By dropping the lower order terms in the numerator and denominator, one finds

n2 − n
n3 + 7

≈
n2

n3
=

1

n
.

So bn = 1
n is a good choice. Assuming the above approximation is not too rough, the work is done since

the harmonic series,
∑
1
n , diverges.

To make sure the approximation is not too rough, compute the limit

lim
n→∞

an
bn

= lim
n→∞

(
n2 − n

)
/
(
n3 + 7

)
1/n

= lim
n→∞

n(n2 − n)

n3 + 7

= lim
n→∞

n3 − n2

n3 + 7

= 1.

Thus, by the limit test,
∑

n2−n
n3+7 and

∑
1
n either both converge or both diverge. Since

∑
1
n diverges, so

too must
∑

n2−n
n3+7 .

(Return)
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9. With an unusual series like this, the nth term test is a good first thing to try. But it is inconclusive since

sin(1/n)→ 0 as n →∞.

To get a handle on how this function acts, note that when n is large, 1/n is small, and so we can use the

Taylor series for sin x about 0:

sin

(
1

n

)
=

1

n
+O

(
1

n3

)
.

Thus, sin(1/n) ≈ 1
n , which means 1n is a good candidate for bn in the limit test. This will work:

lim
n→∞

an
bn

= lim
n→∞

sin(1/n)

1/n

= lim
n→∞

1/n +O(1/n3)

1/n

= 1.

Since
∑
bn =

∑
1
n diverges (harmonic series), it follows by the limit test that

∑
sin(1/n) diverges also.

(Return)
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52 Convergence Tests 2

This module deals with the root test and the ratio test for convergence. Unlike the tests from the previous

module, the tests of this module can be applied without having to find a good series to compare.

Recall that the geometric series

1 + x + x2 + x3 + · · ·

converges to 1
1−x provided that |x | < 1. This fact is at the heart of both the root test and the ratio test.

52.1 Root test

The Root test

Given a series
∑
an, with all an > 0, let

ρ = lim
n→∞

n
√
an.

If ρ < 1, then
∑
an converges. If ρ > 1, then

∑
an diverges. Finally, if ρ = 1, then the test is inconclusive.

(See Justification 1) The root test works best when the term an involves an nth power, or can be expressed as

an nth power, although it can be used in other situations as well.

Example

Determine if ∑(
n

2n + 1

)n
converges or diverges. (See Answer 2)

Example

Determine if ∑(
n

n + 1

)n2
converges or diverges. (See Answer 3)
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Example

Use the root test on the p-series
∞∑
n=1

1

np
.

(See Answer 4)

52.2 Ratio test

The Ratio Test

Given a series
∑
an, with all an > 0, let

ρ = lim
n→∞

an+1
an

.

If ρ < 1, then the series
∑
an converges. If ρ > 1, then the series

∑
an diverges. If ρ = 1, then the test is

inconclusive (the series might converge or diverge).

(See Justification 5) The ratio test works best when an involves exponential functions and factorials, since in

these situations there is a lot of cancellation. It does not work well with ratios of polynomials, because the test

is inconclusive.

Example

Determine if the series ∑ n

3n

converges or diverges. (See Answer 6)

Example

Determine if the series ∑ n!

(2n)!

converges or diverges. (See Answer 7)

Example

Show that the ratio test is inconclusive on the p-series
∑

1
np . (See Answer 8)

Example

Determine if the series
∞∑
n=0

4n

(2n)!

converges or diverges. (See Answer 9)

55



52.3 Summary of methods for a positive series

There is no foolproof method for determining the convergence or divergence of a series. However, here is a

rough guide for tests to try. Given a series
∑
an, where an > 0 for all n:

1. Do the terms go to 0? If limn→∞ an 6= 0, then by the nth term test, the series diverges. (If limn→∞ an = 0,

then the test is inconclusive).

2. Does an involve exponential functions like cn where c is constant? Does an involve factorial? Then the

ratio test should be used.

3. Is an of the form (bn)n for some sequence bn? Then use the root test.

4. Does ignoring lower order terms make an look like a familiar series (e.g. p-series or geometric series)?

Then use the comparison test or the limit test.

5. Does the sequence an look easy to integrate? Then use the integral test.

52.4 EXERCISES

• Determine whether the following series converges or diverges

∞∑
n=2

1

lnn(n)

∞∑
n=1

2n34n

n!

• What does the ratio test say about the convergence of

∞∑
n=1

2n(2n − 2)(2n − 4) . . . 2

(2n − 1)(2n − 3) . . . 1

52.5 Answers to Selected Examples

1. Recall what it means that lim n
√
an = ρ. It means that for a given ε > 0, there exists an M such that for

all n > M,

| n
√
an − ρ| < ε.

In other words, for n sufficiently big, n
√
an ≈ ρ, and so an ≈ ρn. This says that, roughly speaking, the

series is eventually geometric with common ratio ρ. Hence, the series converges for ρ < 1 and diverges

for ρ > 1.

(Return)
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2. Computing, one finds that

ρ = lim
n→∞

n
√
an

= lim
n→∞

n

√(
n

2n + 1

)n
= lim

n→∞

n

2n + 1

=
1

2
.

Since ρ < 1, the series converges by the root test.

(Return)

3. Computing, one finds that

ρ = lim
n→∞

n

√(
n

n + 1

)n2
= lim

n→∞

(
n

n + 1

)n
= lim

n→∞

1

(1 + 1/n)n

=
1

e
.

