COVERAGE IN SENSOR NETWORKS VIA PERSISTENT HOMOLOGY

VIN DE SILVA AND ROBERT GHRIST

ABSTRACT. We consider coverage problems in sensor networks with minimal sens-
ing capabilities. In particular, we demonstrate that a stationary collection of sensor
nodes with no localization can verify coverage in a bounded domain of unknown
topological type, so long as the boundary is not too pinched. The only sensing ca-
pabilities required by the nodes are a binary form of distance estimation between
nodes and a binary proximity sensor for the boundary. The methods we introduce
come from persistent homology theory.

1. INTRODUCTION

Coverage problems arise in a variety of networks, communication and security
being prominent examples. Given a collection of nodes in a fixed domain, each
node having a neighborhood in which its sensors are active, one wants to know the
extent of coverage by the nodes’ sensor regions. In this paper we focus attention on
the particular class of static, blanket coverage. By “static” is meant that the nodes
are stationary; by “blanket” it is meant that one wants to determine if the entire
domain is covered by sensor regions based at the nodes.

We give a homological criterion for certifying coverage. The criterion is centralized
(as opposed to distributed) and conservative (failure of the criterion does not imply
failure of coverage). This coverage represents a novel application of classical ideas
in homology theory.

1.1. Assumptions. The methods we introduce are meant to work in settings where
there are a large number of nodes with minimal and localized sensing capabilities.
They have limited range and are devoid of localization and orientation capabilities,
possessing merely a binary form of in-range distance measurement. More specifi-
cally, each node has a unique ID which it broadcasts. All other robots within range
can “hear” its neighbor as either a strong or weak signal, depending on the distance
to that node. We assume a small amount of information about the underlying do-
main D C R% one knows only the dimension and connectivity and that the domain
is not too “pinched’ or ‘wrinkled’. It is not necessary to assume knowledge of the
topology of the domain, or of its large-scale geometry (e.g., volume).
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A1 Nodes have radially symmetric covering domains (for sensing or broad-
casting) of covering radius 7.

A2 Nodes broadcast their unique ID numbers. Each node can detect the iden-
tity of any node within radius rs via a strong signal, or via a weak signal
within a larger radius r,.

A3 The radii of communication 7, 7, and the covering radius . satisfy

(11) Te 2 Ts/\/i ; Tw = Ts\/ﬁv

A4 Nodes lie in a compact domain D C R?. Nodes can detect the presence (but
not the location or direction) of the boundary 0D within a fence detection
radius .

A5 The restricted domain D — N;(9D) is connected, where

(1.2) N;(0D) = {z € D: ||z — dD| < #}, where # = r; +75/V2.

A6 The fence detection hypersurface ¥ = {x € D : ||z — ID|| = r¢} has internal
injectivity radius at least r;/v/2 and external injectivity radius at least rs.

Assumptions A1-A4 specify the communication capabilities of the nodes. Assump-
tion A5 is needed to prevent the domain from being too ‘pinched’. This is clearly
necessary since nodes with neither a map nor coordinates cannot distinguish be-
tween certain pinched domains and a disconnected domain. Assumption A6 means
that the outermost boundary cannot exhibit large-scale ‘wrinkling’. This assump-
tion is used in the details of the proof of Theorem 3.4 for eliminating pathological
configurations. See Remark 4.5 for discussion on weakening this condition.

The last assumptions, A5 and A6, are the only restrictions on the geometry of the
domain. We emphasize that the number of boundary components is not assumed
to be known: nodes have no information about the boundary other than whether
they are within range 7. This ¢ is independent of the node-to-node communica-
tion radii s and r,, and the coverage radius .. The volume of the domain is not
assumed to be known, and convexity is not at all required.

To summarize, the sensor data consists of three ingredients. Each node ascertains
a primary list of node ID numbers associated to a ‘strong’ detection signal, as well
as a secondary list of node ID numbers flagged as coming from the ‘weak’ signal.
The third piece of data associated to each node is a fence-detection binary flag.

Remark 1.1. The numerical constants which appear in assumptions A3, A5 and A6
are independent of the ambient dimension d. There are tighter constants which de-
pend on d, and we summarize those results later on. Our proofs will be structured
so that we can read off the improved constants without additional work.

1.2. Results. This coordinate-free data can be sufficient to rigorously verify cov-
erage of the domain (ignoring regions too close to the boundary) in certain cases.
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Our strategy is as follows. We build a nested collection of graphs

GséGw

| Iu

F — Fy
The graphs G and G, are defined in the obvious manner via communication links:
the vertices are the nodes of the network, and the edges are present between nodes
which are within distance r, and r,, respectively. These are communication graphs
for the strong and weak signals respectively. The graphs F; and F,, are the strong
and weak fence subgraphs — the maximal subgraphs of G (respectively G.,) whose
nodes all lie within the fence detection radius.

From these four graphs, we define a system of nested simplicial complexes,

RS$R’W?

o] Iu
Fo—== Fu

called Rips complexes, whose simplices are determined by ‘filling in” the corre-
sponding graphs: each is the largest simplicial complex with the corresponding
graph as its 1-d skeleton.

