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Homological Algebra and Data

Robert Ghrist

Abstract. These lectures are a quick primer on the basics of applied algebraic
topology with emphasis on applications to data. In particular, the perspectives of
(elementary) homological algebra, in the form of complexes and co/homological
invariants are sketched. Beginning with simplicial and cell complexes as a means
of enriching graphs to higher-order structures, we define simple algebraic topo-
logical invariants, such as Euler characteristic. By lifting from complexes of sim-
plices to algebraic complexes of vector spaces, we pass to homology as a topolog-
ical compression scheme. Iterating this process of expanding to sequences and
compressing via homological algebra, we define persistent homology and related
theories, ending with a simple approach to cellular sheaves and their cohomology.
Throughout, an emphasis is placed on expressing homological-algebraic tools as
the natural evolution of linear algebra. Category-theoretic language (though more
natural and expressive) is deemphasized, for the sake of access. Along the way,
sample applications of these techniques are sketched, in domains ranging from
neuroscience to sensing, image analysis, robotics, and computation.
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Introduction & Motivation

These lectures are meant as an introduction to the methods and perspectives of
Applied Topology for students and researchers in areas including but not limited
to data science, neuroscience, complex systems, and statistics. Though the tools
are mathematical in nature, this article will treat the formalities with a light touch
and heavy references, in order to make the subject more accessible to practitioners.
See the concluding section for a roadmap for finding more details. The material
is pitched to a level that a beginning graduate student in any of the applied
mathematical sciences will have no difficulty.

What is Homology?

Homology is an algebraic compression scheme that excises all but the essen-
tial topological features from a particular class of data structures arising naturally
from topological spaces. Homology therefore pairs with topology. Topology is
the mathematics of abstract space and transformations between them. The notion
of a space, X, requires only a set together with a notion of nearness, expressed as
a system of subsets comprising the “open” neighborhoods satisfying certain con-
sistency conditions. Metrics are permissible but not required. So many familiar
notions in applied mathematics – networks, graphs, data sets, signals, imagery,
and more – are interpretable as topological spaces, often with useful auxiliary
structures. Furthermore, manipulations of such objects, whether as comparison,
inference, or metadata, are expressible in the language of mappings, or contin-
uous relationships between spaces. Topology concerns the fundamental notions
of equivalence up to the loose nearness of what makes a space. Thus, connectiv-
ity and holes are significant; bends and corners less so. Topological invariants
of spaces and mappings between them record the essential qualitative features,
insensitive to coordinate changes and deformations.

Homology is the simplest, general, computable invariant of topological data.
In its most primal manifestation, the homology of a space X returns a sequence
of vector spaces H•(X), the dimensions of which count various types of linearly
independent holes in X. Homology is inherently linear-algebraic, but transcends
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linear algebra, serving as the inspiration for homological algebra. It is this algebraic
engine that powers the subject.

When is Homology Useful?

Homological methods are, almost by definition, robust, relying on neither pre-
cise coordinates nor careful estimates for efficacy. As such, they are most useful in
settings where geometric precision fails. With great robustness comes both great
flexibility and great weakness. Topological data analysis is more fundamental
than revolutionary: such methods are not intended to supplant analytic, proba-
bilistic, or spectral techniques. They can however reveal a deeper basis for why
some data sets and systems behave the way they do. It is unwise to wield topo-
logical techniques in isolation, assuming that the weapons of unfamiliar “higher”
mathematics are clad in incorruptible silver.

Scheme

There is far too much material in the subject of algebraic topology to be sur-
veyed here. Existing applications alone span an enormous range of principles and
techniques, and the subject of applications of homology and homological algebra
is in its infancy still. As such, these notes are selective to a degree that suggests
caprice. For deeper coverage of the areas touched on here, complete with illustra-
tions, see [51]. For alternate ranges and perspectives, there are now a number of
excellent sources, including [40, 62, 76]. These notes will deemphasize formalities
and ultimate formulations, focusing instead on principles, with examples and ex-
ercises. The reader should not infer that the theorems or theoretic minutiae are
anything less than critical in practice.

These notes err or the side of simplicity. The many included exercises are
not of the typical lemma-lemma-theorem form appropriate for a mathematics
course; rather, they are meant to ground the student in examples. There is an
additional layer of unstated problems for the interested reader: these notes are
devoid of figures. The student apt with a pen should endeavor to create cartoons
to accompany the various definitions and examples presented here, with the aim
of minimality and clarity of encapsulation. The author’s attempt at such can be
found in [51].

Lecture 1: Complexes & Homology

This lecture will introduce the initial objects and themes of applied algebraic
topology. There is little novel here: all definitions are standard and found in
standard texts. The quick skip over formalities, combined with a linear-algebraic
sensibility, allows for a rapid ascent to the interesting relationships to be found
in homology and homological algebra.
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Spaces

A space is a set X together with a compendium of all subsets in X deemed
“open,” which subcollection must of necessity satisfy a list of intuitively obvious
properties. The interested reader should consult any point-set topology book
(such as [70]) briefly or until interest wanes. All the familiar spaces of elementary
calculus – surfaces, level sets of functions, Euclidean spaces – are indeed topolog-
ical spaces and just the beginning of the interesting spaces studied in manifold
theory, algebraic geometry, and differential geometry. These tend to be frustrat-
ingly indiscrete. Applications involving computation prompt an emphasis on
those spaces that are easily digitized. Such are usually called complexes, often
with an adjectival prefix. Several are outlined below.

Simplicial Complexes Consider a set X of discrete objects. A k-simplex in X is
an unordered collection of k+ 1 distinct elements of X. Though the definition is
combinatorial, for X a set of points in a Euclidean space [viz. point-cloud data
set] one visualizes a simplex as the geometric convex hull of the k+ 1 points, a
“filled-in” clique: thus, 0-simplices are points, 1-simplices are edges, 2-simplices
are filled-in triangles, etc. A complex is a collection of multiple simplices.1 In
particular, a simplical complex on X is a collection of simplices in X that is downward
closed, in the sense that every subset of a simplex is also a simplex. One says that
X contains all its faces.

Exercise 1.1. Recall that a collection of random variables X = {Xi}
k
1 on a fixed

domain are statistically independent if their probability densities fXi are jointly
multiplicative (that is, the probability density fX of the combined random vari-
able (X1, . . . ,Xk) satisfies fX =

∏
i fXi ). Given a set of n random variables on

a fixed domain, explain how one can build a simplicial complex using statisti-
cal independence to define simplices. What is the maximal dimension of this
independence complex? What does the number of connected components of the
independence complex tell you? Is it possible to have all edges present and no
higher-dimensional faces?

Exercise 1.2. Not all interesting simplicial complexes are simple to visualize. Con-
sider a finite-dimensional real vector space V and consider V to be the vertex set
of a simplicial complex defined as follows: a k-simplex consists of k+ 1 linearly
independent members of V . Is the resulting independence complex finite? Finite-
dimensional? What does the dimension of this complex tell you?

Simplicial complexes as described are purely combinatorial objects, like the
graphs they subsume. As a graph, one topologizes a simplicial complex as a
quotient space built from topological simplices. The standard k-simplex is the

1The etymology of both words is salient.
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following incarnation of its Platonic ideal:

(1.3) ∆k =

{
x ∈ [0, 1]k+1 :

k∑
i=0

xi = 1

}
.

One topologizes an abstract simplicial complex into a space X by taking one
formal copy of ∆k for each k-simplex of X, then identifying these together along
faces inductively. Define the k-skeleton of X, k ∈N, to be the quotient space:

(1.4) X(k) =

(
X(k−1)

⋃ ∐
σ:dimσ=k

∆k

)/
∼ ,

where ∼ is the equivalence relation that identifies faces of ∆k with the correspond-
ing combinatorial faces of σ in X(j) for j < k.

Exercise 1.5. How many total k-simplices are there in the closed n-simplex for
k < n?

Vietoris-Rips Complexes A data set in the form of a finite metric space (X,d)
gives rise to a family of simplicial complexes in the following manner. The
Vietoris-Rips complex (or VR-complex) of (X,d) at scale ε > 0 is the simplicial
complex VRε(X) whose simplices are precisely those collections of points with
pairwise distance 6 ε. Otherwise said, one connects points that are sufficiently
close, filling in sufficiently small holes, with sufficiency specified by ε.

These VR complexes have been used as a way of associating a simplicial com-
plex to point cloud data sets. One obvious difficulty, however, lies in the choice
of ε: too small, and nothing is connected; too large, and everything is connected.
The question of which ε to use has no easy answer. However, the perspectives of
algebraic topology offer a modified question. How to integrate structures across all
ε values? This will be considered in Lecture Two of this series.

Flag/clique complexes The VR complex is a particular instance of the following
construct. Given a graph (network) X, the flag complex or clique complex of X is
the maximal simplicial complex X that has the graph as its 1-skeleton: X(1) = X.
What this means in practice is that whenever you “see” the skeletal frame of
a simplex in X, you fill it and all its faces in with simplices. Flag complexes are
advantageous as data structures for spaces, in that you do not need to input/store
all of the simplices in a simplicial complex: the 1-skeleton consisting of vertices
and edges suffices to define the rest of the complex.

Exercise 1.6. Consider a combinatorial simplicial complex X on a vertex set of
size n. As a function of this n, how difficult is it to store in memory enough
information about X to reconstruct the list of its simplices? (There are several
ways to approach this: see Exercise 1.5 for one approach.) Does this worst-case
complexity improve if you know that X is a flag complex?
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Nerve Complexes This is a particular example of a nerve complex associated to
a collection of subsets.

Let U = {Uα} be a collection of open subsets of a topological space X. The
nerve of U, N(U), is the simplicial complex defined by the intersection lattice of U.
The k-simplices of N(U) correspond to nonempty intersections of k+ 1 distinct
elements of U. Thus, vertices of the nerve correspond to elements of U; edges
correspond to pairs in U which intersect nontrivially. This definition respects
faces: the faces of a k-simplex are obtained by removing corresponding elements
of U, leaving the resulting intersection still nonempty.

Exercise 1.7. Compute all possible nerves of four bounded convex subsets in
the Euclidean plane. What is and is not possible? Now, repeat, but with two
nonconvex subsets of Euclidean R3.

Dowker Complexes There is a matrix version of the nerve construction that
is particularly relevant to applications, going back (at least) to the 1952 paper of
Dowker [39]. For simplicity, let X and Y be finite sets with R ⊂ X×Y representing
the ones in a binary matrix (also denoted R) whose columns are indexed by X
and whose rows are indexed by Y. The Dowker complex of R on X is the simplicial
complex on the vertex set X defined by the rows of the matrix R. That is, each
row of R determines a subset of X: use these to generate a simplex and all its
faces. Doing so for all the rows gives the Dowker complex on X. There is a dual
Dowker complex on Y whose simplices on the vertex set Y are determined by the
ones in columns of R.

Exercise 1.8. Compute the Dowker complex and the dual Dowker complex of the
following relation R:

(1.9) R =



1 0 0 0 1 1 0 0

0 1 1 0 0 0 1 0

0 1 0 0 1 1 0 1

1 0 1 0 1 0 0 1

1 0 1 0 0 1 1 0


.

Dowker complexes have been used in a variety of social science contexts (where
X and Y represent agents and attributes respectively) [7]. More recent applications
of these complexes have arisen in settings ranging from social networks [89] to
sensor networks [54]. The various flavors of witness complexes in the literature on
topological data analysis [37, 57] are special cases of Dowker complexes.

Cell Complexes There are other ways to build spaces out of simple pieces.
These, too, are called complexes, though not simplicial, as they are not necessarily
built from simplicies. They are best described as cell complexes, being built from
cells of various dimensions sporting a variety of possible auxiliary structures.
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A cubical complex is a cell complex built from cubes of various dimensions,
the formal definition mimicking Equation (1.4): see [51, 62]. These often arise as
the natural model for pixel or voxel data in imagery and time series. Cubical
complexes have found other uses in modelling spaces of phylogenetic trees [17,
77] and robot configuration spaces [1, 53, 55].

There are much more general cellular complexes built from simple pieces with
far less rigidity in the gluing maps. Perhaps the most general useful model of a
cell complex is the CW complex used frequently in algebraic topology. The idea
of a CW complex is this: one begins with a disjoint union of points X(0) as the
0-skeleton. One then inductively defines the n-skeleton of X, X(n) as the (n− 1)-
skeleton along with a collection of closed n-dimensional balls, Dn, each glued to
X(n−1) via attaching maps on the boundary spheres ∂Dn → X(n−1). In dimen-
sion one, [finite] CW complexes, simplicial complexes, and cubical complexes are
identical and equivalent to [finite] graphs.2 In higher dimensions, these types of
cell complexes diverge in expressivity and ease of use.

Spaces and Equivalence

Many of the spaces of interest in topological data analysis are finite metric
spaces [point clouds] and simplicial approximations and generalizations of these.
However, certain spaces familiar from basic calculus are relevant. We have already
referenced Dn, the closed unit n-dimensional ball in Euclidean Rn. Its boundary
defines the standard sphere Sn−1 of dimension n − 1. The 1-sphere S1 is also
the 1-torus, where, by n-torus is meant the [Cartesian] product Tn = (S1)n of
n circles. The 2-sphere S2 and 2-torus T2 are compact, orientable surfaces of
genus 0 and 1 respectively. For any genus g ∈ N, there is a compact orientable
surface Σg with that genus: for g > 1 these look like g 2-tori merged together so
as to have the appearance of having g holes. All orientable genus g surfaces are
“topologically equivalent”, though this is as yet imprecise.

One quickly runs into difficulty with descriptive language for spaces and
equivalences, whether via coordinates or visual features. Another language is
needed. Many of the core results of topology concern equivalence, detection, and
resolution: are two spaces or maps between spaces qualitatively the same? This
presumes a notion of equivalence, of which there are many. In what follows, map
always implies a continuous function between spaces.

Homeomorphism & Homotopy A homeomorphism is a map f : X → Y with
continuous inverse. This is the strongest form of topological equivalence, dis-
tinguishing spaces of different (finite) dimensions or different essential features
(e.g., genus of surfaces) and also distinguishing an open from a closed interval.
The more loose and useful equivalence is that generated by homotopy. A homo-
topy between maps, f0 ' f1 : X → Y is a continuous 1-parameter family of maps

2With the exception of loop edges, which are generally not under the aegis of a graph, but are
permissible in CW complexes.
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ft : X → Y. A homotopy equivalence is a map f : X → Y with a homotopy inverse,
g : Y → X satisfying f ◦ g ' IdY and g ◦ f ' IdX. One says that such an X and Y
are homotopic. This is the core equivalence relation among spaces in topology.

Exercise 1.10. A space is contractible if it is homotopic to a point. (1) Show explic-
itly that Dn is contractible. (2) Show that D3 with a point in the interior removed
is homotopic to S2. (3) Argue that the twice-punctured plane is homotopic to a
“figure-eight.” It’s not so easy to do this with explicit maps and coordinates, is it?

Many of the core results in topology are stated in the language of homotopy
(and are not true when homotopy is replaced with the more restrictive homeomor-
phism). For example:

Theorem 1.11. If U is a finite collection of open contractible subsets of X with all non-
empty intersections of subcollections of U contractible, then N(U) is homotopic to the
union ∪αUα.

Theorem 1.12. Given any binary relation R ⊂ X× Y, the Dowker and dual Dowker
complexes are homotopic.

Homotopy invariants are central both to topology and its applications to data
(noise perturbs spaces often in a non-homeomorphic but homotopic manner). In-
variants of finite simplicial and cell complexes invite a computational perspective,
since one has the hope of finite inputs and felicitous data structures.

Euler Characteristic The simplest nontrivial topological invariant of finite cell
complexes dates back to Euler. It is elementary, combinatorial, and sublime. The
Euler characteristic of a finite cell complex X is:

(1.13) χ(X) =
∑
σ

(−1)dimσ,

where the sum is over all cells σ of X.