The last step above follows from the fact that limn→∞(1 + 1/n)n = e. Thus, ρ < 1 and so the series

converges by the root test.

(Return)

4. Trying the root test gives

ρ = lim
n→∞

n

√
1

np

= lim
n→∞

(
1

n1/n

)p
= 1,

and so the root test is inconclusive.

The last step above follows from the fact that limn→∞ n
1/n = 1. Let y = limn→∞ n

1/n. Taking the natural

log of both sides gives

ln(y) = lim
n→∞

1

n
ln(n)

= lim
n→∞

ln(n)

n

= 0.

Thus y = e0 = 1, as desired.

(Return)
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5. As in the justification for the root test, an+1
an

is eventually very close to ρ, and remains close to ρ ever

after. Roughly speaking, then an+1 ≈ ρan for all sufficiently big n. But that means that after a while, the

series becomes roughly geometric with common ratio ρ. Therefore, when ρ < 1 the series converges, and

when ρ > 1 the series diverges.

(Return)

6. Here, an = n
3n . Computing, one finds

ρ = lim
n→∞

an+1
an

= lim
n→∞

(n + 1) /
(

3n+1
)

n/3n

= lim
n→∞

n + 1

3n+1
·

3n

n

= lim
n→∞

1

3

n + 1

n

=
1

3
.

ρ < 1, and so by the ratio test, the series converges.

(Return)

7. In this example, an = n!
(2n)! . Computing gives

ρ = lim
n→∞

an+1
an

= lim
n→∞

(n + 1)!

[2(n + 1)]!
·

(2n)!

n!

= lim
n→∞

n + 1

(2n + 2) (2n + 1)

= lim
n→∞

n + 1

4n2 + 6n + 2

= 0.

So ρ < 1, and the series converges by the ratio test.

(Return)

8. Computing shows that

ρ = lim
n→∞

1/(n + 1)p

1/np

= lim
n→∞

np

(n + 1)p

= lim
n→∞

(
n

n + 1

)p
= 1,

and so the ratio test is inconclusive.

(Return)
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9. There is a quick, tricky way to see that this converges, which is to note that

∞∑
n=0

4n

(2n)!
=

∞∑
n=0

22n

(2n)!
,

which is the Taylor series for cosh x with x = 2. We know cosh converges everywhere, so we know this

series converges.

Alternatively, we can use the ratio test. We have an = 4n

(2n)! . Therefore

ρ = lim
n→∞

an+1
an

= lim
n→∞

4n+1

(2(n + 1))!
·

(2n)!

4n

= lim
n→∞

4 · 4n

(2n + 2) · (2n + 1) · (2n)!
·

(2n)!

4n

= lim
n→∞

4

(2n + 2) · (2n + 1)

= 0.

Since ρ < 1, this series converges by the ratio test, confirming what we already knew.

(Return)
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53 Absolute And Conditional
Up until now, the convergence tests covered by this course have only covered series with positive terms. What

happens when a series has some positive and some negative terms? This module describes some tools for

determining the convergence or divergence of such a series.

53.1 Alternating series test

One particular type of series is fairly simple to test for convergence. A series
∑
an is alternating if it is of

the form
∑

(−1)nbn, where bn is a positive sequence. In other words, a series is alternating if its terms are

alternately positive and negative.

Alternating Series Test

An alternating series
∑

(−1)nbn with decreasing terms converges if and only if limn→∞ bn = 0.

The intuition behind this test is that if the terms are alternating, decreasing, and go to zero, then the partial

sums of the series gradually zero in on the true value. The first partial sum is greater than the true value, the

second partial sum is less than the true value, and so on:

Example

The series

1−
1

2
+

1

3
−

1

4
+ . . .
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is alternating. Its terms are decreasing, and the terms go to zero, so by the alternating series test, the series

converges.

Example

Determine if
∞∑
n=0

(−1)n
1

2n

converges. (See Answer 1)

Example

Determine if
∞∑
n=2

(−1)n
ln(n)

n

converges. (See Answer 2)

53.2 Conditional and absolute convergence

Consider the two previous examples. Note that both
∑

(−1)n 12n and
∑

(−1)n ln(n)n converge. However, if these

series were not alternating, then
∑

1
2n still converges (it is geometric), whereas

∑ ln(n)
n does not converge

(comparison with the harmonic series
∑
1
n ).

These series demonstrate a distinction between two types of convergence.

Absolute and Conditional Convergence

The series
∑
an converges absolutely if

∑
|an| converges.

A series
∑
an converges conditionally if

∑
an converges, but

∑
|an| diverges.

In other words, a series is conditionally convergent if it is convergent but not absolutely convergent.

Example

Using this terminology, the series
∞∑
n=0

(−1)n
1

2n

converges absolutely, but
∞∑
n=2

(−1)n
ln(n)

n

converges conditionally.
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Example

Find the values of p for which the alternating p-series

∞∑
n=1

(−1)n
1

np

diverges, converges conditionally, and converges absolutely. (See Answer 3)

Example

Determine if
∞∑
n=1

(−1)n
en

n5

converges, and if so, whether it is conditional or absolute convergence. (See Answer 4)

Example

Determine if
∞∑
n=1

(−1)n
n!

nn

converges, and if so, whether it is conditional or absolute convergence. (See Answer 5)

53.3 Absolute convergence test

Some series are not strictly alternating, but have some positive and some negative terms, sporadically. In this

situation, it can be difficult to determine whether the series converges directly, but the following test sometimes

makes the determination easier.

Absolute Convergence Test

If the series
∑
|an| converges, then

∑
an converges. In other words, if a series converges absolutely, then

the series converges.

(See Justification 6)

Example

Determine if
∞∑
n=1

sin(n)

n2

converges or diverges. (See Answer 7)
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53.4 EXERCISES

• Determine whether the following series converges or not. If it converges, is it conditionally convergent or

absolutely convergent?

∞∑
n=2

(−1)n
1

n ln(n)

∞∑
n=1

(−1)n
n1/2

((n + 1)(n + 2)(n + 3))1/2

• Determine whether the following series is convergent or divergent

∞∑
n=1

cos(n)
ln(n)

n!

53.5 Answers to Selected Exercises

1. The series is alternating, the terms are decreasing, and limn→∞
1
2n = 0. Thus, by the alternating series

test, the series converges.

Alternatively, we can observe that this series is geometric:

∞∑
n=0

(−1)n
1

2n
=

∞∑
n=0

(
−

1

2

)n
=

1

1− (−1/2)

=
2

3
.

(Return)

2. The series is alternating, terms are decreasing, and

lim
n→∞

ln(n)

n
= 0.

And so by the alternating series test, the series converges.

(Return)

3. When p ≤ 0, the terms of the series do not go to 0. That is,

lim
n→∞

1

np
6= 0.

So by the nth term test for divergence, the series diverges for these values of p.

When 0 < p ≤ 1, the terms of the series are decreasing, alternating, and going to 0. So by the alternating

series test, the series converges for this range of p. However, if absolute values are taken, then the resulting

series,
∑

1
np , does not converge by the p-series test. Thus, for 0When1 (Return)
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4. The series is alternating, but notice that the terms do not go to 0, since en > n5. Therefore, by the nth

term test for divergence, this series diverges.

(Return)

5. The series is alternating, and note that nn > n!, which leads us to believe that the series converges. In

fact, the series converges absolutely, i.e. ∑ n!

nn

converges, as the ratio test shows, along with some careful algebra:

ρ = lim
n→∞

(n + 1)!

(n + 1)n+1
·
nn

n!

= lim
n→∞

(n + 1)nn

(n + 1)n+1

= lim
n→∞

nn

(n + 1)n

= lim
n→∞

(
n

n + 1

)n
= lim

n→∞

1(
n+1
n

)n
= lim

n→∞

1

(1 + 1/n)n

=
1

e
< 1.

So ρ < 1, and so the series converges absolutely.

(Return)

6. Consider the series
∑

(an + |an|). Note that

0 ≤ an + |an| ≤ 2|an|

So
∑

(an + |an|) ≤
∑

2|an|, and by the comparison test we find
∑

(an + |an|) converges. Then∑
an =

∑
((an + |an|)− |an|)

=
∑

(an + |an|)−
∑
|an|

converges too, being the difference of two convergent, positive series.

(Return)

7. sin(n) is a messy function because it is sometimes positive and sometimes negative, but not in a simple

alternating pattern. However, one nice thing about sin(n) is that, in absolute value, it is bounded by 1.

So
∞∑
n=1

∣∣∣∣sin(n)

n2

∣∣∣∣ ≤ ∞∑
n=1

1

n2
.

Since
∑

1
n2 converges by p-series test, it follows by the comparison test that

∑∣∣∣ sin(n)n2

∣∣∣ converges. Hence∑ sin(n)
n2 converges absolutely, and so it converges by the absolute convergence test.

(Return)
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54 Power Series
Sequences can be thought of as the discretization of a function. This module goes in the opposite direction:

turning a sequence into a function called a power series.

54.1 Power series

Given a sequence an, the power series associated with an is the infinite sum f (x) =

∞∑
n=0

anx
n.

Example

The power series associated with the sequence an = 1 is the function f (x) = 1 + x + x2 + x3 + . . ..

Example

All of the Taylor series encountered earlier in the course are power series. For instance, the Taylor series for

the exponential is the power series associated with the sequence an = 1
n! .

Example

The Lucas numbers Ln are like the Fibonacci numbers but with different initial conditions. L0 = 2 and

L1 = 1, and Ln = Ln−1 + Ln−2. So the sequence begins L = (2, 1, 3, 4, 7, 11, 18, . . .).

Find the closed-form function L(x) given by the power series

L(x) = L0 + L1x + L2x
2 + L3x

3 + · · ·

=

∞∑
n=0

Lnx
n.

This is known in the field of combinatorics as the generating function for the sequence Ln. (See Answer 1)

These power series have lots of useful applications in enumeration and asymptotic analysis, among other things.

But the rest of this module will deal with convergence. Given a sequence (an), for what values of x does its

associated power series f (x) = a0 + a1x + a2x
2 + · · · converge?
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54.2 Interval and radius of convergence

Recall that some Taylor series had restrictions on the values of x for which the series equaled the function (e.g.

geometric series, ln(1 + x), arctan(x)). In other words, the series converges for some values of x and diverges

for other values of x .

In general, given a power series f (x) =
∑
anx

n, the goal is to find the values of x for which the series converges.

The following theorem tells us that the set of such values is always an interval:

Given

f (x) =

∞∑
n=0

anx
n,

there exists some 0 ≤ R ≤ ∞ such that

• the series converges absolutely if |x | < R;

• the series diverges if |x | > R;

• might converge or diverge when x = R or x = −R.