Exercise 1.14. Compute explicitly the Euler characteristics of the following cell
complexes: (1) the decompositions of the 2-sphere, S2, defined by the boundaries
of the five regular Platonic solids; (2) the CW complex having one 0-cell and
one 2-cell disc whose boundary is attached directly to the 0-cell (“collapse the
boundary circle to a point”); and (3) the thickened 2-sphere S2 × [0, 1]. How did
you put a cell structure on this last 3-dimensional space?

Completion of this exercise suggests the following result:

Theorem 1.15. Euler characteristic is a homotopy invariant among finite cell complexes.

That this is so would seem to require a great deal of combinatorics to prove.
The modern proof transcends combinatorics, making the problem hopelessly un-
computable before pulling back to the finite world, as will be seen in Lecture
Three.
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Exercise 1.16. Prove that the Euler characteristic distinguishes [connected] trees
from [connected] graphs with cycles. What happens if the connectivity require-
ment is dropped?

Euler characteristic is a wonderfully useful invariant, with modern applica-
tions ranging from robotics [42, 47] and AI [68] to sensor networks [9–11] to
Gaussian random fields [4, 6]. In the end, however, it is a numerical invariant,
and has a limited resolution. The path to improving the resolution of this invari-
ant is to enrich the underlying algebra that the Eulerian ±1 obscures.

Lifting to Linear Algebra One of the core themes of this lecture series is the lift-
ing of cell complexes to algebraic complexes on which the tools of homological
algebra can be brought to bear. This is not a novel idea: most applied mathemati-
cians learn, e.g., to use the adjacency matrix of a graph as a means of harnessing
linear-algebraic ideas to understand networks. What is novel is the use of higher-
dimensional structure and the richer algebra this entails.

Homological algebra is often done with modules over a commutative ring. For
clarity of exposition, let us restrict to the nearly trivial setting of finite-dimensional
vector spaces over a field F, typically either R or, when orientations are bother-
some, F2, the binary field.

Given a cell complex, one lifts the topological cells to algebraic objects by using
them as bases for vector spaces. One remembers the dimensions of the cells by
using a sequence of vector spaces, with dimension as a grading that indexes the
vector spaces. Consider the following sequence C = (C•) of vector spaces, where
the grading is over N.

(1.17) · · · Ck Ck−1 · · · C1 C0 .

For a finite (and thus finite-dimensional) cell complex, the sequence becomes all
zeros eventually. Such a sequence does not obviously offer an algebraic advantage
over the original space; indeed, much of the information on how cells are glued
together has been lost. However, it is easy to “lift” the Euler characteristic to this
class of algebraic objects. For C a sequence of finite-dimensional vector spaces
with finitely many nonzero terms, define:

(1.18) χ(C) =
∑
k

(−1)kdimCk.

Chain Complexes Recall that basic linear algebra does not focus overmuch on
vector spaces and bases; it is in linear transformations that power resides. Aug-
menting a sequence of vector spaces with a matching sequence of linear transfor-
mations adds in the assembly instructions and permits a fuller algebraic repre-
sentation of a topological complex. Given a simplicial3 complex X, fix a field F

3Cell complexes in full generality can be used with more work put into the definitions of the linear
transformations: see [58].
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and let C = (Ck,∂k) denote the following sequence of F-vector spaces and linear
transformations.

(1.19) · · · // Ck
∂k
// Ck−1

∂k−1
// · · ·

∂2
// C1

∂1
// C0

∂0
// 0 .

Each Ck has as basis the k-simplices of X. Each ∂k restricted to a k-simplex
basis element sends it to a linear combination of those basis elements in Ck−1 de-
termined by the k+ 1 faces of the k-simplex. This is simplest in the case F = F2,
in which case orientations can be ignored; otherwise, one must affix an orienta-
tion to each simplex and proceed accordingly: see [51, 58] for details on how this
is performed.

The chain complex is the primal algebraic object in homological algebra. It
is rightly seen as the higher-dimensional analogue of a graph together with its
adjacency matrix.

Homology Homological algebra begins with the following suspiciously simple
statement about simplicial complexes.

Lemma 1.20. The boundary of a boundary is null:

(1.21) ∂2 = ∂k−1 ◦ ∂k = 0,

for all k.

Proof. For simplicity, consider the case of an abstract simplicial complex on a
vertex set V = {vi} with chain complex having F2 coefficients. The face map Di
acts on a simplex by removing the ith vertex vi from the simplex’s list, if present;
else, do nothing. The graded boundary operator ∂ : C• → C• is thus a formal sum
of face maps ∂ =

⊕
iDi. It suffices to show that ∂2 = 0 on each basis simplex σ.

Computing the composition in terms of face maps, one obtains:

(1.22) ∂2σ =
∑
i 6=j

DjDiσ.

Each (k− 2)-face of the k-simplex σ is represented exactly twice in the image of
DjDi over all i 6= j. Thanks to F2 coefficients, the sum over this pair is zero. �

Inspired by what happens with simplicial complexes, one defines an algebraic
complex to be any sequence C = (C•,∂) of vector spaces and linear transformations
with the property that ∂2 = 0. Going two steps along the sequence is the zero-
map.

Exercise 1.23. Show that for any algebraic complex C, im ∂k+1 is a subspace of
ker ∂k for all k.

The homology of an algebraic complex C, H•(C), is a complex of vector spaces
defined as follows. The k-cycles of C are elements of Ck with “zero boundary”,
denoted Zk = ker ∂k. The k-boundaries of C are elements of Ck that are the
boundary of something in Ck+1, denoted Bk = im ∂k+1. The homology of C is the
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complex H•(C) of quotient vector spaces Hk(C), for k ∈N, given by:

(1.24)

Hk(C) = Zk/Bk

= ker ∂k/ im ∂k+1

= cycles/ boundaries.

Homology inherits the grading of the complex C and has trivial (zero) linear
transformations connecting the individual vector spaces. Elements of H•(C) are
homology classes and are denoted [α] ∈ Hk, where α ∈ Zk is a k-cycle and [·]
denotes the equivalence class modulo elements of Bk.

Exercise 1.25. If C has boundary maps that are all zero, what can you say about
H•(C)? What if all the boundary maps (except at the ends) are isomorphisms
(injective and surjective)?

Homology of Simplicial Complexes For X a simplicial complex, the chain com-
plex of F2-vector spaces generated by simplices of X and the boundary attaching
maps is a particularly simple algebraic complex associated to X. The homology
of this complex is usually denoted H•(X) or perhaps H•(X; F2) when the binary
coefficients are to be emphasized.

Exercise 1.26. Show that if X is a connected simplicial complex, then H0(X) = F2.
Argue that dim H0(X) equals the number of connected components of X.

Exercise 1.27. Let X be a one-dimensional simplicial complex with five vertices
and eight edges that looks like

⊗
. Show that dim H1(X) = 4.

One of the important aspects of homology is that it allows one to speak of
cycles that are linearly independent. It is true that for a graph, dim H1 is the number
of independent cycles in the graph. One might have guessed that the number of
cycles in the previous exercise is five, not four; however, the fifth can be always
be expressed as a linear combination of the other four basis cycles.

Graphs have nearly trivial homology, since there are no simplices of higher
dimension. Still, one gets from graphs the [correct] intuition that H0 counts con-
nected components and H1 counts loops. Higher-dimensional homology mea-
sures higher-dimensional “holes” as detectable by cycles.

Exercise 1.28. Compute explicitly the F2-homology of the cell decompositions
of the 2-sphere, S2, defined by the boundaries of the five regular Platonic solids.
When doing so, recall that ∂2 takes the various types of 2-cells (triangles, squares,
pentagons) to the formal sum of their boundary edges, using addition with F2

coefficients.

These examples testify as to one of the most important features of homology.

Theorem 1.29. Homology is a homotopy invariant.
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As stated, the above theorem would seem to apply only to cell complexes.
However, as we will detail in Lecture Three, we can define homology for any
topological space independent of cell structure; to this, as well, the above theo-
rem applies. Thus, we can talk of the homology of a space independent of any
cell structure or concrete representation: homotopy type is all that matters. It
therefore makes sense to explore some basic examples. The following are the ho-
mologies of the n-dimensional sphere, Sn; the n-dimensional torus, Tn; and the
oriented surface Σg of genus g.

(1.30) dim Hk(S
n) =

{
1 k = n, 0

0 k 6= n, 0
,

(1.31) dim Hk(T
n) =

(
n

k

)
,

(1.32) dim Hk(Σg) =


0 k > 2

1 k = 2

2g k = 1

1 k = 0

.

Betti Numbers We see in the above examples that the dimensions of the homol-
ogy are the most notable features. In the history of algebraic topology, these
dimensions of the homology groups — called Betti numbers βk = dim Hk — were
the first invariants investigated. They are just the beginning of the many connec-
tions to other topological invariants. For example, we will explain the following
in Lecture Three:

Theorem 1.33. The Euler characteristic of a finite cell complex is the alternating sum of
its Betti numbers: χ(X) =

∑
k(−1)kβk.

For the moment, we will focus on applications of Betti numbers as a topological
statistic. In Lecture Two and following, however, we will go beyond Betti numbers
and consider the richer internal structure of homologies.

Application: Neuroscience

Each of these lectures ends with a sketch of some application(s): this first
sketch will focus on the use of Betti numbers. Perhaps the best-to-date exam-
ple of the use of homology in data analysis is the following recent work of
Giusti, Pastalkova, Curto, & Itskov [56] on network inference in neuroscience
using parametrized Betti numbers as a statistic.

Consider the challenge of inferring how a collection of neurons is wired to-
gether. Because of the structure of a neuron (in particular the length of the
axon), mere physical proximity does not characterize the wiring structure: neu-
rons which are far apart may in fact be “wired” together. Experimentalists can
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measure the responses of individual neurons and their firing sequences as a re-
sponse to stimuli. By comparing time-series data from neural probes, the corre-
lations of neuron activity can be estimated, resulting in a correlation matrix with
entries, say, between zero and one, referencing the estimated correlation between
neurons, with the diagonal, of course, consisting of ones. By thresholding the
correlation matrix at some value, one can estimate the “wiring network” of how
neurons are connected.

Unfortunately, things are more complicated than this simple scenario suggests.
First, again, the problem of which threshold to choose is present. Worse, the cor-
relation matrix is not the truth, but an experimentally measured estimation that
relies on how the experiment was performed (Where were the probes inserted?
How was the spike train data handled?). Repeating an experiment may lead to a
very different correlation matrix – a difference not accountable by a linear trans-
formation. This means, in particular, that methods based on spectral properties
such as PCA are misleading [56].

What content does the experimentally-measured correlation matrix hold? The
entries satisfy an order principle: if neurons A and B seem more correlated than
C and D, then, in truth, they are. In other words, repeated experiments lead
to a nonlinear, but order-preserving, homeomorphism of the correlation axis. It
is precisely this nonlinear coordinate-free nature of the problem that prompts a
topological approach.

The approach is this. Given a correlation matrix R, let 1 > ε > 0 be a decreas-
ing threshold parameter, and, for each ε, let Rε be the binary matrix generated
from R with ones wherever the correlation exceeds ε. Let Xε be the Dowker com-
plex of Rε (or dual; the same, by symmetry). Then consider the kth Betti number
distribution βk : [1, 0] → N. These distributions are unique under change of cor-
relation axis coordinates up to order-preserving homeomorphisms of the domain.

What do these distributions look like? For ε → 1, the complex is an isolated
set of points, and for ε → 0 it is one large connected simplex: all the interesting
homology lies in the middle. It is known that for such an increasing sequence
of simplicial complexes, the Betti distributions βk for k > 0 are unimodal. Fur-
thermore, it is known that homological peaks are ordered by dimension [5]: the
peak ε value for β1 precedes that of β2, etc. Thus, what is readily available as
a signature for the network is the ordering of the heights of the peaks of the βk
distributions.

The surprise is that one can distinguish between networks that are wired ran-
domly versus those that are wired geometrically. This is motivated by the neuro-
science applications, since it has been known since the Nobel prize-winning work
of O’Keefe et al. that certain neurons in the visual cortex of rats act as place cells,
encoding the geometry of a learned domain (e.g., a maze) by how the neurons
are wired [74], in manner not unlike that of a nerve complex [35]. Other neural
networks are known to be wired together randomly, such as the olfactory system



14 Homological Algebra and Data

of a fly [29]. Giusti et al., relying on theorems about Betti number distributions
for random geometric complexes by Kahle [63], show that one can differentiate
between geometrically-wired and randomly wired networks by looking at the
peak signatures of β1, β2, and β3 and whether the peaks increase [random] or
decrease [geometric]. Follow-on work gives novel signature types [87]. The use
of these methods is revolutionary, since actual physical experiments to rigorously
determine neuron wiring are prohibitively difficult and expensive, whereas com-
puting homology is, in principle, simple. Lecture Three will explore this issue of
computation more.

Lecture 2: Persistence

We have covered the basic definitions of simplicial and algebraic complexes
and their homological invariants. Our goal is to pass from the mechanics of
invariants to the principles that animate the subject, culminating in a deeper un-
derstanding of how data can be qualitatively compressed and analyzed. In this
lecture, we will begin that process, using the following principles as a guide:

(1) A simplicial [or cell] complex is the right type of discrete data structure
for capturing the significant features of a space.

(2) A chain complex is a linear-algebraic representation of this data structure
– an algebraic set of assembly instructions.

(3) To prove theorems about how cell complexes behave under deformation,
study instead deformations of chain complexes.

(4) Homology is the optimal compression of a chain complex down to its
qualitative features.

Towards Functoriality

Our chief end is this: homology is functorial. This means that one can talk
not only about homology of a complex, but also of the homology of a map be-
tween complexes. To study continuous maps between spaces algebraically, one
translates the concept to chain complexes. Assume that X and Y are simplicial
complexes and f : X → Y is a simplicial map – a continuous map taking simplices
to simplices.4 This does not imply that the simplices map homeomorphically to
simplices of the same dimension.

In the same manner that X and Y lift to algebraic chain complexes C•(X) and
C•(Y), one lifts f to a graded sequence of linear transformations f• : C•(X) →
C•(Y), generated by basis n-simplices of X being sent to basis n-simplices of Y,
where, if an n-simplex of X is sent by f to a simplex of dimension less than n,
then the algebraic effect is to send the basis chain in Cn(X) to 0 ∈ Cn(Y). The
continuity of the map f induces a chain map f• that fits together with the boundary
maps of C•(X) and C•(Y) to form the following diagram of vector spaces and

4For cell complexes, one makes the obvious adjustments.
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linear transformations:

(2.1)

· · · // Cn+1(X)
∂
//

f•
��

Cn(X)
∂
//

f•
��

Cn−1(X)
∂

//

f•
��

· · ·

· · · // Cn+1(Y)
∂
// Cn(Y)

∂
// Cn−1(Y)

∂
// · · ·

.

Commutative Diagrams Equation (2.1) is important – it is our first example of
what is known as a commutative diagram. These are the gears for algebraic engines
of inference. In this example, commutativity means precisely that the chain maps
respect the boundary operation, f•∂ = ∂f•. This is what continuity means for linear
transformations of complexes. There is no need for simplices or cells to be explicit.
One defines a chain map to be any sequence of linear transformations f• : C → C ′

on algebraic complexes making the diagram commutative.

Exercise 2.2. Show that any chain map f• : C → C ′ takes cycles to cycles and
boundaries to boundaries.