The interval of convergence is the interval (−R,R), possibly with the endpoints included (they need to be

individually checked in general). The radius of convergence is half the length of the interval of convergence.

The method for finding the interval of convergence is to use the ratio test to find the interval where the series

converges absolutely and then check the endpoints of the interval using the various methods from the previous

modules.

Previously, when using the ratio test, one computed ρ and then checked if ρ < 1, ρ > 1, or ρ = 1. Now, the

goal is to find the values of x for which the series
∑
anx

n converges absolutely, i.e. for which ρ < 1. So ρ is

computed, in terms of x , and is set to be less than 1. This gives an interval of values for x which the series

converges absolutely. Once this interval has been determined, the endpoints must be checked for convergence

as well.
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Radius of convergence

For a general power series f (x) = a0 + a1x + a2x
2 + · · · , what is the radius of convergence R in terms of the

sequence an? Note that

ρ = lim
n→∞

|an+1xn+1|
|anxn|

= lim
n→∞

|an+1|
|an|

|x |.

And for absolute convergence ρ < 1. So in terms of the an, we get absolute convergence when

lim
n→∞

|an+1|
|an|

|x | < 1,

or equivalently,

|x | < lim
n→∞

|an|
|an+1|

.

Thus, we have shown that the radius of convergence of the series f (x) = a0 + a1x + a2x
2 + · · · is given by

R = lim
n→∞

|an|
|an+1|

.

Example

Find the interval and radius of convergence for the power series

∞∑
n=1

n

2n
xn

(See Answer 2)

Example

Find the interval of convergence for
∞∑
n=1

(−1)n
xn

n

(See Answer 3)

54.3 Shifted power series

Recall that the Taylor series for a function can be computed at a point c other than 0. In this case the series

took the form

f (x) = a0 + a1(x − c) + a2(x − c)2 + a3(x − c)3 + · · ·

Such a power series is said to be centered at c , since the interval of convergence for the series will be centered

at c . To see why, carry out the calculation as above (replacing all the |x |’s with |x − c |’s) to find that the series

converges absolutely when

|x − c | < lim
n→∞

|an|
|an+1|

= R.
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So the radius of convergence is the same (it only depends on the sequence an), and it is only the center of the

interval that has changed. Thus, the interval of convergence is (c −R, c +R), and again one must individually

check the endpoints.

Example

Find the interval of convergence for
∞∑
n=1

(−1)n
(x + 3)n

n2

(See Answer 4)

Example

Find the interval of convergence for
∞∑
n=2

(2x + 5)n

ln n
.

(See Answer 5)

54.4 Answers to Selected Examples

1. Begin by writing out the series L(x), xL(x), and x2L(x):

L(x) = L0 + L1x + L2x
2 + L3x

3 + L4x
4 + · · ·

xL(x) = L0x + L1x
2 + L2x

3 + L3x
4 + · · ·

x2L(x) = L0x
2 + L1x

3 + L2x
4 + · · ·

Now note what happens when we take L(x) − xL(x) − x2L(x) and collect like terms. Because of the

recurrence, all of the coefficients of the form Ln − Ln−1 − Ln−2 = 0, which leaves only two terms in the

power series:

L(x)− xL(x)− x2L(x) = L0 + (L1 − L0)x + (L2 − L1 − L0)x2 + (L3 − L2 − L1)x3 + · · ·
= L0 + (L1 − L0)x + 0x2 + 0x3 + 0x4 + · · ·
= 2 + (1− 2)x

= 2− x.

Now, solving for L(x) by factoring and dividing gives

L(x) =
2− x

1− x − x2 .

(Return)
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2. Using the ratio test for absolute convergence, one computes

ρ = lim
n→∞

∣∣∣∣an+1an
∣∣∣∣

= lim
n→∞

∣∣∣∣(n + 1)xn+1/2n+1

nxn/2n

∣∣∣∣
= lim

n→∞

n + 1

2n+1
·

2n

n
|x |

= lim
n→∞

1

2

n + 1

n
|x |

=
|x |
2
.

Setting ρ < 1 means |x |2 < 1, hence |x | < 2. So for all −2 < x < 2, the series converges absolutely.

Checking the endpoint x = −2 gives the series

∞∑
n=1

n

2n
(−2)n =

∞∑
n=1

n

2n
(−1)n2n

=

∞∑
n=1

(−1)nn,

which diverges by the nth term test for divergence. Similarly, the endpoint x = 2 gives the series

∞∑
n=1

n

2n
2n =

∞∑
n=1

n,

which diverges, also by the nth term test. Thus, both endpoints diverge and so the interval of convergence

is (−2, 2). The radius of convergence is 2.

(Return)

3. Using the ratio test gives

ρ = lim
n→∞

∣∣∣∣ xn+1n + 1

n

xn

∣∣∣∣
= lim

n→∞

|x |n
n + 1

= |x |.

Setting this less than 1 gives |x | < 1 so the interval is (−1, 1). Checking the endpoint x = 1 gives the

alternating harmonic series which converges. The other endpoint x = −1 gives the harmonic series which

diverges. So the interval of convergence is (−1, 1].

(Return)

4. The interval of convergence will be centered at −3. We can take a short cut and just compute the radius

of convergence R = lim |an |
|an+1| , where an = (−1)n

n2 . This gives R = 1.

Then the interval of convergence is (−3− 1,−3 + 1) = (−4,−2), and it remains to check the endpoints.

At x = −4, we get
∑

1
n2 , which converges by p-series. At x = −2, we get the alternating p-series∑

(−1)n 1n2 , which converges by alternating test. Thus, the interval of convergence is [−4,−2].

(Return)
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5. It takes a little rearranging before this takes the form of a shifted series as defined above (the problem is

the coefficient of 2 on the x). The 2 can be factored out, and what results is

∞∑
n=2

(2x + 5)n

ln n
=

∞∑
n=2

2n(x + 5/2)n

ln n

=

∞∑
n=2

2n

ln n
(x + 5/2)n,

which is now of the form given above. Note that this series is centered at −5/2. The radius of convergence

is

R = lim
n→∞

2n

ln(n)
·

ln(n + 1)

2n+1

=
1

2

(since the ratio of logs goes to 1). Thus, the interval of convergence is (−3,−2). Checking the endpoints,

one finds convergence at x = −3 (by alternating series test) and divergence at x = −2 (by comparison

of
∑

1
ln n with the harmonic series, for example).

So the interval of convergence is (−3,−2).

(Return)
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55 Taylor Series Redux

The last module took a sequence (an) and turned it into a power series f (x) =

∞∑
n=0

anx
n. This module turns

this around and asks can we go from a function f (x) to a sequence (an)? The answer is yes, and this is the

familiar process of computing the Taylor series for the function. Recalling the Taylor series for f :

f (x) = f (0) + f ′(0)x +
f ′′(0)

2!
x2 + · · · =

∞∑
n=0

1

n!
f (n)(0)xn,

we see that an = 1
n! f
(n)(0) is the sequence corresponding to f (x). We could also center the Taylor series at a

different point, and get a different sequence, but for now let’s keep things centered at 0.

Now that we have turned our function into its Taylor series, we come back to the questions deferred from earlier

in the course:

1. For what values of x does a function’s Taylor series converge?

2. Does the Taylor series converge to the function?

These questions are the topics of this module.

55.1 Taylor series convergence

We now have the tools to see when a power series converges, so the answer to the first question is that the

series
∞∑
n=0

anx
n =

∑
n=0

1

n!
f (n)(0)xn

converges absolutely for |x | < R, where

R = lim
n→∞

|an|
|an+1|

= lim
n→∞

f (n)(0)

n!
·

(n + 1)!

f (n+1)(0)

= lim
n→∞

(n + 1)
f (n)(0)

f (n+1)(0)
.

Within the interval of convergence, differentiation and integration of a power series are nice, in that they can

be done term by term:
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1.
df

dx
=

∞∑
n=0

nanx
n−1

2.

∫
f (x) dx =

∞∑
n=0

an
n + 1

xn+1 + C

Why is this useful? Being able to differentiate and integrate term by term allows us to compute the Taylor

series for various functions by differentiating or integrating the Taylor series for other functions.

Example

Compute the Taylor series for arctan x by noting that d
dx arctan x = 1

1+x2 . (See Answer 1)

Example

Show that the power series f (x) = 1 + 2x + 3x2 + 4x3 + 5x4 + · · · can be written as 1
(1−x)2 for |x | < 1.

Hint: try integrating both sides and see what familiar function you get. (See Answer 2)

55.2 Example

The Fresnel Integral C(x) is defined by

C(x) =

∫ x

t=0

cos(t2)dt.

There is no elementary expression for this integral, but it can be expressed as a series by expanding the series

for cos and then integrating term by term:

C(x) =

∫ x

t=0

cos(t2)dt

=

∫ x

t=0

( ∞∑
n=0

(−1)n
(t2)2n

(2n)!

)
dt

=

∞∑
n=0

(−1)n
t4n+1

(2n)! (4n + 1)

∣∣∣∣x
t=0

=

∞∑
n=0

(−1)n
x4n+1

(2n)! (4n + 1)
.

55.3 Taylor series convergence to a function

Now, we consider the second question above: when a Taylor series converges, does it always converge to the

function? Unfortunately, not always. Even with a smooth f , and x within the interval of convergence, it is

possible that the Taylor series does not converge to f . The following definition is used for functions whose

Taylor series do converge to the functions themselves:
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Definition: Real-analytic function

A function f is real-analytic at x = a if for x sufficiently close to a,

f (x) =

∞∑
n=0

1

n!
f (n)(a)(x − a)n.

That is, a function f is real-analytic at a if the Taylor series for f converges to f near a.

Almost all the functions we have encountered in this course are real-analytic. However, there are examples of

smooth functions which are not real-analytic, as the next example shows.

Example

Consider the function

f (x) =

{
e−1/x if x > 0

0 if x ≤ 0.

To show that this function is smooth, we must show that its derivative exists at x = 0 (everywhere else it

is a composition of nice functions, so we need not worry). We use the definition of the derivative:

df

dx

∣∣∣∣
x=0

= lim
h→0+

f (h)− f (0)

h

= lim
h→0+

1

h
e−1/h.

This can either be thought of as a 0/0 case for l’Hospital’s rule, or we can do a change of variables t = 1
h ,

which gives the limit

lim
h→0+

1

h
e−1/h = lim

t→∞
te−t

= lim
t→∞

t

et

= 0,

since the exponential beats a polynomial asymptotically. So f ′(0) = 0. It turns out that all of the higher

derivatives of f at 0 are 0 as well. So if we tried to expand this as a Taylor series, we would have

f (x) = f (0) + f ′(0)x +
1

2!
f ′′(0)x2 + · · ·

= 0 + 0x + 0x2 + · · ·
= 0.