Induced Homomorphisms Because of this commutativity, a chain map f• acts
not only on chains but on cycles and boundaries as well. This makes well-defined
the induced homomorphism H(f) : H•(C) → H•(C ′) on homology. For α a cycle in
C, recall that its homology class is denoted [α]. One may thus define H(f)[α] =
[f•α] = [f ◦ α]. This is well-defined: if [α] = [α ′], then, as chains, α ′ = α+ ∂β for
some β, and,

(2.3) f•α
′ = f ◦α ′ = f ◦ (α+ ∂β) = f ◦α+ f ◦ ∂β = f•α+ ∂(f•β),

so that H(f)[α ′] = [f•α ′] = [f•α] = H(f)[α] in H•(C ′).
The term homomorphism is used to accustom the reader to standard terminology.

Of course, in the present context, an induced homomorphism is simply a graded
linear transformation on homology induced by a chain map.

Exercise 2.4. Consider the disc in R2 of radius π punctured at the integer points
along the x and y axes. Although this space is not a cell complex, let us assume
that its homology is well-defined and is “the obvious thing” for H1, defined by
the number of punctures. What are the induced homomorphisms on H1 of the
continuous maps given by (1) rotation by π/2 counterclockwise; (2) the folding
map x 7→ |x|; (3) flipping along the y axis?

Functoriality Homology is functorial, meaning that the induced homomorphisms
on homology are an algebraic reflection of the properties of continuous maps be-
tween spaces. The following are simple properties of induced homomorphisms,
easily shown from the definitions above:

• Given a chain map f• : C → C ′, H(f) : H•(C) → H•(C ′) is a (graded) se-
quence of linear transformations.
• The identity transformation Id : C → C induces the identity isomorphism

Id : H•(C)→ H•(C).
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• Given f• : C→ C ′ and g• : C ′ → C ′′, H(g ◦ f) = H(g) ◦H(f).
There is hardly a more important feature of homology than this functoriality.

Exercise 2.5. Show using functoriality that homeomorphisms between spaces in-
duce isomorphisms on homologies.

Exercise 2.6. Can you find explicit counterexamples to the following statements
about maps f between simplicial complexes and their induced homomorphisms
H(f) (on some grading for homology)?

(1) If f is surjective then H(f) is surjective.
(2) If f is injective then H(f) is injective.
(3) If f is not surjective then H(f) is not surjective.
(4) f is not injective then H(f) is not injective.
(5) f is not bijective then H(f) is not bijective.

Functorial Inference It is sometimes the case that what is desired is knowledge
of the qualitative features [homology] of an important but unobservable space X;
what is observed is an approximation Y to X, of uncertain homological fidelity.
One such observation is unhelpful. Two or more homological samplings may
lead to increased confidence; however, functoriality can relate observations to
truth. Suppose the observed data comprises the homology of a pair of spaces Y1,
Y2, which are related by a map f : Y1 → Y2 that factors through a map to X, so that
f = f2 ◦ f1 with f1 : Y1 → X and f2 : X → Y2. If the induced homomorphism H(f)

is known, then, although H•(X) is hidden from view, inferences can be made.

(2.7)
H•Y1

H(f)
//

H(f1)
%%

H•Y2

H•X
H(f2)

99
.

Exercise 2.8. In the above scenario, what can you conclude about H•(X) if H(f) is
an isomorphism? If it is merely injective? Surjective?

The problem of measuring topological features of experimental data by means
of sensing is particularly vulnerable to threshold effects. Consider, e.g., an open
tank of fluid whose surface waves are experimentally measured and imaged. Per-
haps the region of interest is the portion of the fluid surface above the ambient
height h = 0; the topology of the set A = {h > 0} must be discerned, but can only
be approximated by imprecise pixellated images of {h & 0}. One can choose a
measurable threshold above and below the zero value to get just such a situation
as outlined above. Similar scenarios arise in MRI data, where the structure of a
tissue of interest can be imaged as a pair of pixellated approximations, known to
over- and under-approximate the truth.

Sequences

Induced homomorphisms in homology are key, as central to homology as the
role of linear transformations are in linear algebra. In these lectures, we have seen
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how, though linear transformations between vector spaces are important, what a
great advantage there is in the chaining of linear transformations into sequences
and complexes. The advent of induced homomorphisms should prompt the same
desire, to chain into sequences, analyze, classify, and infer. This is the plan for
the remainder of this lecture as we outline the general notions of persistence,
persistent homology, and topological data analysis.

Consider a sequence of inclusions of subcomplexes ι : Xk ⊂ Xk+1 of a simpli-
cial complex X for 1 6 k 6 N. These can be arranged into a sequence of spaces
with inclusion maps connecting them like so:

(2.9) ∅ = X0
ι−→ X1

ι−→ · · · ι−→ XN−1
ι−→ XN

ι−→ X.

Sequences of spaces are very natural. One motivation comes from a sequence
of Vietoris-Rips complexes of a set of data points with an increasing sequence of
radii (εi)Ni=1.

Exercise 2.10. At the end of Lecture 1, we considered a correlation matrix R on
a set V of variables, where correlations are measured from 0 to 1 and used this
matrix to look at a sequence of Betti numbers. Explain how to rephrase this as
a sequence of homologies with maps (assuming some discretization along the
correlation axis). What maps induce the homomorphisms on homologies? What
do the homologies look like for very large or very small values of the correlation
parameter?

A topological sequence of spaces is converted to an algebraic sequence by
passing to homology and using induced homomorphisms:

(2.11) H•(X0)
H(ι)−→ H•(X1)

H(ι)−→ · · · H(ι)−→ H•(XN−1)
H(ι)−→ H•(XN)

H(ι)−→ H•(X).

The individual induced homomorphisms on homology encode local topological
changes in the Xi; thanks to functoriality, the sequence encodes the global changes.

Exercise 2.12. Consider a collection of 12 equally-spaced points on a circle —
think of tick-marks on a clock. Remove from this all the points corresponding
to the prime numbers (2, 3, 5, 7, 11). Use the remaining points on the circle as
the basis of a sequence of Vietoris-Rips [VR] complexes based on an increasing
sequence {εi} of distances starting with ε0 = 0. Without worrying about the
actual values of the εi, describe what happens to the sequence of VR complexes.
What do you observe? Does H0 ever increase? Decrease? What about H1?

What one observes from this example is the evolution of homological features
over a sequence: homology classes are born, can merge, split, die, or persist.
This evolutionary process as written in the language of sequences is the algebraic
means of encoding notions of geometry, significance, and noise.

Persistence Let us formalize some of what we have observed. Consider a se-
quence of spaces (Xi) and continuous transformations fi : Xi → Xi+1, without
requiring subcomplexes and inclusions. We again have a sequence of homologies
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with induced homomorphisms. A homology class in H•(Xi) is said to persist if its
image in H•(Xi+1) is also nonzero; otherwise it is said to die. A homology class
in H•(Xj) is said to be born when it is not in the image of H•(Xj−1).

One may proceed with this line of argument, at the expense of some sloppiness
of language. Does every homology class have an unambiguous birth and death?
Can we describe cycles this way, or do we need to work with classes of cycles
modulo boundaries? For the sake of precision and clarity, it is best to follow the
pattern of these lectures and pass to the context of linear algebra and sequences.

Consider a sequence V• of finite-dimensional vector spaces, graded over the
integers Z, and stitched together with linear transformations like so:

(2.13) V• = · · · −→ Vi−1 −→ Vi −→ Vi+1 −→ · · · .

These sequences are more general than algebraic complexes, which must satisfy the
restriction of composing two incident linear transformations yielding zero. Two
such sequences V• and V ′• are said to be isomorphic if there are isomorphisms
Vk ∼= V ′k which commute with the linear transformations in V• and V ′• as in
Equation (2.1). The simplest such sequence is an interval indecomposable of the
form

(2.14) I• = · · · −→ 0 −→ 0 −→ F
Id−→ F

Id−→ · · · Id−→ F −→ 0 −→ 0 −→ · · · ,

where the length of the interval equals the number of Id maps, so that an interval
of length zero consists of 0 → F → 0 alone. Infinite or bi-infinite intervals are
also included as indecomposables.

Representation Theory A very slight amount of representation theory is all that
is required to convert a sequence of homologies into a useful data structure for
measuring persistence. Consider the following operation: sequences can be for-
mally added by taking the direct sum, ⊕, term-by-term and map-by-map. The
interval indecomposables are precisely indecomposable with respect to ⊕ and can-
not be expressed as a sum of simpler sequences, even up to isomorphism. The
following theorem, though simple, is suitable for our needs.

Theorem 2.15 (Structure Theorem for Sequences). Any sequence of finite-dimensional
vector spaces and linear transformations decomposes as a direct sum of interval indecom-
posables, unique up to reordering.

What does this mean? It’s best to begin with the basics of linear algebra, and
then see how that extends to homology.

Exercise 2.16. Any linear transformation Rn
A−→ Rm extends to a biinfinite se-

quence with all but two terms zero. How many different isomorphism classes of
decompositions into interval indecomposables are there? What types of intervals
are present? Can you interpret the numbers of the various types of intervals?
What well-known theorem from elementary linear algebra have you recovered?
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Barcodes. When we use field coefficients, applying the Structure Theorem to a
sequence of homologies gives an immediate clarification of how homology classes
evolve. Homology classes correspond to interval indecomposables, and are born,
persist, then die at particular (if perhaps infinite) parameter values. This decom-
position also impacts how we illustrate evolving homology classes. By drawing
pictures of the interval indecomposables over the [discretized] parameter line as
horizontal bars, we obtain a pictograph that is called a homology barcode.

Exercise 2.17. Consider a simple sequence of four vector spaces, each of dimen-
sion three. Describe and/or draw pictures of all possible barcodes arising from
such a sequence. Up to isomorphism, how many such barcodes are there?

The phenomena of homology class birth, persistence, and death corresponds
precisely to the beginning, middle, and end of an interval indecomposable. The
barcode is usually presented with horizontal intervals over the parameter line
corresponding to interval indecomposables. Note that barcodes, like the homol-
ogy they illustrate, are graded. There is an Hk-barcode for each k > 0. Since,
from the Structure Theorem, the order does not matter, one typically orders the
bars in terms of birth time (other orderings are possible).

The barcode provides a simple descriptor for topological significance: the
shorter an interval, the more ephemeral the hole; long bars indicate robust topo-
logical features with respect to the parameter. This is salient in the context of
point clouds Q and Vietoris-Rips complexes VRε(Q) using an increasing sequence
{εi} as parameter. For ε too small or too large, the homology of VRε(Q) is unhelp-
ful. Instead of trying to choose an optimal ε, choose them all: the barcode reveals
significant features.

Exercise 2.18. Persistent homology is useful and powerful in topological data
analysis, but sometimes one can get lost in the equivalence relation that comprises
homology classes. Often, in applications, one cares less about the homology
and more about a particular cycle (whose homology class may be too loose to
have meaning within one’s data). Given a sequence of chain complexes and
chain maps, what can be said about persistent cycles and persistent boundaries? Are
these well-defined? Do they have barcodes? How would such structures relate to
persistent homology barcodes?

Persistent Homology Let us summarize what we have covered with slightly
more formal terminology. A persistence complex is a sequence of chain complexes
P = (Ci), together with chain maps x : Ci −→ Ci+1. For notational simplicity, the
index subscripts on the chain maps x are suppressed. Note that each Ci = (C•,i,∂)
is itself a complex: we have a sequence of sequences. The persistent homology of
a persistence complex P is not a simple homology theory, but rather a homology
associated to closed intervals in the “parameter domain”. Over the interval [i, j],
its persistent homology, denoted H•(P[i, j]), is defined to be the image of the
induced homomorphism H(xj−i) : H•(Ci) → H•(Cj) induced by xj−i. That is,
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one looks at the composition of the chain maps from Ci → Cj and takes the
image of the induced homomorphism on homologies. This persistent homology
consists of homology classes that persist: dim Hk(P[i, j]) equals the number of
intervals in the barcode of Hk(P) containing the parameter interval [i, j].

Exercise 2.19. If, in the indexing for a persistence complex, you have i < j < k < `,
what is the relationship between the various subintervals of [i, `] using {i, j, k, `}
as endpoints? Draw the lattice of such intervals under inclusion. What is the
relationship between the persistent homologies on these subintervals?

Persistence Diagrams. Barcodes are not the only possible graphical presenta-
tion for persistent homology. Since there is a decomposition into homology
classes with well-defined initial and terminal parameter values, one can plot each
homology class as a point in the plane with axes the parameter line. To each
interval indecomposable (homology class) one assigns a single point with coordi-
nates (birth, death). This scatter plot is called the persistence diagram and is more
practical to plot and interpret than a barcode for very large numbers of homology
classes.

Exercise 2.20. In the case of a homology barcode coming from a data set, the
“noisy” homology classes are those with the smallest length, with the largest bars
holding claim as the “significant” topological features in a data set. What do these
noisy and significant bars translate to in the context of a persistence diagram? For
a specific example, return to the “clockface” data set of Exercise 2.12, but now
consider the set of all even points: 2, 4, 6, 8, 10, and 12. Show that the persistent
H2 contains a “short” bar. Are you surprised at this artificial bubble in the VR
complex? Does a similar bubble form in the homology when all 12 points are
used? In which dimension homology?

One aspect worth calling out is the notion of persistent homology as a ho-
mological data structure over the parameter space, in that one associates to each
interval [i, j] its persistent homology. This perspective is echoed in the early lit-
erature on the subject [32, 36, 41, 91], in which a continuous parameter space was
used, with a continuous family of (excursion sets) of spaces Xt, t ∈ R, was used:
in this setting, persistent homology is assigned to an interval [s, t]. The discretized
parameter interval offers little in the way of restrictions (unless you are working
with fractal-like or otherwise degenerate objects) and opens up the simple setting
of the Structure Theorem on Sequences as used in this lecture.

Stability

The idea behind the use of barcodes and persistence diagrams in data is
grounded in the intuition that essential topological features of a domain are ro-
bust to noise, whether arising from sensing, sampling, or approximation. In a
barcode, noisy features appear as short bars; in a persistence diagram, as near-
diagonal points. To solidify this intuition of robustness, one wants a more specific



Robert Ghrist 21

statement on the stability of persistent homology. Can a small change in the input
— whether a sampling of points or a Dowker relation or a perturbation of the
metric — have a large impact on how the barcode appears?

There have of late been a plethora of stability theorems in persistent homology,
starting with the initial result of Cohen-Steiner et al. [31] and progressing to more
general and categorical forms [12,18,21,22,30]. In every one of these settings, the
stability result is given in the context of persistence over a continuous parameter,
ε, such as one might use in the case of a Vietoris-Rips filtration on a point-cloud.
The original stability theorem is further framed in the setting of sublevel sets of
a function h : X → R and the filtration is by sublevel sets Xt = {h 6 t}. Both the
statements of the stability theorems and their proofs are technical; yet the techni-
calities lie in the difficulties of the continuum parameter. For the sake of clarity
and simplicity, we will assume that one has imposed a uniform discretization of
the real line with step size a fixed ε > 0 (as would often be the case in practice).

Interleaving. At present, the best language for describing the stability of per-
sistent homology and barcode descriptors is the recent notion of interleaving. In
keeping with the spirit of these lectures, we will present the theory in the context
of sequences of vector spaces and linear transformations. Assume that one has
a pair of sequences, V• and W•, of vector spaces and linear transformations. We
say that a T -interleaving is a pair of degree-T mappings:

(2.21) f• : V• →W•+T g• : W• → V•+T ,

such that the diagram commutes:

(2.22)

· · · // Vn //

f ++

· · · // Vn+T //

f

&&

· · · // Vn+2T // · · ·

· · · // Wn //

g
33

· · · // Wn+T //

g

88

· · · // Wn+2T // · · ·

.

In particular, at each n, the composition gn+T ◦ fn equals the composition of the
2T horizontal maps in V• starting at n; and, likewise with f ◦ g on W•. One
defines the interleaving distance between two sequences of vector spaces to be the
minimal T ∈N such that there exists a T -interleaving.

Exercise 2.23. Verify that the interleaving distance of two sequences is zero if and
only if the two sequences are isomorphic.

Exercise 2.24. Assume that V• is an interval indecomposable of length 5. Describe
the set of all W• that are within interleaving distance one of V•.

Note that the conclusions of Exercises 2.23-2.24 are absolutely dependent on
the discrete nature of the problem. In the case of a continuous parameter, the
interleaving distance is not a metric on persistence complexes, but is rather a
pseudometric, as one can have the infimum of discretized interleaving distances
become zero without an isomorphism in the limit.
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Application: TDA

Topological Data Analysis, or TDA, is the currently popular nomenclature for
the set of techniques surrounding persistence, persistent homology, and the ex-
traction of significant topological features from data. The typical input to such a
problem is a point cloud Q in a Euclidean space, though any finite metric space
will work the same. Given such a data set, assumed to be a noisy sampling of
some domain of interest, one wants to characterize that domain. Such questions
are not new: linear regression assumes an affine space and returns a best fit; a
variety of locally-linear or nonlinear methods look for nonlinear embeddings of
Euclidean spaces.

Topological data analysis looks for global structure — homology classes — in
a manner that is to some degree decoupled from rigid geometric considerations.
This, too, is not entirely novel. Witness clustering algorithms, which take a point
cloud and return a partition that is meant to approximate connected components.
Of course, this reminds one of H0, and the use of a Vietoris-Rips complex makes
this precise: single linkage clustering is precisely the computation of H0(VRε(Q))

for a choice of ε > 0. Which choice is best? The lesson of persistence is to take all
ε and build the homology barcode. Notice however, that the barcode returns only
the dimension of H0 — the number of clusters — and to more carefully specify
the clusters, one needs an appropriate basis. There are many other clustering
schemes with interesting functorial interpretations [26, 27].

The ubiquity and utility of clustering is clear. What is less clear is the preva-
lence and practicality of higher-dimensional persistent homology classes in “or-
ganic” data sets. Using again a Vietoris-Rips filtration of simplicial complexes
on a point cloud Q allows the computation of homology barcodes in gradings
larger than zero. To what extent are they prevalent? The grading of homology
is reminiscent of the grading of polynomials in Taylor expansions. Though Tay-
lor expansions are undoubtedly useful, it is acknowledged that the lowest-order
terms (zeroth and first especially) are most easily seen and used. Something like
this holds in TDA, where one most readily sees clusters (H0) and simple loops
(H1) in data. The following is a brief list of applications known to the author.
The literature on TDA has blown-up of late to a degree that makes it impossi-
ble to give an exhaustive account of applications. The following are chosen as
illustrative of the basic principles of persistent homology.

Medical imaging data: Some of the earliest and most natural applications of TDA
were to image analysis [2, 13, 25, 79]. One recent study by Benditch et al. looks at
the structure of arteries in human brains [14]. These are highly convoluted path-
ways, with lots of branching and features at multiple scales, but which vary in
dramatic and unpredictable ways from patient to patient. The topology of arterial
structures are globally trivial — sampling the arterial structure though standard
imaging techniques yields a family of trees (acyclic graphs). Nevertheless, since
the geometry is measurable, one can filter these trees by sweeping a plane across
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the three-dimensional ambient domain, and look at the persistent H0. Results
show statistically significant correlations between the vector of lengths of the top
100 bars in the persistent H0 barcode and features such as patient age and sex.
For example, older brains tend to have shorter longest bars in the H0 barcode. The
significance of the correlation is very strong and outperforms methods derived
from graph theory and phylogenetic-based tree-space geometry methods. It is
interesting that it is not the “longest bar” that matters so much as the ensem-
ble of longest bars in this barcode. Work in progress includes using H0 barcode
statistics to characterize global structure of graph-like geometries include exami-
nations of insect wing patterns, tree leaf vein networks, and more. Other exciting
examples of persistent H0 to medical settings feature an analysis of breast cancer
by Nicolau et al. [73].

Distinguishing illness from health and recovey: Where does persistent homology
beyond H0 come into applications? A recent excellent paper of Torres et al. uses
genetic data of individuals with illnesses to plot a time series of points in a disease
space of traits [88]. Several examples are given of studies on human and mouse
subjects tracking the advancement and recovery from disease (including, in the
mice, malaria). Genetic data as a function of time and for many patients gives
a point cloud in an abstract space for which geometry is not very relevant (for
example, axes are of differing and incomparable units). What is interesting about
this study is the incorporation of data from subjects that extends from the onset of
illness, through its progress, and including a full recovery phase back to health.
Of interest is the question of recovery — does recovery from illness follow the
path of illness in reverse? Does one recover to the same state of health, or is there
a monodromy? The study of Torres et al. shows a single clear long-bar in the H1-
barcode in disease space, indicating that all instances of the illness are homologous,
as are all instances of recovery, but that illness and recovery are homologically distinct
events” [88]. In contrast to prior studies that performed a linear regression on
a pair of variables and concluded a linear relationship between these variables
(with a suggestion of a causal relationship), the full-recovery data set with its
loopy phenomenon of recovery suggests skepticism: indeed, a careful projection
of a generator for the H1 barcode into this plane recovers the loop.

Robot path planning: A very different set of applications arises in robot motion
planning, in which an autonomous agent needs to navigate in a domain X ⊂ Rn

(either physical or perhaps a configuration space of the robot) from an initial state
to a goal state in X. In the now-familiar case of self-driving vehicles, autonomous
drones, or other agents with sensing capabilities, the navigable (“obstacle-free”)
subset of X is relatively uncertain, and known only as a probabilistic model. Bhat-
tacharya et al. consider such a probability density ρ : X → [0,∞) and use a com-
bination of persistent homology and graph search-based algorithms in order to
compute a set of best likely paths-to-goal [15]. The interesting aspects of this ap-
plication are the following. (1) The persistence parameter is the probability, used
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to filter the density function on X. This is one natural instance of a continuous
as opposed to a discrete persistence parameter. (2) The H1 homology barcode
is used, but on a slight modification of X obtained by abstractly identifying the
initial and goal states (by an outside edge if one wants to be explicit), so that
a path from initial to goal corresponds precisely to a 1-cycle that intersects this
formal edge. (3) Once again, the problem of “where to threshhold” the density
is avoided by the use of a barcode; the largest bars in the H1 barcode correspond
to the path classes most likely to be available and robust to perturbations in the
sensing. For path classes with short bars, a slight update to the system might
invalidate this path.

Localization and mapping: Computing persistent homology is also useful as a
means of building topological maps of an unknown environment, also of rele-
vance to problems in robotics, sensing, and localization. Imagine a lost traveler
wandering through winding, convoluted streets in an unfamiliar city with unread-
able street signs. Such a traveler might use various landmarks to build up an in-
ternal map: “From the jewelry store, walk toward the cafe with the red sign, then look for
the tall church steeple.” This can be accomplished without reference to coordinates
or odometry. For the general setting, assume a domain D filled with landmarks
identifiable by observers that register landmarks via local sensing/visibility. A
collection of observations are taken, with each observation recording only those
landmarks “visible” from the observation point. Both the landmarks and observa-
tions are each a discrete set, with no geometric or coordinate data appended. The
sensing data is given in the form of an unordered sequence of pairs of observation-
landmark identities encoding who-sees-what. From this abstract data, one has a
Dowker relation from which one can build a pair of (dual, homotopic) Dowker
complexes that serve as approximations to the domain topology. In [54], two
means of inferring a topological map from persistent homology are given. (1)
If observers record in the sensing relation a visibility strength (as in, say, the
strengths of signals to all nearby wireless SSIDs), then filtering the Dowker com-
plexes on this (as we did in the neuroscience applications of the previous lec-
ture) gives meaning to long bars as significant map features. (2) In the binary
(hidden/seen) sensing case, the existence of non-unique landmarks (“ah, look! a
Starbucks! I know exactly where I am now...”) confounds the topology, but filtering
according to witness weight can eliminate spurious simplices: see [54] for details
and [38] for an experimental implementation.

Protein compressibility: One of the first uses of persistent H2 barcodes has ap-
peared recently in the work of Gameiro et al. [48] in the context of characterizing
compressibility in certain families of protein chains. Compressibility is a particu-
lar characterization of a protein’s softness and is key to the interface of structure
and function in proteins, the determination of which is a core problem in biology.
The experimental measurement of protein compressibility is highly nontrivial,
and involves fine measurement of ultrasonic wave velocities from pressure waves
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in solutions/sovlents with the protein. Hollow cavities within the protein’s geo-
metric conformation are contributing factors, both size and number. Gameiro et
al. propose a topological compressibility that is argued to measure the relative con-
tributions of these features, but with minimal experimental measurement, using
nothing more as input than the standard molecular datasets that record atom lo-
cations as a point cloud, together with a van der Waals radius about each atom.
What is interesting in this case is that one does not have the standard Vietoris-
Rips filtered complex, but rather a filtered complex obtained by starting with the
van der Waals radii (which vary from atom to atom) and then adding to these
radii the filtration parameter ε > 0. The proposed topological compressibility is
a ratio of the number of persistent H2 intervals divided by the number of persis-
tent H1 intervals (where the intervals are restricted to certain parameter ranges).
This ratio is meant to serve as proxy to the experimental measurement of cavi-
ties and tunnels in the protein’s structure. Comparisons with experimental data
suggest, with some exceptions, a tight linear correlation between the expensive
experimentally-measured compressibility and the (relatively inexpensive) topo-
logical compressibility.

These varied examples are merely summaries: see the cited references for more
details. The applications of persistent homology to data are still quite recent, and
by the time of publication of these notes, there will have been a string of novel
applications, ranging from materials science to social networks and more.

Lecture 3: Compression & Computation

We now have in hand the basic tools for topological data analysis: complexes,
homology, and persistence. We are beginning to develop the theories and perspec-
tives into which these tools fit, as a higher guide to how to approach qualitative
phenomena in data. We have not yet dealt with issues of computation and effec-
tive implementation. Our path to doing so will take us deeper into sequences,
alternate homology theories, cohomology, and Morse theory.

Sequential Manipulation

Not surprisingly, these lectures take the perspective that the desiderata for ho-
mological data analysis include a calculus for complexes and sequences of com-
plexes. We have seen hints of this in Lecture Two; now, we proceed to introduce
a bit more of the rich structure that characterizes (the near-trivial linear-algebraic
version of) homological algebra. Instead of focusing on spaces or simplicial com-
plexes per se, we focus on algebraic complexes; this motivates our examination
of certain types of algebraic sequences.

Exact Complexes Our first new tool is inspired by the following question: among
all complexes, which are simplest? Simplicial complexes might suggest that the
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simplest sort of complex is that of a single simplex, which has homology van-
ishing in all gradings except zero. However, there are simpler complexes still.
We say that an algebraic complex C = (C•,∂) is exact if its homology completely
vanishes, H•(C) = 0. This often written termwise as:

(3.1) ker ∂k = im ∂k+1 ∀ k.

Exercise 3.2. What can you say about the barcode of an exact complex? (This
means the barcode of the complex, not its [null] homology).

The following simple examples of exact complexes help build intuition:

• Two vector spaces are isomorphic, V ∼=W, iff there is an exact complex of
the form:

0 // V // W // 0 .

• The 1st Isomorphism Theorem says that for a linear transformation ϕ of
V , the following sequence is exact:

0 // ker ϕ // V
ϕ
// im ϕ // 0 .

Such a 5-term complex framed by zeroes is called a short exact complex.
In any such short exact complex, the second map is injective; the penulti-
mate, surjective.

• More generally, the kernel and cokernel of a linear transformation ϕ : V →
W fit into an exact complex:

0 // ker ϕ // V
ϕ
// W // coker ϕ // 0 .

Exercise 3.3. Consider C = C∞(R3), the vector space of differentiable functions
and X = X(R3), the vector space of C∞ vector fields on R3. Show that these fit
together into an exact complex,

(3.4) 0 // R // C
∇
// X

∇×
// X

∇·
// C // 0 ,

where ∇ is the gradient differential operator from vector calculus, and the initial
R term in the complex represents the constant functions on R3. This one exact
complex compactly encodes many of the relations of vector calculus.

Mayer-Vietoris Complex There are a number of exact complexes that are used
in homology, the full exposition of which would take us far afield. Let us focus
on one particular example as a means of seeing how exact complexes assist in
computational issues. The following is presented in the context of simplicial com-
plexes. Let X = A ∪ B be a union of two simplicial complexes with intersection
A∩B. The following exact complex is the Mayer-Vietoris complex:

// Hn(A∩B)
H(φ)

// Hn(A)⊕Hn(B)
H(ψ)

// Hn(X)
δ
// Hn−1(A∩B) // .

The linear transformations between the homologies are where all the interesting
details lie. These consist of: (1) H(ψ), which adds the homology classes from A

and B to give a homology class in X; (2) H(φ), which reinterprets a homology
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class in A∩B to be a homology class of A and a (orientation reversed!) homology
class in B respectively; and (3) δ, which decomposes a cycle in X into a sum of
chains in A and B, then takes the boundary of one of these chains in A∩ B. This
unmotivated construction has a clean explanation, to be addressed soon.

For the moment, focus on what the Mayer-Vietoris complex means. This com-
plex captures the additivity of homology. When, for example, A ∩ B is empty,
then every third term of the complex vanishes — the H•(A ∩ B) terms. Because
every-third-term-zero implies that the complementary pairs of incident terms are
isomorphisms, this quickly yields that homology of a disjoint union is additive,
using ⊕. When the intersection is nonempty, the Mayer-Vietoris complex details
exactly how the homology of the intersection impacts the homology of the union:
it is, precisely, an inclusion-exclusion principle.

Exercise 3.5. Assume the following: for any k > 0, (1) Hn(Dk) = 0 for all n > 0;
(2) the 1-sphere S1 has H1(S

1) ∼= F and Hn(S1) = 0 for all n > 1. The computation
of H•(Sk) can be carried out via Mayer-Vietoris as follows. Let A and B be upper
and lower hemispheres of Sk, each homeomorphic to Dk and intersecting at
an equatorial Sk−1. Write out the Mayer-Vietoris complex in this case: what
can you observe? As H•(Dk) ∼= 0 for k > 0, one obtains by exactness that
δ : Hn(S

k) ∼= Hn−1(S
k−1) for all n and all k. Thus, starting from a knowledge

of H•S1, show that Hn(Sk) ∼= 0 for k > 0 unless n = k, where it has dimension
equal to one.

Sequences of Sequences One of the themes of these lectures is the utility of
composed abstraction: if spaces are useful, so should be spaces of spaces. Later,
we will argue that an idea of “homologies of homologies” is sensible and use-
ful (in the guise of the sheaf theory of Lecture 4). In this lecture, we argue that
sequences of sequences and complexes of complexes are useful. We begin with
an elucidation of what is behind the Mayer-Vietoris complex: what are the maps,
and how does it arise?

Consider the following complex of algebraic complexes,

(3.6) 0 // C•(A∩B)
φ•
// C•(A)⊕C•(B)

ψ•
// C•(A+B) // 0,

with chain maps φ• : c 7→ (c,−c), and ψ• : (a,b) 7→ a + b. The term on the
right, C•(A + B), consists of those chains which can be expressed as a sum of
chains on A and chains on B. In cellular homology with A,B subcomplexes,
C•(A+B) ∼= C•(X).

Exercise 3.7. Show that this complex-of-complexes is exact by construction.

In general, any such short exact complex of complexes can be converted to a
long exact complex on homologies using a method from homological algebra called
the Snake Lemma [50, 58]. Specifically, given:

(3.8) 0 // A•
i•
// B•

j•
// C• // 0,
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there is an induced exact complex of homologies

(3.9) // Hn(A)
H(i)

// Hn(B)
H(j)

// Hn(C)
δ
// Hn−1(A)

H(i)
// .