So the Taylor series for f converges to 0, despite the fact that f is non-zero for x > 0.
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55.4 Answers to Selected Examples

1. We have that

d

dx
arctan x =

1

1 + x2

= 1− x2 + x4 − x6 + x8 − · · · ,

for |x | < 1. Thus, for |x | < 1, we can safely integrate both sides of this equation to find

arctan x =

∫ (
1− x2 + x4 − x6 + x8 − · · ·

)
dx

= x −
x3

3
+
x5

5
−
x7

7
+
x9

9
− · · ·+ C.

By checking arctan(0) = 0, we find that the integration constant C = 0. Thus for |x | < 1 we have

arctan x = x −
x3

3
+
x5

5
− · · · =

∞∑
n=0

(−1)n
x2n+1

2n + 1
.

(Return)

2. Integrating both sides gives ∫
f (x)dx =

∫
(1 + 2x + 3x2 + · · · )dx

= x + x2 + x3 + · · ·

=
x

1− x ,

by recognizing that this is the geometric series. Now, differentiating both sides gives that

f (x) =
1

(1− x)2
,

as desired. Note that this only holds within the interval of convergence for the geometric series, |x | < 1.

(Return)
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56 Approximation And Error

Given a series that is known to converge but for which an exact answer is not known, how does one find a good

approximation to the true value? One way to get an approximation is to add up some number of terms and

then stop. But how many terms are enough? How close will the result be to the true answer? That is the

motivation for this module.

56.1 Error defined

Given a convergent series

s =

∞∑
n=0

an.

Recall that the partial sum sk is the sum of the terms up to and including ak , i.e.,

sk = a0 + a1 + a2 + . . .+ ak

=

k∑
n=0

an.

Then the error Ek is the difference between sk and the true value s, i.e.,

Ek = s − sk

=

∞∑
n=0

an −
k∑
n=0

an

= ak+1 + ak+2 + ak+3 + . . .

=

∞∑
n=k+1

an.

In other words, the error is the sum of all the terms from the infinite series which were not included in the

partial sum.

56.2 Alternating series error bound

For a decreasing, alternating series, it is easy to get a bound on the error Ek :

|Ek | ≤ |ak+1|.
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In other words, the error is bounded by the next term in the series.

Note

If the series is strictly decreasing (as is usually the case), then the above inequality is strict.

To see why the alternating bound holds, note that each successive term in the series overshoots the true value

of the series. In other words, if S is the true value of the series,

a0 > S

a0 − a1 < S

a0 − a1 + a2 > S.

The above figure shows that if one stops at a0 − a1 + a2 − a3, then the error E3 must be less than a4.

Example

What is the minimum number of terms of the series

∞∑
n=1

(−1)n+1
1

n2

one needs to be sure to be within 1
100 of the true sum?

The goal is to find k so that |Ek | ≤ 1
100 . Since |Ek | ≤ |ak+1|, the question becomes for which value of k is

|ak+1| ≤ 1
100? If k = 9, then |ak+1| = 1

100 , and so by the alternating series error bound, |E9| ≤ 1
100 . Thus 9

terms are required to be within 1
100 of the true value of the series.

56.3 Integral test for error bounds

Another useful method to estimate the error of approximating a series is a corollary of the integral test. Recall

that if a series
∑
f (n) has terms which are positive and decreasing, then∫ ∞

m+1

f (x)dx <

∞∑
n=m+1

f (n) <

∫ ∞
m

f (x)dx.
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But notice that the middle quantity is precisely Em. So∫ ∞
m+1

f (x)dx < Em <

∫ ∞
m

f (x)dx.

This bound is nice because it gives an upper bound and a lower bound for the error.

Example

How many terms of the series
∞∑
n=1

1

n3

must one add up so that the Integral bound guarantees the approximation is within 1
100 of the true answer?

(See Answer 1)

56.4 Taylor approximations

Recall that the Taylor series for a function f about 0 is given by

f (x) =

∞∑
n=0

f (n)(0)

n!
xn

= f (0) + f ′(0)x +
f ′′(0)

2!
x2 + · · · .

The Taylor polynomial of degree N is the approximating polynomial which results from truncating the above

infinite series after the degree N term:

f (x) ≈
N∑
n=0

f (n)(0)

n!
xn

= f (0) + f ′(0)x +
f ′′(0)

2!
x2 + · · ·+

f (N)(0)

N!
xN .

This is a good approximation for f (x) when x is close to 0. How good an approximation is it? That is the

purpose of the last error estimate for this module.

As in previous modules, let EN(x) be the error between the Taylor polynomial and the true value of the function,

i.e.,

f (x) =

N∑
n=0

f (n)(0)

n!
xn + EN(x).

Notice that the error EN(x) is a function of x . In general, the further away x is from 0, the bigger the error

will be.

A first, weak bound for the error is given by

EN(x) ≤ CxN+1

for some constant C and x sufficiently close to 0. In other words, EN(x) is O(xN+1). A stronger bound is given

in the next section.
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Taylor remainder theorem

The following gives the precise error from truncating a Taylor series:

Taylor remainder theorem

The error EN(x) is given precisely by

EN(x) =
f (N+1)(t)

(N + 1)!
xN+1,

for some t between 0 and x , inclusive. So if x < 0, then x ≤ t ≤ 0, and if x > 0, then 0 ≤ t ≤ x .

Example

Consider the case when N = 0. The Taylor remainder theorem says that

f (x) = f (0) + f ′(t)x,

for some t between 0 and x . Solving for f ′(t) gives

f ′(t) =
f (x)− f (0)

x − 0
,

for some 0 < t < x if x > 0 and x < t < 0 if x < 0, which is precisely the statement of the Mean value

theorem. Therefore, one can think of the Taylor remainder theorem as a generalization of the Mean value

theorem.

Taylor error bound

As it is stated above, the Taylor remainder theorem is not particularly useful for actually finding the error,

because there is no way to actually find the t for which the equation holds. There is a slightly different form

which gives a bound on the error:

Taylor error bound

|EN(x)| ≤
C

(N + 1)!
|x |N+1,

where C is the maximum value of |f (N+1)(t)| over all t between 0 and x , inclusive.

Example

Estimate
√
e using

e1/2 ≈ 1 +
1

2
+

(1/2)2

2!
+

(1/2)3

3!
≈ 1.64,

and bound the error. (See Answer 2)
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56.5 Answers to Selected Exercises

1. If one adds up the first m terms, then by the integral bound, the error Em satisfies

Em <

∫ ∞
m

dx

x3

=
x−2

−2

∣∣∣∣∞
m

=
1

2m2
.

Setting 1
2m2 ≤

1
100 gives that m2 ≥ 50, so m ≥ 8. Thus, m = 8 is the minimum number of terms required

so that the Integral bound guarantees we are within 1
100 of the true answer.

Note

If you actually compute the partial sums using a calculator, you will find that 7 terms actually suffice. But

remember, we want the guarantee of the integral test, which only ensures that 1
128 < E7 <

1
98 , despite

the fact that in reality, E7 ≈ .009 < .01.

(Return)

2. The function is f (x) = ex , and the approximating polynomial used here is

ex ≈ 1 + x +
x2

2!
+
x3

3!
.

Then according to the above bound,

|E3(x)| ≤
C

4!
|x |4,

where C is the maximum of f (4)(t) = et for 0 ≤ t ≤ x . Since et is an increasing function, C = ex . Thus,

|E3(x)| ≤
ex

4!
x4.

Thus,

|E3(1/2)| ≤
e1/2

4!
(1/2)4 <

1

100
.

(Return)
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57 Calculus
In this course, we’ve learned skills in five key areas:

• Limits

• Differentiation

• Integration

• ODEs

• Series

Some of the things we can do are pretty impressive. However, there are many simple-seeming questions in

single-variable calculus that show us just how much we have left to learn.

57.1 PROBLEM 1

Why is the standard Gaussian a probability density function? In other words, why is∫ ∞
−∞

e−
x2

2 dx =
√

2π (1)

Why is it that with all our methods, we cannot evaluate this integral easily? Let’s try...

MORAL

This integral is easy with a little bit of multivariable calculus.

57.2 PROBLEM 2

Recall that we began this class with the definition of the exponential function ex and then, to obtain series for

sin and cos, we invoked Euler’s formula:

e it = cos t + i sin t

Why is this true? We certainly could substitute in our favorite Taylor series and verify that it is true, but

wouldn’t it be better to have a principled reason for why this is so? Let’s try...
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Let z = e it . Then z ′ = iz by that very familiar differential equation. Now, name the real and imaginary parts

of z by x and y respectively. Then z = x + iy , and z ′ = x ′ + iy ′. On the other hand, multiplying by i gives

z = x + iy

iz = ix + i2y = −y + ix .

Therefore, z ′ = iz becomes x ′+ iy ′ = −y + ix , and so by equating the real and imaginary parts in this equation

we get the system

x ′ = −y
y ′ = x

This is a system of differential equations which is easy to solve with some multivariable calculus, but for now

we are stuck. We can observe that x = cos t and y = sin t provides a solution, but we cannot say it is the only

solution without more tools.

MORAL

This system of ODEs is easy to solve with a little bit of multivariable calculus.

57.3 PROBLEM 3

On several occasions, we have referenced the famous series

∞∑
n=1

1

n2
=
π2

6

Why is this true? Could we use discrete calculus to derive it? I don’t think so...but here is proof using Taylor

series and integration.

Let u = arcsin(x). Consider the integral ∫ π/2

u=0

udu =
u2

2

∣∣∣∣π/2
u=0

=
π2

8
.

On the other hand, the integral in terms of x is∫ 1
x=0

arcsin(x)
1√

1− x2
dx

One can show that the Taylor series for arcsin(x) is given by

arcsin(x) = x +

∞∑
n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)

x2n+1

2n + 1
.

Plugging this in gives

π2

8
=

∫ 1
x=0

(
x +

∞∑
n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)

x2n+1

2n + 1

)
1√

1− x2
dx.
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One can find with careful integration by parts and induction that the inner integral evaluates to∫ 1
x=0

x2n+1√
1− x2

dx =
2 · 4 · 6 · · · (2n)

3 · 5 · 7 · · · (2n + 1)
,

(See Details 1)

Plugging this in cancels almost everything, leaving

π2

8
=

∞∑
n=1

1

(2n − 1)2
.

This is the sum of the odd reciprocals squared. Giving names to these various sums:

S =

∞∑
n=1

1

n2

So =

∞∑
n=1

1

(2n − 1)2

Se =

∞∑
n=1

1

(2n)2
.