Moreover, the long exact complex is natural: a commutative diagram of short
exact complexes and chain maps

(3.10)

0 // A• //

f•
��

B• //

g•
��

C• //

h•
��

0

0 // Ã• // B̃• // C̃• // 0

.

induces a commutative diagram of long exact complexes

(3.11)

// Hn(A) //

H(f)
��

Hn(B) //

H(g)
��

Hn(C)
δ
//

H(h)
��

Hn−1(A) //

H(f)
��

// Hn(Ã) // Hn(B̃) // Hn(C̃)
δ
// Hn−1(Ã) //

.

The induced connecting homomorphism δ : Hn(C) → Hn−1(A) comes from the
boundary map in C as follows:

(1) Fix [γ] ∈ Hn(C); thus, γ ∈ Cn.
(2) By exactness, γ = j(β) for some β ∈ Bn.
(3) By commutativity, j(∂β) = ∂(jβ) = ∂γ = 0.
(4) By exactness, ∂β = iα for some α ∈ An−1.
(5) Set δ[γ] = [α] ∈ Hn−1(A).

Exercise 3.12. This is a tedious but necessary exercise for anyone interested in
homological algebra: (1) show that δ[γ] is well-defined and independent of all
choices; (2) show that the resulting long complex is exact. Work at ad tedium: for
help, see any textbook on algebraic topology, [58] recommended.

Euler Characteristic, Redux Complexes solve the mystery of the topological
invariance of the Euler characteristic. Recall that we can define the Euler char-
acteristic of a (finite, finite-dimensional) complex C as in Equation (1.13). The
alternating sum is a binary exactness. A short exact complex of vector spaces
0 → A → B → C → 0 has χ = 0, since C ∼= B/A. By applying this to individ-
ual rows of a short exact complex of (finite, finite-dimensional) chain complexes,
we can lift once again to talk about the Euler characteristic of a (finite-enough)
complex of complexes:

(3.13) 0 // A• // B• // C• // 0 .

One sees that χ of this complex also vanishes: χ(A•) − χ(B•) + χ(C•) = 0.
The following lemma is the homological version of the Rank-Nullity Theorem

from linear algebra:

Lemma 3.14. The Euler characteristic of a chain complex C• and its homology H• are
identical, when both are defined.
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Proof. From the definitions of homology and chain complexes, one has two short
exact complexes of chain complexes:

(3.15)
0 // B• // Z• // H• // 0

0 // Z• // C• // B•−1 // 0

.

Here, B•−1 is the shifted boundary complex whose kth term is Bk−1. By exact-
ness, the Euler characteristic of each of these two complexes is zero; thus, so is
the Euler characteristic of their concatenation.

0 // B• // Z• // H• // 0 // Z• // C• // B•−1 // 0 .

Count the +/− signs: the Z terms cancel, and the B terms cancel, since χ(B•−1) =

−χ(B•). This leaves two terms left with the conclusion χ(H•) − χ(C•) = 0. �

Euler characteristic thus inherits its topological invariance from that of ho-
mology. Where does the invariance of homology come from? Something more
complicated still?

Homology Theories

Invariance of homology is best discerned from a singularly uncomputable vari-
ant that requires a quick deep dive into the plethora of homologies available. We
begin with a reminder: homology is an algebraic compression scheme — a way
of collapsing a complex to the simplest form that respects its global features. The
notion of homology makes sense for any chain complex. Thus far, our only means
of generating a complex from a space X has been via some finite auxiliary struc-
ture on X, such as a simplicial, cubical, or cellular decomposition. There are other
types of structures a space may carry, and, with them, other complexes. In the
same way that the homology of a simplicial complex is independent of the simpli-
cial decomposition, the various homologies associated to a space under different
auspices tend to be isomorphic.

Reduced homology Our first alternate theory is not really a different type of
homology at all; merely a slight change in the chain complex meant to make
contractible (or rather acyclic) spaces fit more exactly into homology theory. Re-
call that a contractible cell complex — such as a single simplex — has homology
Hk = 0 for all k > 0, with H0 being one-dimensional, recording the fact that
the cell complex is connected. For certain results in algebraic topology, it would
be convenient to have the homology of a contractible space vanish completely.
This can be engineered by an augmented complex in a manner that is applicable to
any N-graded complex. Assume for simplicity that C = (Ck,∂) is a N-graded
complex of vector spaces over a field F. The reduced complex is the following
augmentation:

(3.16) · · · ∂
// C3

∂
// C2

∂
// C1

∂
// C0

ε
// F // 0 ,
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where the aumentation map ε : C0 → F sends a vector in C0 to the sum of its
components (have fixed a basis for C0). The resulting homology of this complex
is called reduced homology and is denoted H̃•.

Exercise 3.17. Show that the reduced complex is in fact a complex (i.e., that ε∂ =

0). How does the reduced homology of a complex differ from the “ordinary”
homology? What is the dependence on the choice of augmentation map ε? Show
that the augmented complex of a contractible simplicial complex is exact.

Čech Homology One simple structure associated to a topological space is an
open cover — a collection U of open sets {Uα} in X. The Čech complex of U is
the complex C(U) with basis for Ck(U) being all (unordered) sets of k + 1 dis-
tinct elements of U with nonempty intersection. (The usual complexities arise for
coefficients not in F2, as one needs to order the elements of U up to even per-
mutations.) The boundary maps ∂ : C•(U) → C•−1(U) act on a basis element by
forgetting one of the terms in the set, yielding face maps.

For a finite collection U of sets, the Čech complex is identical to the simplicial
chain complex of the nerve N(U). With the further assumption of contractible
sets and intersections, the resulting homology is, by the Nerve Lemma, identical
to X = ∪αUα. However, even in the non-finite case, the result still holds if the
analogous contractibility assumptions hold. In short, if the all basis elements
for the Čech complex are nullhomologous, then the Čech homology, H•(C(U)) is
isomorphic to H•(X). Of course, the Čech complex and its homology are still
well-defined even if the local simplicity assumptions are violated. This Čech
homology has in the past been used in the context of a sequence of covers, with
limiting phenomena of most interest for complex fractal-like spaces [60]. This is
perhaps one of the earliest incarnations of persistent homology.

Singular Homology If you find it risky to think of the Čech homology of a cover
of non-finite size, then the next homology theory will seem obscenely prodigal.
Given a topological space X, the singular chain complex is the complex Csing whose
k-chains have as basis elements all maps σ : ∆k → X, where ∆k is the Platonic
k-simplex. Note: there are no restrictions on the maps σ other than continuity:
images in X may appear crushed or crumpled. The boundary maps are the obvi-
ous restrictions of σ to the (k− 1)-dimensional faces of ∆k, taking a linear com-
bination with orientations if the field F demands. The resulting singular chain
complex is wildly uncountable, unless X should happen to be a trivial space.

Exercise 3.18. Do the one explicit computation possible in singular homology:
show that for X a finite disjoint union of points, the singular homology Hsing

n (X)

vanishes except when n = 0, in which case it has β0 equal to the number of
points in X. Note: you cannot assume, as in cellular homology, that the higher-
dimensional chains Cn vanish for n > 0.
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There is little hope in computing the resulting singular homology, save for the
fact that this homology is, blessedly, an efficient compression.

Theorem 3.19. For a cell complex, singular and cellular homology are isomorphic.

The proof of this is an induction argument based on the n-skeleton of X. The
previous exercise establishes the isomorphism on the level of H0. To induct to
higher-dimensional skeleta requires a few steps just outside the bounds of these
lectures: see [51, 58] for details.

Homotopy Invariance Why pass to the uncomputable singular theory? There
is so much room in Csing that it is easy to deform continuously and prove the core
result.

Theorem 3.20. Homology [singular] is a homotopy invariant of spaces.

When combined with Theorem 3.19, we obtain a truly useful, computable re-
sult. The proof of Theorem 3.20 does not focus on spaces at all, but rather, in
the spirit of these lectures, pulls back the notion of homotopy to complexes. Re-
call that f,g : X → Y are homotopic if there is a map F : X × [0, 1] → Y which
restricts to f on X× {0} and to g on X× {1}. A chain homotopy between chain maps
ϕ•,ψ• : C → C ′ is a graded linear transformation F : C → C ′ sending n-chains to
(n+ 1)-chains so that ∂F− F∂ = ϕ• −ψ•:

(3.21)

· · · // Cn+1

F

}}

∂
//

ψ• ϕ•
��

Cn

F

||

∂
//

ψ• ϕ•
��

Cn−1

F

||

∂
//

ψ• ϕ•
��

· · ·

F
}}

· · · // C ′n+1 ∂
// C ′n

∂
// C ′n−1 ∂

// · · ·

.

One calls F a map of degree +1, indicating the upshift in the grading.5 Note
the morphological resemblance to homotopy of maps: a chain homotopy maps
each n-chain to a n + 1-chain, the algebraic analogue of a 1-parameter family.
The difference between the ends of the homotopy, ∂F− F∂, gives the difference
between the chain maps.

Exercise 3.22. Show that chain homotopic maps induce the same homomorphisms
on homology. Start by considering [α] ∈ H•(C), assuming ϕ• and ψ• are chain
homotopic maps from C to C ′.

The proof of Theorem 3.20 follows from constructing an explicit chain homo-
topy [58].

Morse Homology All the homology theories we have looked at so far have
used simplices or cells as basis elements of chains and dimension as the grading.
There is a wonderful homology theory that breaks this pattern in a creative and,
eventually, useful manner. Let M be a smooth, finite-dimensional Riemannian

5The overuse of the term degree in graphs, maps of spheres, and chain complexes is unfortunate.
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manifold. There is a homology theory based on a dynamical system on M. One
chooses a function h : M→ R and considers the (negative) gradient flow of h on
M — the smooth dynamical system given by dx/dt = −∇h.

The dynamics of this vector field are simple: solutions either are fixed points
(critical points of h) or flow downhill from one fixed point to another. Let Cr(h)
denote the set of critical points, and assume for the sake of simplicity that all
such critical points are nondegenerate – the second derivative (or Hessian) is nonde-
generate (has nonzero determinant) at these points. These nondegenerate critical
points are the basis elements of a Morse complex. What is the grading?

Nondegenerate critical points have a natural grading – the number of negative
eigenvalues of the Hessian of second derivatives of h at p. This is called the
Morse index, µ(p), of p ∈ Cr(h) and has the more topological interpretation as the
dimension of the set of points that converge to p in negative time. The Morse
index measures how unstable a critical point is: minima have the lowest Morse
index; maxima the highest. Balancing a three-legged stool on k legs leads to an
index µ = 3 − k equilibrium.

One obtains the Morse complex, Ch = (MC•,∂), with MCk the vector space with
basis {p ∈ Cr(h) ; µ(p) = k}. The boundary maps encode the global flow of the
gradient field: ∂k counts (modulo 2 in the case of F2 coefficients) the number of
connecting orbits – flowlines from a critical point with µ = k to a critical point
with µ = k− 1. One hopes (or assumes) that this number is well-defined. The
difficult business is to demonstrate that ∂2 = 0: this involves careful analysis
of the connecting orbits, as in, e.g., [8, 84]. The use of F2 coefficients is highly
recommended. The ensuing Morse homology, MH•(h), captures information about
M.

Theorem 3.23 (Morse Homology Theorem). ForM a compact manifold and h : M→
R Morse, MH•(h; F2) ∼= H•(M; F2), independent of h.

Exercise 3.24. Compute the Morse homology of a 2-sphere, S2, outfitted with a
Morse function having two maxima and two minima. How many saddle points
must it have?

Our perspective is that Morse homology is a precompression of the complex
onto its critical elements, as measured by h.

Discrete Morse Theory As given, Morse homology would seem to be greatly
disconnected from the data-centric applications and perspectives of this chapter
— it uses smooth manifolds, smooth functions, smooth flows, and nondegenerate
critical points, all within the delimited purview of smooth analysis. However, as
with most of algebraic topology, the smooth theory is the continuous limit of a
correlative discrete theory. In ordinary homology, the discrete [that is, simplicial]
theory came first, followed by the limiting case of the singular homology theory.
In the case of Morse theory, the smooth version came long before the following
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discretization, which first seems to have appeared in a mature form in the work
of Forman [45, 46]; see also the recent book of Kozlov [65].

Consider for concreteness a simplicial or cell complex X. The critical ingredient
for Morse theory is not the Morse function but rather its gradient flow. A discrete
vector field is a pairing V which partitions the cells of X (graded by dimension)
into pairs Vα = (σαPτα) where σα is a codimension-1 face of τα. All leftover
cells of X not paired by V are the critical cells of V , Cr(V). A discrete flowline is a
sequence (Vi) of distinct paired cells with codimension-1 faces, arranged so that

(3.25)

V1︷ ︸︸ ︷
σ1Pτ1 Q

V2︷ ︸︸ ︷
σ2Pτ2 Q · · · Q

VN︷ ︸︸ ︷
σNPτN .

A flowline is periodic if τNQσ1 for N > 1. A discrete gradient field is a discrete
vector field devoid of periodic flowlines.

It is best to lift everything to algebraic actions on the chain complex C =

(Ccell
• ,∂) associated to the cell complex X. By linearity, the vector field V induces

a chain map V : Ck → Ck+1 induced by the pairs σPτ – one visualizes an arrow
from the face σ to the cell τ. As with classical Morse homology, F2 coefficients
are simplest.

To every discrete gradient field is associated a discrete Morse complex, CV =

(MC•, ∂̃) withMCk the vector space with basis the critical cells {σ ∈ Cr(V) ; dim(σ) =

k}. Note that dimension plays the role of Morse index.

Exercise 3.26. Place several discrete gradient fields on a discretization of a circle
and examine the critical cells. What do you notice about the number and dimen-
sion of critical cells? Does this make sense in light of the Euler characteristic of a
circle?

The boundary maps ∂̃k count (modulo 2 in the case of F2 coefficients; with a
complicated induced orientation else) the number of discrete flowlines from a crit-
ical simplex of dimension k to a critical simplex of dimension k− 1. Specifically,
given τ a critical k-simplex and σ a critical (k− 1)-simplex, the contribution of
∂̃k(τ) to σ is the number of gradient paths from a face of τ to a coface of σ. In the
case that σPτ, then this number is 1, ensuring that the trivial V for which all cells
are critical yields CV the usual cellular chain complex. It is not too hard to show
that ∂̃2 = 0 and that, therefore, the homology MH•(V) = H•(CV ) is well-defined.
As usual, the difficulty lies in getting orientations right for Z coefficients.

Theorem 3.27 ([45]). For any discrete gradient field V , MH•(V) ∼= Hcell
• (X).

Discrete Morse theory shows that the classical constraints – manifolds, smooth
dynamics, nondegenerate critical points – are not necessary. This point is worthy
of emphasis: the classical notion of a critical point (maximum, minimum, saddle)
is distilled away from its analytic and dynamical origins until only the algebraic
spirit remains.
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Applications of discrete Morse theory are numerous and expansive, including
to combinatorics [65], mesh simplification [67], image processing [79], configu-
ration spaces of graphs [43, 44], and, most strikingly, efficient computation of
homology of cell complexes [69]. This will be our focus for applications to com-
putation at the end of this lecture.

Application: Algorithms

Advances in applications of homological invariants have been and will remain
inextricably linked to advances in computational methods for such invariants. Re-
cent history has shown that potential applications are impotent when divorced
from computational advances, and computation of unmotivated quantities is fu-
tile. The reader who is interested in applying these methods to data is no doubt
interested in knowing the best and easiest available software. Though this is not
the right venue for a discussion of cutting-edge software, there are a number
of existing software libraries/packages for computing homology and persistent
homology of simplicial or cubical complexes, some of which are exciting and
deep. As of the time of this writing, the most extensive and current benchmark-
ing comparing available software packages can be found in the preprint of Otter
et al. [75]. We remark on and summarize a few of the issues involved with com-
puting [persistent] homology, in order to segue into how the theoretical content
of this lecture impacts how software can be written.

Time complexity: Homology is known to be output-sensitive, meaning that the
complexity of computing homology is a function of how large the homology is,
as opposed to how large the complex is. What this means in practice is that
the homology of a simple complex is simple to compute. The time-complexity
of computing homology is, by output-sensitivity, difficult to specify tightly. The
standard algorithm to compute H•(X) for X a simplicial complex is to compute
the Smith normal form of the graded boundary map ∂ : C• → C•, where we con-
catenate the various gradings into one large vector space. This graded bound-
ary map has a block structure with zero blocks on the block-diagonal (since
∂k : Ck → Ck−1 and is nonzero on the superdiagonal blocks). The algorithm
for computing Smith normal form is really a slight variant of the ubiquitous
Gaussian elimination, with reduction to the normal form via elementary row and
column operations. For field coefficients in F2 this reduction is easily seen to be
of time-complexity O(n3) in the size of the matrix, with an expected run time
of O(n2). This is not encouraging, given the typical sizes seen in applications.
Fortunately, compression preprocessing methods exist, as we will detail.

Memory and inputs: Time-complexity is not the only obstruction; holding a
complex in memory in nontrivial, as is the problem of inputting a complex. A
typical simplicial complex is specified by fixing the simplices as basis and then
specifying the boundary matrices. For very large complexes, this is prohibitive
and unnecessary, as the boundary matrices are typically sparse. There are a
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number of ways to reduce the input cost, including inputting (1) a distance matrix
spelling out an explicit metric between points in a point cloud, using a persistent
Dowker complex (see Exercise 2.10) to build the filtered complex; (2) using voxels
in a lattice as means of coordinatizing top-dimensional cubes in a cubical complex,
and specifying the complex as a list of voxels; and (3) using the Vietoris-Rips
complex of a network of nodes and edges, the specification of which requires
only a quadratic number of bits of data as a function of nodes.

Exercise 3.28. To get an idea of how the size of a complex leads to an inefficient
complexity bound, consider a single simplex, ∆n, and cube, In, each of dimen-
sion n. How many total simplices/cubes are in each? Include all faces of all
dimensions. Computing the [nearly trivial] homology of such a simple object
requires, in principle, computing the Smith normal form of a graded boundary
matrix of what net size?

Morse theory & Compression: One fruitful approach for addressing the compu-
tation of homology is to consider alternate intermediate compression schemes. If
instead of applying Smith Normal Form directly to a graded boundary operator,
one modifies the complex first to obtain a smaller chain-homotopic complex, then
the resulting complexity bounds may collapse with a dramatic decrease in size
of the input. There have been many proposals for reduction and coreduction of
chain complexes that preserve homology: see [62] for examples. One clear and
successful compression scheme comes from discrete Morse theory. If one puts
a discrete gradient field on a cell complex, then the resulting Morse complex
is smaller and potentially much smaller, being generated only by critical cells.
The process of defining and constructing an associated discrete Morse complex
is roughly linear in the size of the cell complex [69] and thus gives an efficient
approach to homology computation. This has been implemented in the popular
software package Perseus (see [75]).

Modernizing Morse Theory: Morse homology, especially the discrete version, has
not yet been fully unfolded. There are several revolutionary approaches to Morse
theory that incorporate tools outside the bounds of these lectures. Nevertheless,
it is the opinion of this author that we are just realizing the full picture of the cen-
trality of Morse theory in Mathematics and in homological algebra in particular.
Two recent developments are worth pointing out as breakthroughs in conceptual
frameworks with potentially large impact. The first, in the papers by Nanda et
al. [71,72], gives a categorical reworking of discrete Morse that relaxes the notion
of a discrete vector field to allow for any acyclic pairing of cells and faces without
restriction on the dimension of the face. It furthermore shows how to reconstruct
the topology of the original complex (up to homotopy type, not homology type)
using only data about critical cells and the critical discrete flowlines. Though the
tools used are formidable (2-categories and localization), the results are equally
strong.
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Matroid Morse Theory: The second contribution on the cusp of impact comes
in the thesis of Henselman [59] which proposes matroid theory as the missing link
between Morse theory and homological algebra. Matroids are classical structures
in the intersection of combinatorial topology and linear algebra and have no end
of interesting applications in optimization theory. Henselman recasts discrete
Morse theory and persistent homology both in terms of matroids, then exploits
matroid-theoretic principles (rank, modularity, minimal bases) in order to gener-
ate efficient algorithms for computing persistent homology and barcodes. This
work has already led to an initial software package Eirene6 that, as of the time of
this writing, has computed persistent Hk for 0 6 k 6 7 of a filtered 8-dimensional
simplicial complex obtained as the Vietoris-Rips complex of a random sampling
of 50 points in dimension 20 with a total of 3.3E+ 11 simplices on a 2012 Apple
laptop in about an hour. This computation is more than two orders of magnitude
faster than the computation using the fastest-available software, Ripser7, on a clus-
ter of machines, as recorded in the survey of Otter et al. [75]. This portends much
more to come, both at the level of conceptual understanding and computational
capability.

This prompts the theme of our next lecture, that in order to prepare for in-
creased applicability, one must ascend and enfold tools and perspectives of in-
creasing generality and power.

Lecture 4: Higher Order

Having developed the basics of topological data analysis, we focus now on the
theories and principles to which these point.

Cohomology & Duality

One of the first broad generalizations of all we have described in these lectures
is the theory of cohomology, an algebraic dual of homology. There are many ways
to approach cohomology — dual spaces, Morse theory, differential forms, and
configuration spaces all provide useful perspectives in this subject. These lectures
will take the low-tech approach most suitable for a first-pass. We have previously
considered a general chain complex C to be a graded sequence of vector spaces
C• with linear transformations ∂k : Ck → Ck−1 satisfying ∂2 = ∂k−1∂k = 0.
These chain complexes are typically graded over the naturals N, and any such
complex compresses to its homology, H•(C), preserving homological features and
forgetting all extraneous data.

In a chain complex, the boundary maps descend in the grading. If that grad-
ing is tied to dimension or local complexity of an assembly substructure, then the
boundary maps encode how more-complex objects are related, attached, or pro-
jected to their less-complex components. Though this is a natural data structure

6Available at gregoryhenselman.org/eirene.
7Available at https://github.com/Ripser/ripser.
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in many contexts, there are instances in which one knows instead how objects are
related to larger superstructures rather than smaller substructures. This prompts
the investigation of cochain complexes. For purposes of these lectures, a cochain
complex is a sequence C = (C•,d•) of vector spaces and linear transformation
which increment the grading (dk : Ck → Ck+1) and satisfy the complex condi-
tion (dk+1dk = 0). One uses subscripts for chain complexes and superscripts
for cochain complexes. The cohomology of the cochain complex is the complex
H•(C) = ker d/imd consisting of cocycles equivalent up to coboundaries.

The simplest example of a cochain complex comes from dualizing a chain
complex. Given a chain complex (Ck,∂,k) of F-vector spaces, define Ck = C∨

k ,
the vector space of linear functionals Ck → F. The coboundary dk is then the
adjoint (de facto, transpose) of the boundary ∂k+1, so that

(4.1) d ◦ d = ∂∨ ◦ ∂∨ = (∂ ◦ ∂)∨ = 0∨ = 0.

In the case of a simplicial complex, the standard simplicial cochain complex is
precisely such a dual to the simplicial chain complex. The coboundary operator d
is explicit: for f ∈ Ck a functional on k-simplices, its coboundary acts as (df)(τ) =
f(∂τ). For σ a k-simplex, d implicates the cofaces – those (k+ 1)-simplices τ having
σ as a face.

Dualizing chain complexes in this manner leads to a variety of cohomology
theories mirroring the many homology theories of the previous section: simpli-
cial, cellular, singular, Morse, Čech, and other cohomology theories follow.

Exercise 4.2. Fix a triangulated disc D2 and consider cochains using F2 coeffi-
cients. What do 1-cocycles look like? Show that any such 1-cocycle is the cobound-
ary of a 0-cochain which labels vertices with 0 and 1 on the left and on the right of
the 1-cocycle, so to speak: this is what a trivial class in H1(D2) looks like. Now fix
a circle S1 discretized as a finite graph and construct examples of 1-cocycles that
are (1) coboundaries; and (2) nonvanishing in H1. What is the difference between
the trivial and nontrivial cocycles on a circle?

The previous exercise foreshadows the initially depressing truth: nothing new
is gained by computing cohomology, in the sense that Hn(X) and Hn(X) have the
same dimension for each n. Recall, however, that there is more to co/homology
than just the Betti numbers. Functoriality is key, and there is a fundamental
difference in how homology and cohomology transform.

Exercise 4.3. Fix f : X → Y a simplicial map of simplicial complexes, and con-
sider the simplicial cochain complexes C(X) and C(Y). We recall that the in-
duced chain map f• yields a well-defined induced homomorphism on homology
H(f) : H•(C(X)) → H•(C(Y)). Using what you know about adjoints, show that
the induced homomorphism on cohomology is also well-defined but reverses di-
rection: H•(f) : H•(Y)→ H•(X). This allows one to lift cohomology cocycles from
the codomain to the domain.



38 Homological Algebra and Data

Alexander Duality There are numerous means by which duality expresses itself
in the form of cohomology. One of the most useful and ubiquitous of these
is known as Alexander duality, which relates the homology and cohomology of
a subset of a sphere Sn (or, with a puncture, Rn) and its complement. The
following is a particularly simple form of that duality theorem.

Theorem 4.4 (Alexander Duality). Let A ⊂ Sn be compact, nonempty, proper, and
locally-contractible. There is an isomorphism

(4.5) AD : H̃k(S
n−A)

∼=−→ H̃n−k−1(A).

Note that the reduced theory is used for both homology and cohomology.

Cohomology & Calculus Most students initially view cohomology as more ob-
tuse than homology; however, there are certain instances in which cohomology
is the most natural operation. Perhaps the most familiar such setting comes from
calculus. As seen in Exercise 3.3 from Lecture 2, the familiar constructs of vector
calculus on R3 fit into an exact complex. This exactness reflects the fact that R3 is
topologically trivial [contractible]. Later, in Exercise 4.2, you looked at simplicial
1-cocycles and hopefully noticed that whether or not they are null in H1 depends
on whether or not these cochains are simplicial gradients of 0-chains on the vertex
set. These exercises together hint at the strong relationship between cohomology
and calculus.

The use of gradient, curl, and divergence for vector calculus is, however, an un-
fortunate vestige of the philosophy of calculus-for-physics as opposed to a more
modern calculus-for-data sensibility. A slight modern update sets the stage bet-
ter for cohomology. For U ⊂ Rn an open set, let Ωk(U) denote the differentiable
k-form fields on U (a smooth choice of multilinear antisymmetric functionals on
ordered k-tuples of tangent vectors at each point). For example, Ω0 consists of
smooth functionals, Ω1 consists of 1-form fields, viewable (in a Euclidean setting)
as duals to vector fields, Ωn consists of signed densities on U times the volume
form, and Ωk>n(U) = 0. There is a natural extension of differentiation (famil-
iar from implicit differentiation in calculus class) that gives a coboundary map
d : Ωk → Ωk+1, yielding the deRham complex,

(4.6) 0 // Ω0(U)
d
// Ω1(U)

d
// Ω2(U)

d
// · · · d

// Ωn(U) // 0 .

As one would hope, d2 = 0, in this case due to the fact that mixed partial deriva-
tives commute: you worked this out explicitly in Exercise 3.3. The resulting
cohomology of this complex, the deRham cohomology H•(U), is isomorphic to the
singular cohomology of U using R coefficients.

This overlap between calculus and cohomology is neither coincidental nor con-
cluded with this brief example. A slightly deeper foray leads to an examination
of the Laplacian operator (on a manifold with some geometric structure). The
well-known Hodge decomposition theorem then gives, among other things, an iso-
morphism between the cohomology of the manifold and the harmonic differential
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forms (those in the kernel of the Laplacian). For more information on these con-
nections, see [19]. What is especially satisfying is that the calculus approach to
cohomology and the deRham theory feeds back to the simplicial: one can ex-
port the Laplacian and the Hodge decomposition theorem to the cellular world
(see [51, Ch. 6]). This, then, impacts data-centric problems of ranking and more
over networks.

Cohomology & Ranking Cohomology arises in a surprising number of differ-
ent contexts. One natural example that follows easily from the aforementioned
calculus-based perspective on cohomology lives in certain Escherian optical illu-
sions, such as impossible tribars, eternally cyclic waterfalls, or neverending stairs.
When one looks at an Escher staircase, the drawn perspective is locally realizable
– one can construct a local perspective function. However, a global extension can-
not be defined. Thus, an Escherlike loop is really a non-zero class in H1 (as first
pointed out by Penrose [78]).

This is not disconnected from issues of data. Consider the problem of ranking.
One simple example that evokes nontrivial 1-cocycles is the popular game of Rock,
Paper, Scissors, for which there are local but not global ranking functions. A local
gradient of rock-beats-scissors does not extend to a global gradient. Perhaps this
is why customers are asked to conduct rankings (e.g., Netflix movie rankings or
Amazon book rankings) as a 0-cochain (“how many stars?”), and not as a 1-cochain
(“which-of-these-two-is-better?”): nontrivial H1 is, in this setting, undesirable. The
Condorcet paradox – that locally consistent comparative rankings can lead to global
inconsistencies – is an appearance of H1 in ranking theory.

There are less frivolous examples of precisely this type of application, leverag-
ing the language of gradients and curls to realize cocycle obstructions to perfect
rankings in systems. The paper of Jiang et al. [61] interprets the simplicial cochain
complex of the clique/flag complex of a network in terms of rankings. For exam-
ple, the (R-valued) 0-cochains are interpreted as numerical score functions on the
nodes of the network; the 1-cochains (supported on edges) are interpreted as pair-
wise preference rankings (with oriented edges and positive/negative values deter-
mining which is preferred over the other); and the higher-dimensional cochains
represent more sophisticated local orderings of nodes in a clique [simplex]. They
then resort to the calculus-based language of grad, curl, and div to build up the
cochain complex and infer from its cohomology information about existence and
nonexistence of compatible ranking schemes over the network. Their use of the
Laplacian and the Hodge decomposition theorem permits projection of noisy or
inconsistent ranking schemes onto the nearest consistent ranking.

There are more sophisticated variants of these ideas, with applications pass-
ing beyond finding consistent rankings or orderings. Recent work of Gao et
al. [49] gives a cohomological and Hodge-theoretic approach to synchronization
problems over networks based on pairwise nodal data in the presence of noise.
Singer and collaborators [85, 86] have published several works on cryo electron
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miscroscopy that is, in essence, a cohomological approach to finding consistent
solutions to pairwise-compared data over a network. The larger lesson to be in-
ferred from these types of results is that networks often support data above and
beyond what is captured by the network topology alone (nodes, edges). This
data blends with the algebra and topology of the system using the language of
cohomology. It is this perspective of data that lives above a network that propels
our next set of tools.

Cellular Sheaves

One of the most natural uses for cohomology comes in the form of a yet-more-
abstract theory that is the stated end of these lectures: sheaf cohomology. Our
perspective is that a sheaf is an algebraic data structure tethered to a space (gen-
erally) or simplicial complex (in particular). In keeping with the computational
and linear-algebraic focus of this series, we will couch everything in the language
of linear algebra. The more general approach [20, 64, 83] is much more general.