Note that S = So + Se (So has the odd terms, and Se has the even terms). Further,

Se =

∞∑
n=1

1

(2n)2

=
1

4

∞∑
n=1

1

n2

=
1

4
S.

Substituting, we find that S = So + S/4, and so S = 4
3So . Since So = π2

8 as shown above, it follows that

S = π2

6 , as desired.

MORAL

This series is easy to evaluate with a little bit of multivariable calculus. Well, actually, no: it’s not easy, but it

is a bit simpler. In the end, some math problems are hard.

57.4 Answers to Selected Exercises

1. If we encountered this integral earlier in the course, we would hit it with a trigonometric substitution

x = sin θ (and dx = cos θ dθ, which changes the integral to∫ π/2

θ=0

sin2n+1 θ dθ.

This integral can be found inductively using the following reduction formula:∫
sinn θ dθ =

− sinn−1 θ cos θ

n
+
n − 1

n

∫
sinn−2 θ dθ.

(See Proof of Reduction Formula 2)
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2. Use integration by parts. Let u = sinn−1 θ and dv = sin θ dθ. Then du = (n − 1) sinn−2 θ cos θ dθ and

v = − cos θ. It follows that∫
sinn θ dθ = − sinn−1 θ cos θ + (n − 1)

∫
sinn−2 θ cos2 θ dθ

= − sinn−1 θ cos θ + (n − 1)

∫
sinn−2 θ(1− sin2 θ) dθ

= − sinn−1 θ cos θ + (n − 1)

∫
sinn−2 θ dθ − (n − 1)

∫
sinn θ dθ.

Now, solving for the integral
∫

sinn θ dθ (by adding (n− 1)
∫

sinn θ dθ to both sides of the above equation

and dividing by n) gives the desired result.

Applying the reduction formula in the situation at hand gives∫ π/2

0

sin2n+1 θ dθ =
− sin2n θ cos θ

2n + 1

∣∣∣∣π/2
0

+
2n

2n + 1

∫ π/2

0

sin2n−1 θ dθ

=
2n

2n + 1

∫ π/2

0

sin2n−1 θ dθ,

since the first quantity evaluates to 0. Now, induction gives the result.

(Return)

(Return)
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58 Foreshadowing

In this module we give a hint at what is to come in multivariable calculus.

58.1 Functions

As in single variable calculus, multivariable calculus is primarily a study of functions. But instead of functions

with one input and one output, multivariable calculus looks at functions with multiple inputs and outputs. The

notation for a function f with n real inputs and m real outputs is

f : Rn → Rm.

58.2 Matrices

When dealing with multiple inputs and multiple outputs, it becomes necessary to keep track of several pieces

of information when dealing with, say, the derivative. The data structure which makes this possible is a matrix,

which is an array of numbers arranged in rows and columns. For example, a 4 × 3 matrix has 4 rows and 3

columns, and might look like 
3 1 4

1 5 9

2 6 5

3 5 8

 .
A square matrix has the same number of rows and columns. A particular square matrix with a special name is

the identity matrix, which has 1’s on the main diagonal and 0’s everywhere else. For example, the 3×3 identity

matrix is given by

I =

 1 0 0

0 1 0

0 0 1

 .
Matrix algebra

One feature of matrices is that they can be multiplied, by a slightly unintuitive process. Consider the product

of a 2× 3 matrix with a 3× 3 matrix:[
1 −1 4

2 5 7

]
·

 2 1 0

4 4 3

−2 7 1

 =

[
−10 25 1

10 71 22

]
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To see where these numbers come from, arrange the matrices a little differently:

(Matrix Multiplication Animated GIF)

To get an entry in the resulting matrix (bottom right), take the corresponding row from the matrix to the left

and the corresponding column from the matrix above, multiply their corresponding entries together, and add.

The above example shows the calculation for two entries in the result.

Note that for this multiplication to be defined, the number of columns in the first matrix must match the

number of rows in the second matrix (otherwise there would not be the correct number of entries to multiply

together and add).

There are some nice features of matrix multiplication, and some features which are a little bit different than

regular multiplication:

• The identity matrix can be thought of as the matrix equivalent of 1, since multiplying by the identity (of

the appropriate size) gives back the same matrix with which we began.

• Matrix multiplication is associative (i.e. (AB)C = A(BC) for appropriately sized matrices A,B, C), but

it is not commutative (i.e. AB 6= BA) in general. Indeed, both orders of multiplication is only defined if

A and B are square matrices of the same size.

• There is a matrix version of
√
−1 (again thinking of I as 1). Note that[

0 −1

1 0

]
·
[

0 −1

1 0

]
=

[
−1 0

0 −1

]
= −I.

• It is possible that the product of two non-zero matrices to give the zero matrix:[
0 1

0 0

]
·
[

0 1

0 0

]
=

[
0 0

0 0

]

58.3 Vectors

Another data structure of importance is a vector, which can be thought of as a single row or single column

matrix (depending on context). A useful way to visualize a vector is as a difference between two points, or an

arrow from one point to another. So a vector can be thought of as a line segment with both a magnitude (the

distance between the two points) and a direction (which way the arrow points).

Vectors can be added by visualizing placing the tail of one vector at the head of the other. Vectors can also be

multiplied by a matrix to give another vector (the multiplication is just matrix multiplication, again by thinking

of the vector as a matrix with just a single column).
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