Fix X a simplicial (or regular cell) complex with P denoting the face relation:
σPτ if and only if σ ⊂ τ. A cellular sheaf over X, F, is generated by an assignment
to each simplex σ of X a vector space F(σ) and to each face σ of τ a restriction map
– a linear transformation F(σPτ) : F(σ)→ F(τ) such that faces of faces satisfy the
composition rule:

(4.7) ρPσP τ ⇒ F(ρPτ) = F(σPτ) ◦F(ρPσ).

The trivial face τPτ by default induces the identity isomorphism F(τPτ) = Id.
One thinks of the vector spaces as the data over the individual simplices. In the
same manner that the simplicial complex is glued up by face maps, the sheaf is
assembled by the system of linear transformations.

One simple example of a sheaf on a cell complex X is that of the constant sheaf ,
FX, taking values in vector spaces over a field F. This sheaf assigns F to every
cell and the identity map Id : F→ F to every face σPτ. In constrast, the skyscraper
sheaf over a single cell σ of X is the sheaf Fσ that assigns F to σ and 0 to all other
cells and face maps.

Exercise 4.8. Consider the following version of a random rank-1 sheaf over a
simplicial complex X. Assign the field F to every simplex. To each face map σPτ
assign either Id or 0 according to some (your favorite) random process. Does this
always give you a sheaf? How does this depend on X? What is the minimal set
of assumptions you would need to make on either X or the random assignment
in order to guarantee that what you get is in fact a sheaf?

One thinks of the values of the sheaf over cells as being data and the restric-
tion maps as something like local constraints or relationships between data. It’s
very worthwhile to think of a sheaf as programmable – one has a great deal of
freedom in encoding local relationships. For example, consider the simple lin-
ear recurrence un+1 = Anun, where un ∈ Rk is a vector of states and An is
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a k-by-k real matrix. Such a discrete-time dynamical system can be represented
as a sheaf F of states over the time-line R with the cell structure on R having
Z as vertices, where F has constant stalks Rk. One programs the dynamics of
the recurrence relation as follows: F({n}P(n,n+ 1)) is the map u 7→ Anu and
F({n + 1}P(n,n + 1)) is the identity. Compatibility of local solutions over the
sheaf is, precisely, the condition for being a global solution to the dynamics.

Local & Global Sections One says that the sheaf is generated by its values on
individual simplices of X: this data F(τ) over a cell τ is also called the stalk or
local sections of F on τ: one writes sτ ∈ F(τ) for a local section over τ. Though the
sheaf is generated by local sections, there is more to a sheaf than its generating
data, just as there is more to a vector space than its basis. The restriction maps
of a sheaf encode how local sections can be continued into larger sections. One
glues together local sections by means of the restriction maps. The value of the
sheaf F on all of X is defined to be those collections of local sections that continue
according to the restriction maps on faces. The global sections of F on X are defined
as:

(4.9) F(X) = {(sτ)τ∈X : sσ = F(ρPσ)(sρ) ∀ ρPσ} ⊂
∏
τ

F(τ) .

Exercise 4.10. Show that in the previous example of a sheaf for the recurrence
relationun+1 = Anun, the global solutions to this dynamical system are classified
by the global sections of the sheaf.

The observed fact that the value of the sheaf over all of X retains the same sort
of structure as the type of data over the vertices — say, a vector space over a field F

— is a hint that this space of global solutions is really a type of homological data.
In fact, it is cohomological in nature, and, like zero-dimensional cohomology, it
is measure of connected components of the sheaf.

Cellular Sheaf Cohomology

In the simple setting of a compact cell complex X, it is easy to define a cochain
complex based on a sheaf F on X. Let Cn(X;F) be the product of F(σ) over all
n-cells σ of X. These cochains are connected by coboundary maps as follows:

(4.11) 0 −→
∏

dim σ=0

F(σ)
d−→

∏
dim σ=1

F(σ)
d−→

∏
dim σ=2

F(σ)
d−→ · · · ,

where the coboundary map d is defined on sections over cells using the sheaf
restriction maps

(4.12) d(sσ) =
∑
σPτ

[σ : τ]F(σPτ)sσ,

where, for a regular cell complex, [σ : τ] is either zero or ±1 depending on the
orientation of the simplices involved (beginners may start with all vector spaces
using binary coefficients so that −1 = 1). Note that d : Cn(X;F) → Cn+1(X;F),
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since [σ : τ] = 0 unless σ is a codimension-1 face of τ. This gives a cochain com-
plex: in the computation of d2, the incidence numbers factor from the restriction
maps, and the computation from cellular co/homology suffices to yield 0. The
resulting cellular sheaf cohomology is denoted H•(X;F).

This idea of global compatibility of sets of local data in a sheaf yield, through
the language of cohomology, global qualitative features of the data structure. We
have seen several examples of the utility of classifying various types of holes or
large-scale qualitative features of a space or complex. Imagine what one can do
with a measure of topological features of a data structure over a space.

Exercise 4.13. The cohomology of the constant sheaf FX on a compact cell com-
plex X is, clearly, H•cell(X; F), the usual cellular cohomology of X with coefficients
in F. Why the need for compactness? Consider the following cell complex: X = R,
decomposed into two vertices and three edges. What happens when you follow
all the above steps for the cochain complex of FX? Show that this problem is
solved if you include in the cochain complex only contributions from compact
cells.

Exercise 4.14. For a closed subcomplex A ⊂ X, one can define the constant sheaf
over A as, roughly speaking, the constant sheaf on A (as its own complex) with
all other cells and face maps in X having data zero. Argue that H•(X; FA) ∼=

H•(A; F). Conclude that it is possible to have a contractible base space X with
nontrivial sheaf cohomology.

The elements of linear algebra recur throughout topology, including sheaf co-
homology. Consider the following sheaf F over the closed interval with two ver-
tices, a and b, and one edge e. The stalks are given as F(a) = Rm, F(b) = 0, and
F(e) = Rn. The restriction maps are F(bPe) = 0 and F(aPe) = A, where A is
a linear transformation. Then, by definition, the sheaf cohomology is H0 ∼= ker A

and H1 ∼= coker A.
Cellular sheaf cohomology taking values in vector spaces is really a charac-

terization of solutions to complex networks of linear equations. If one modifies
F(b) = Rp with F(bPe) = B another linear transformation, then the cochain
complex takes the form

(4.15) 0 // Rm ×Rp
[A|−B]

// Rn // 0 // · · · ,

where d = [A|−B] : Rm+p → Rn is augmentation of A by −B. The zeroth sheaf
cohomology H0 is precisely the set of solutions to the equation Ax = By, for
x ∈ Rm and y ∈ Rp. These are the global sections over the closed edge. The first
sheaf cohomology measures the degree to which Ax−By does not span Rn. All
higher sheaf cohomology groups vanish.

Exercise 4.16. Prove that sheaf cohomology of a cell complex in grading zero
classifies global sections: H0(X;F) = F(X).
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Cosheaves Sheaves are meant for cohomology: this direction of the restriction
maps insures this. Is there a way to talk about sheaf homology? If one works
in the cellular case, this is a simple process. As we have seen that the only real
difference between the cohomology of a cochain complex and the homology of
a chain complex is whether the grading ascends or descends, a simple matter of
arrow reversal on a sheaf should take care of things. It does. A cosheaf F̂ of vector
spaces on a simplicial complex assigns to each simplex σ a vector space F̂(σ) and
to each face σPτ of τ a corestriction map – a linear transformation F̂(σPτ) : F̂(τ)→
F̂(σ) that reverses the direction of the sheaf maps. Of course, the cosheaf must
respect the composition rule:

(4.17) ρPσP τ ⇒ F̂(ρPτ) = F̂(ρPσ) ◦ F̂(σPτ),

and the identity rule that F̂(τPτ) = Id.
In the cellular context, there are very few differences between sheaves and

cosheaves — the use of one over another is a matter of convenience, in terms
of which direction makes the most sense. This is by no means true in the more
subtle setting of sheaves and cosheaves over open sets in a continuous domain.

Splines & Béziers. Cosheaves and sheaves alike arise in the study of splines,
Bézier curves, and other piecewise-assembled structures. For example, a single
segment of a planar Bézier curve is specified by the locations of two endpoints,
along with additional control points, each of which may be interpreted as a handle
specifying tangency data of the resulting curve at each endpoint. The reader who
has used any modern drawing software will understand the control that these
handles give over the resulting smooth curve. Most programs use a cubic Bézier
curve in the plane – the image of the unit closed interval by a cubic polynomial
. In these programs, the specification of the endpoints and the endpoint handles
(tangent vectors) completely determines the interior curve segment uniquely.

This can be viewed from the perspective of a cosheaf F̂ over the closed interval
I = [0, 1]. The costalk over the interior (0, 1) is the space of all cubic polynomials
from [0, 1]→ R2, which is isomorphic to R4 ⊕R4 (one cubic polynomial for each
of the x and y coordinates). If one sets the costalks at the endpoints of [0, 1] to be
R2, the physical locations of the endpoints, then the obvious corestriction maps
to the endpoint costalks are nothing more than evaluation at 0 and 1 respectively.
The corresponding cosheaf chain complex is:

(4.18) · · · // 0 // R4 ⊕R4 ∂
// R2 ⊕R2 // 0.

Here, the boundary operator ∂ computes how far the cubic polynomial (edge
costalk) ‘misses’ the specified endpoints (vertex costalks).

Exercise 4.19. Show that for this simple cosheaf, H0 = 0 and H1 ∼= R2 ⊕ R2.
Interpret this as demonstrating that there are four degrees of freedom available
for a cubic planar Bézier curve with fixed endpoints: these degrees of freedom
are captured precisely by the pair of handles, each of which is specified by a
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(planar) tangent vector. Repeat this exercise for a 2-segment cubic planar Bézier
curve. How many control points are needed and with what degrees of freedom
in order to match the H1 of the cosheaf?

Note the interesting duality: the global solutions with boundary condition
are characterized by the top-dimensional homology of the cosheaf, instead of the
zero-dimensional cohomology of a sheaf. This simple example extends greatly, as
shown originally by Billera (using cosheaves, without that terminology [16]) and
Yuzvinsky (using sheaves [90]). Billera’s work implies that the (vector) space of
splines over a triangulated Euclidean domain is isomorphic to the top-dimensional
homology of a particular cosheaf over the domain. This matches what you see in
the simpler example of a Bézier curve over a line segment.

Splines and Béziers are a nice set of examples of cosheaves that have natu-
ral higher-dimensional generalizations — Bézier surfaces and surface splines are
used in design and modelling of surfaces ranging from architectural structures to
vehicle surfaces, ship hulls, and the like. Other examples of sheaves over higher-
dimensional spaces arise in the broad generalization of the Euler characteristic to
the Euler calculus, a topological integral calculus of recent interest in topological
signal processing applications [9, 10, 80–82].

Towards Generalizing Barcodes One of the benefits of a more general, sophis-
ticated language is the ability to reinterpret previous results in a new light with
new avenues for exploration appearing naturally. Let’s wrap up our brief survey
of sheaves and cosheaves by revisiting the basics of persistent homology, follow-
ing the thesis of Curry [33]. Recall the presentation of persistent homology and
barcodes in Lecture 2 that relied crucially on the Structure Theorem for linear
sequences of finite-dimensional vector spaces (Theorem 2.15).

There are a few ways one might want to expand this story. We have hinted
on a few occasions the desirability to work over a continuous line as a parameter:
our story of sequences of vector spaces and linear transformations is bound to
the discrete setting. Intuitively, one could take a limit of finer discretizations and
hope to obtain a convergence with the appropriate assumptions on variability.
Questions of stability and interleaving (recall Exercise 2.24) then arise: see [18,21,
66]

Another natural question is: what about non-linear sequences? What if instead
of a single parameter, there are two or more parameters that one wants to vary?
Is it possible to classify higher-dimensional sequences and derive barcodes here?
Unfortunately, the situation is much more complex than in the simple, linear
setting. There are fundamental algebraic reasons for why such a classification
is not directly possible. These obstructions originate from representation theory
and quivers: see [24, 28, 76]. The good news is that quiver theory implies the
existence of barcodes for linear sequences of vector spaces where the directions
of the maps do not have to be uniform, as per the zigzag persistence of Carlsson
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and de Silva [24]. The bad news is that quiver theory implies that a well-defined
barcode cannot exist as presently conceived for any 1-d sequence that is not a
Dynkin diagram (meaning, in particular, that higher-dimensional persistence has
no simple classification).

Nevertheless, one intuits that sheaves and cosheaves should have some bear-
ing on persistence and barcodes. Consider the classical scenario, in which one
has a sequence of finite-dimensional vector spaces Vi and linear transformations
ϕi : Vi → Vi+1. Consider the following sheaf F over a Z-discretized R. To each
vertex {i} is assigned Vi. To each edge (i, i+ 1) is assigned Vi+1 with an iden-
tity isomorphism from the right vertex stalk to the edge and ϕi as the left-vertex
restriction map to the edge data. Note the similarity of this sheaf to that of the
recurrence relation earlier in this lecture. As in the case of the recurrence rela-
tion, H0 detects global solutions: something similar happens for intervals in the
barcode.

Exercise 4.20. Recall that persistent homology of a persistence complex is really a
homology that is attached to an interval in the parameter line. Given the sheaf F
associated to R as above, and an interval I subcomplex of R, let FI be the restric-
tion of the sheaf to the interval, following Exercise 4.14. Prove that the number
of bars in the barcode over I is the dimension of H0(I;FI). Can you argue what
changes in F could be made to preserve this result in the case of a sequence of
linear transformations ϕi that do not all “go the same direction”? Can you adapt
this construction to a collection of vector spaces and linear transformations over
an arbitrary poset (partially-ordered set)? Be careful, there are some complica-
tions.

There are limits to what basic sheaves and cosheaves can do, as cohomology
does not come with the descriptiveness plus uniqueness that the representation
theoretic approach gives. Nevertheless, there are certain settings in which bar-
codes for persistent homology are completely captured by sheaves and cosheaves
(see the thesis of Curry for the case of level-set persistence [33]), with more char-
acterizations to come [34].

Homological Data, Redux We summarize by updating and expanding the prin-
ciples that we outlined earlier in the lecture series into a more refined language:

(1) Algebraic co/chain complexes are a good model for converting a space
built from local pieces into a linear-algebraic structure.

(2) Co/homology is the optimal compression scheme to collapse inessential
structure and retain qualitative features.

(3) The classification of linear algebraic sequences yields barcodes as a de-
composition of sequences of co/homologies, capturing the evolution of
qualitative features.

(4) Exact sequences permit inference from partial sequential co/homological
data to more global characterization.
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(5) A variety of different co/homology theories exist, adapted to different
types of structures on a space or complex, with functoriality being the
tool for relating (and, usually, equating) these different theories.

(6) Sheaves and cosheaves are algebraic data structures over spaces that can
be programmed to encode local constraints.

(7) The concomitant sheaf cohomologies [& cosheaf homologies] compress
these data structures down to their qualitative core, integrating local data
into global featuress.

(8) Classifications of sheaves and cosheaves recapitulates the classification of
co/chain complexes into barcodes, but presage a much broader and more
applicable theory in the making.

Application: Sensing & Evasion

Most of the examples of cellular sheaves given thus far have been simplistic,
for pedagogical purposes. This lecture ends with an example of what one can
do with a more interesting sheaf to solve a nontrivial inference problem. This ex-
ample is chosen to put together as many pieces as possible of the things we have
learned, including homology theories, persistence, cohomology, sheaves, compu-
tation, and more. It is, as a result, a bit complicated, and this survey will be
highly abbreviated: see [52] for full details.

Consider the following type of evasion game, in which an evader tries to hide
from a pursuer, and capture is determined by being “seen” or “sensed”. For
concreteness, the game takes place in a Euclidean space Rn and time progresses
over the reals. At each time t ∈ R, the observer sees or senses a coverage region
Ct ⊂ Rn that is assumed to (1) be connected; and (2) include the region outside a
fixed ball (to preclude the evader from running away off to infinity). The evasion
problem is this: given the coverage regions over time, is it possible for there to
be an evasion path: a continuous map e : {t} 7→ (Rn − Ct) on all of the timeline
t ∈ R. Such a map is a section of the projection p : (Rn ×R)−C → R from the
complement of the full coverage region C ⊂ Rn ×R to the timeline.

What makes this problem difficult (i.e., interesting) is that the geometry and
topology of the complement of the coverage region, where the evader can hide,
is not known: were this known, graph-theoretic methods would handily assist in
finding a section or determining nonexistence. Furthermore, the coverage region
C is not known geometrically, but rather topologically, with unknown embedding.
The thesis of Adams [3] gives examples of two different time-dependent coverage
regions, C and C ′, whose fibers are topologically the same (homotopic) for each
t, but which differ in the existence of evasion path. The core difficulty is that,
though C and C ′ each admit “tunnels” in their complements stretching over the
entire timeline, one of them has a tunnel that snakes backwards along the time
axis: topologically, legal; physically, illegal.
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Work of Adams and Carlsson [3] gives a complete solution to the existence of
an evasion path in the case of a planar (n = 2) system with additional genericity
conditions and some geometric assumptions. Recently, a complete solution in all
dimensions was given [52] using sheaves and sheaf cohomology. One begins with
a closed coverage region C ⊂ Rn ×R whose complement is uniformly bounded
over R. For the sake of exposition, assume that the time axis is given a discretiza-
tion into (ordered) vertices vi and edges ei = (vi, vi+1) such that the coverage
domains Ct are topologically equivalent over each edge (this is not strictly neces-
sary). There are a few simple sheaves over the discretized timeline relevant to the
evasion problem.

First, consider for each time t ∈ R, the coverage domain Ct ⊂ Rn. How many
different ways are there for an evader to hide from Ct? This is regulated by the
number of connected components of the complement, classified by H0(R

n−Ct).
Since we do not have access to Ct directly (remember – its embedding in Rn

is unknown to the pursuer), we must try to compute this H0 based only on the
topology of Ct. That this can be done is an obvious but wonderful corollary of
Alexander duality, which relates the homology and cohomology of complementary
subsets of Rn. In this setting, Alexander duality implies that H0(R

n−Ct) ∼=

Hn−1(Ct): this, then, is something we can measure, and motivates using the
Leray cellular sheaf H of n− 1 dimensional cohomology of the coverage regions
over the time axis. Specifically, for each edge ei define H(ei) = H

n−1(C(vi,vi+1)
)

to be the cohomology of the region over the open edge. For the vertices, use the
star: H(vi) = H

n−1(C(vi−1,vi+1)
).

Exercise 4.21. Why are the stalks over the vertices defined in this way? Show
that this gives a well-defined cellular sheaf using as restriction maps the induced
homomorphisms on cohomology. Hint: which way do the induced maps in coho-
mology go?

The intuition is that the global sections of this sheaf over the time axis, H0(R;H),
would classify the different complementary “tunnels” through the coverage set
that an evader could use to escape detection. Unfortunately, this is incorrect, for
reasons pointed out by Adams and Carlsson [3] (using the language of zigzags).
The culprit is the commutative nature of homology and cohomology — one can-
not discern tunnels which illegally twirl backwards in time. To solve this problem,
one could try to keep track of some sort of directedness or orientation. Thanks
to the assumption that Ct is connected for all time, there is a global orienta-
tion class on Rn that can be used to assign a ±1 to basis elements of Hn−1(Ct)

based on whether the complementary tunnel is participating in a time-orientation-
preserving evasion path on the time interval (−∞, t).

However, to incorporate this orientation data into the sheaf requires breaking
the bounds of working with vector spaces. As detailed in [52], one may use
sheaves that take values in semigroups. In this particular case, the semigroups are
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positive cones within vector spaces, where a cone K ⊂ V in a vector space V is a
subset closed under vector addition and closed under multiplication by R+ =

(0,∞), the [strictly] positive reals. A cone is positive if K ∩−K = ∅. With work,
one can formulate co/homology theories and sheaves to take values in cones: for
details, see [52]. The story proceeds: within the sheaf H of n− 1 dimensional
cohomology of C on R, there is (via abuse of terminology) a “subsheaf” +H of
positive cones, meaning that the stalks of +H are positive cones within the stalks
of H, encoding all the positive cohomology classes that can participate in a legal
(time-orientation-respecting) evasion path. It is this sheaf of positive cones that
classifies evasion paths.

Theorem 4.22. For n > 1 and C = {Ct} ⊂ Rn ×R closed and with bounded comple-
ment consisting of connected fibers Ct for all t, there is an evasion path over R if and
only if H0(R;+H) is nonempty.

Note that the theorem statement says nonempty instead of nonzero, since sheaf
takes values in positive cones, which are R+-cones and thus do not contain zero.
The most interesting part of the story is how one can compute this H0. This is
where the technicalities begin to weigh heavily, as one cannot use the classical def-
inition of H0 in terms of kernels and images. The congenial commutative world
of vector spaces requires significant care when passing to the nonabelian setting.
One defines H0 for sheaves of cones using constructs from category theory (lim-
its, specifically). Computation of such objects requires a great deal more thought
and care than the simpler linear-algebraic notions of these lectures. That is by
no means a defect; indeed, it is a harbinger. Increase in resolution requires an
increase in algebra.

Conclusion: Beyond Linear Algebra

These lecture notes have approached topological data analysis from the per-
spective of homological algebra. If the reader takes from these notes the singular
idea that linear algebra can be enriched to cover not merely linear transformations,
but also sequences of linear transformations that form complexes, then these lec-
tures will have served their intended purpose. The reader for whom this seems to
open a new world will be delighted indeed to learn that the vector space version
of homological algebra is almost too pedestrian to matter to mathematicians: as
hinted at in the evader inference example above, the story begins in earnest when
one works with rings, modules, and more interesting categories still. Neverthe-
less, for applications to data, vector spaces and linear transformations are a safe
place to start.

For additional material that aligns with the author’s view on topology and
homological algebra, the books [50, 51] are recommended. It is noted that the
perspective of these lecture notes is idiosyncratic. For a broader view, the inter-
ested reader is encouraged to consult the growing literature on topological data
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analysis. The book by Edelsbrunner and Harer [40] is a gentle introduction, with
emphases on both theory and algorithms. The book on computational homology
by Kaczynsky, Mischaikow, and Mrozek [62] has even more algorithmic material,
mostly in the setting of cubical complexes. Both books suffer from the short shelf
life of algorithms as compared to theories. Newer titles on the theory of persistent
homology are in the process of appearing: that of Oudot [76] is one of perhaps
several soon to come. For introductions to topology specifically geared towards
the data sciences, there does not seem to be an ideal book; rather, a selection of
survey articles such as that of Carlsson [23] is appropriate.

The open directions for inquiry are perhaps too many to identify properly –
the subject of topological data analysis is in its infancy. One can say with cer-
tainty that there is a slow spread of these topological methods and perspectives
to new application domains. This will continue, and it is not yet clear to this au-
thor whether neuroscience, genetics, signal processing, materials science, or some
other domain will be the locus of inquiry that benefits most from homological
methods, so rapid has been the advances in all these areas. Dual to this spread in
applications is the antipodal expansion into Mathematics, as ideas from homolog-
ical data engage with impact contemporary Mathematics. The unique demands
of data have already prompted explorations into mathematical structures (e.g.,
interleaving distance in sheaf theory and persistence in matroid theory) which
otherwise would seem unmotivated and be unexplored. It is to be hoped that the
simple applications of representation theory to homological data analysis will
enervate deeper explorations into the mathematical tools.

There is at the moment a frenzy of activity surrounding various notions of
stability associated to persistent homology, sheaves, and related structures con-
cerning representation theory. It is likely to take some time to sort things out into
their clearest form. In general, one expects that applications of deeper ideas from
algebraic topology exist and will percolate through applied mathematics into ap-
plication domains. Perhaps the point of most optimism and uncertainty lies in
the intersection with probabilistic and stochastic methods. The rest of this volume
makes ample use of such tools; their absence in these notes is noticeable. Topol-
ogy and probability are neither antithetical nor natural partners; expectation of
progress is warranted from some excellent results on the topology of Gaussian
random fields [6] and recent work on the homology of random complexes [63].
Much of the material from these lectures appears ripe for a merger with modern
probabilistic methods. Courage and optimism — two of the cardinal mathemati-
cal virtues — are needed for this.

References
[1] A. Abrams and R. Ghrist. State complexes for metamorphic systems. International Journal of Ro-

botics Research, 23(7,8):809–824, 2004. 7
[2] H. Adams and G. Carlsson. On the nonlinear statistics of range image patches. SIAM J. Imaging

Sci., 2(1):110–117, 2009. 22



50 References

[3] H. Adams and G. Carlsson. Evasion paths in mobile sensor networks. International Journal of
Robotics Research, 34:90–104, 2014. 46, 47

[4] R. J. Adler. The Geometry of Random Fields. Society for Industrial and Applied Mathematics, 1981.
9

[5] R. J. Adler, O. Bobrowski, M. S. Borman, E. Subag, and S. Weinberger. Persistent homology for
random fields and complexes. In Borrowing Strength: Theory Powering Applications, pages 124–143.
IMS Collections, 2010. 13

[6] R. J. Adler and J. E. Taylor. Random Fields and Geometry. Springer Monographs in Mathematics.
Springer, New York, 2007. 9, 49

[7] R. H. Atkin. Combinatorial Connectivities in Social Systems. Springer Basel AG, 1977. 6
[8] A. Banyaga and D. Hurtubise. Morse Homology. Springer, 2004. 32
[9] Y. Baryshnikov and R. Ghrist. Target enumeration via Euler characteristic integrals. SIAM J. Appl.

Math., 70(3):825–844, 2009. 9, 44
[10] Y. Baryshnikov and R. Ghrist. Euler integration over definable functions. Proc. Natl. Acad. Sci.

USA, 107(21):9525–9530, 2010. 9, 44
[11] Y. Baryshnikov, R. Ghrist, and D. Lipsky. Inversion of Euler integral transforms with applications

to sensor data. Inverse Problems, 27(12), 2011. 9
[12] U. Bauer and M. Lesnick. Induced matchingsand the algebraic stability of persistence barcodes.

Discrete & Computational Geometry, 6(2):162–191, 2015. 21
[13] P. Bendich, H. Edelsbrunner, and M. Kerber. Computing roburobustand persistence for images.

IEEE Trans. Visual and Comput. Graphics, pages 1251–1260, 2010. 22
[14] P. Bendich, J. Marron, E. Miller, A. Pielcoh, and S. Skwerer. Persistent homology analysis of brain

artery trees. To appear in Ann. Appl. Stat., 2016. 22
[15] S. Bhattacharya, R. Ghrist, and V. Kumar. Persistent homology for path planning in uncertain

environments. IEEE Trans. on Robotics, 31(3):578–590, 2015. 23
[16] L. J. Billera. Homology of smooth splines: generic triangulations and a conjecture of Strang. Trans.

Amer. Math. Soc., 310(1):325–340, 1988. 44
[17] L. J. Billera, S. P. Holmes, and K. Vogtmann. Geometry of the space of phylogenetic trees. Adv. in

Appl. Math., 27(4):733–767, 2001. 7
[18] M. Botnan and M. Lesnick. Algebraic stability of zigzag persistence modules. ArXiv:160400655v2,

Apr 2016. 21, 44
[19] R. Bott and L. Tu. Differential Forms in Algebraic Topology. Springer, 1982. 39
[20] G. Bredon. Sheaf Theory. Springer, 1997. 40
[21] P. Bubenik, V. de Silva, and J. Scott. Metrics for generalized persistence modules. Found. Comput.

Math., 15(6):1501–1531, 2015. 21, 44
[22] P. Bubenik and J. A. Scott. Categorification of persistent homology. Discrete Comput. Geom.,

51(3):600–627, 2014. 21
[23] G. Carlsson. The shape of data. In Foundations of computational mathematics, Budapest 2011, volume

403 of London Math. Soc. Lecture Note Ser., pages 16–44. Cambridge Univ. Press, Cambridge, 2013.
49

[24] G. Carlsson and V. de Silva. Zigzag persistence. Found. Comput. Math., 10(4):367–405, 2010. 44, 45
[25] G. Carlsson, T. Ishkhanov, V. de Silva, and A. Zomorodian. On the local behavior of spaces of

natural images. International Journal of Computer Vision, 76(1):1–12, Jan. 2008. 22
[26] G. Carlsson and F. Mémoli. Characterization, stability and convergence of hierarchical clustering

methods. J. Mach. Learn. Res., 11:1425–1470, Aug. 2010. 22
[27] G. Carlsson and F. Mémoli. Classifying clustering schemes. Found. Comput. Math., 13(2):221–252,

2013. 22
[28] G. Carlsson and A. Zomorodian. The theory of multidimensional persistence. Discrete Comput.

Geom., 42(1):71–93, 2009. 44
[29] S. Carson, V. Ruta, L. Abbott, and R. Axel. Random convergence of olfactory inputs in the

drosophila mushroom body. Nature, 497(7447):113–117, 2013. 14
[30] F. Chazal, V. de Silva, M. Glisse, and S. Oudot. The structure and stability of persistence modules.

Arxiv preprint arXiv:1207.3674, 2012. 21
[31] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persistence diagrams. Discrete Com-

put. Geom., 37(1):103–120, 2007. 21



References 51

[32] A. Collins, A. Zomorodian, G. Carlsson, and L. Guibas. A barcode shape descriptor for curve
point cloud data. In M. Alexa and S. Rusinkiewicz, editors, Eurographics Symposium on Point-
Based Graphics, ETH, Zürich, Switzerland, 2004. 20

[33] J. Curry. Sheaves, Cosheaves and Applications. PhD thesis, University of Pennsylvania, 2014. 44, 45
[34] J. Curry and A. Patel. Classification of constructible cosheaves. ArXiv 1603.01587, Mar 2016. 45
[35] C. Curto and V. Itskov. Cell groups reveal structure of stimulus space. PLoS Comput. Biol.,

4(10):e1000205, 13, 2008. 13
[36] M. d’Amico, P. Frosini, and C. Landi. Optimal matching between reduced size functions. Techni-

cal Report 35, DISMI, Univ. degli Studi di Modena e Reggio Emilia, Italy, 2003. 20
[37] V. de Silva and G. Carlsson. Topological estimation using witness complexes. In M. Alexa and

S. Rusinkiewicz, editors, Eurographics Symposium on Point-based Graphics, 2004. 6
[38] J. Derenick, A. Speranzon, and R. Ghrist. Homological sensing for mobile robot localization. In

Proc. Intl. Conf. Robotics & Aut., 2012. 24
[39] C. Dowker. Homology groups of relations. Annals of Mathematics, pages 84–95, 1952. 6
[40] H. Edelsbrunner and J. Harer. Computational Topology: an Introduction. American Mathematical

Society, Providence, RI, 2010. 3, 49
[41] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification.

Discrete and Computational Geometry, 28:511–533, 2002. 20
[42] M. Farber. Invitation to Topological Robotics. Zurich Lectures in Advanced Mathematics. European

Mathematical Society (EMS), Zürich, 2008. 9
[43] D. Farley and L. Sabalka. On the cohomology rings of tree braid groups. J. Pure Appl. Algebra,

212(1):53–71, 2008. 34
[44] D. Farley and L. Sabalka. Presentations of graph braid groups. Forum Math., 24(4):827–859, 2012.

34
[45] R. Forman. Morse theory for cell complexes. Adv. Math., 134(1):90–145, 1998. 33
[46] R. Forman. A user’s guide to discrete Morse theory. Sém. Lothar. Combin., 48, 2002. 33
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