The sensor cover, U, is the union over X of discs of radius r.. Our results link the
topology of the cover U to the homology of the diagram of Rips complexes.

Main Theorem: For a fixed set of nodes X in a domain D C RY satisfying assumptions
A1-A6, the sensor cover U contains D — N;(0D) if the homomorphism

(1.3) te : Hy(Rs, Fs) — Hyg(Ruw, Fu)
induced by the inclusion v : Ry — R, is nonzero.

Increasingly, homology is a practical tools in applications which require compu-
tation of global structure: see the texts [10, 12] for an introduction, the latter con-
taining several current applications in science and engineering. Such applications
include vision and recognition [1], hybrid systems and control theory [2], rigorous
verification of dynamics from experimental data [17], and global analysis of large
data sets [4]. In the last example, there is a growing literature on the importance of
persistent homology — homology classes which persist as one changes a parame-
ter in the system. It is this perspective that inspired the work in this paper.

1.3. Related work. The large literature on coverage problems for networks rests
on two pillars of techniques. The first, the computational geometry approach,
takes as its argument the geometric structure of the nodes — precise coordinates
— and returns an auxiliary structure from which coverage or non-coverage can be
deduced. Typical in this approach is the use of Delaunay triangulations (in 2-d),
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see, e.g., [16, 14, 20]. The precision with which coverage and lack of coverage can
be determined is offset by the precision with which the coordinates of the nodes
must be measured; such techniques are thus inapplicable in the context of ‘mini-
mal” coordinate-free sensors. The second approach uses probabilistic tools. Under
assumptions of a uniform random distribution of points and a domain of known
geometry, one can prove results about probability of coverage at a given density of
nodes. Such methods are more appropriate in contexts for which the coordinates of
nodes are unknown, see [13, 19, 15]; however, the assumptions on the uniformity
of the distribution are crucial.

2. FACTORING COVERAGE THROUGH COMMUNICATION

Given a collection of nodes & in a domain, we wish to determine the global prop-
erties of U, the union of coverage domains centered at these nodes. However, we
are constrained to use only communication connectivity data between nodes. In
this section, we outline the basic constructions used to form a coverage criterion in
the subsequent section.

2.1. Simplicial complexes for covers. The problem of computing the topological
type of a union of sets is classical, and easily handled using the concept of a Cech
complex (also called the nerve of the cover).

Definition 2.1. Given a collection of sets 2/ = {U,}, the Cech complex of U, C(Uf),
is the abstract simplicial complex whose k-simplices correspond to nonempty in-
tersections of £ + 1 distinct elements of I/.

If the cover is good — that is, if the cover sets and all nonempty finite intersections
of cover sets are contractible — then the Cech complex C captures the topology of
the cover: (see, e.g., [10])

Theorem 2.2 (The Cech Theorem). The Cech complex of a good cover has the homotopy
type of the union of the cover sets.

Unfortunately, it is highly nontrivial to compute a Cech complex: one needs very
precise data on pairwise distances between nodes. In the context of a sensor net-
work with minimal range-sensing capabilities, the Cech complex is seemingly unattain-
able. Therefore, we consider the following related construction, which is more
adapted to communication network constraints.

The Rips complex associated to a set of points is a notion originally developed by
Vietoris in the earliest development of homology theory [18]. The concept was
revived by Rips” work in geometric group theory and now generally goes by his
name (see [9, 11]).

Definition 2.3. Given a set of points X = {z,} C R" in Euclidean n-space and a
fixed radius ¢, the Rips complex of X', R (X), is the abstract simplicial complex
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whose k-simplices correspond to unordered (k + 1)-tuples of points in X which are
pairwise within Euclidean distance e of each other.

Definition 2.4. In the setting of our main theorem, R, R,, denote the Rips com-
plexes on X with radii r, ,, respectively.

The Rips complex is ideally suited to communication networks, since the entire
complex is determined by pairwise communication data. Unfortunately, the Rips
complex does not necessarily capture the topology of the union of cover discs: we
have traded computability for accuracy. Figure 1 gives a fundamental class of ex-
amples for which the Rips complex fails to capture the Cech complex.

Y U\
//’l’ B -\-1.\ /’---_ ?‘ \\ . .
i \ ..:Q,?\;'f
|\ /.—/fr;‘— "\‘\ i & | i@
\"'r--—--'i > V 5w

FIGURE 1. A class of examples for which the Rips complex R, de-
tects ‘phantom” topological features. Take 2k + 2 points equidistrib-
uted on a circle of diameter rs + A where A < 1. The Cech complex
(at the corresponding radius) is homotopy equivalent to a circle, as
the Cech Theorem requires. The Rips complex however is isomor-
phic to the boundary of a cross-polytope in k 4 1 dimensions. This
Rips complex is thus homeomorphic to the sphere S* and accord-
ingly is very different from the Cech complex for k > 1. Illustrated
is the case k = 2, with R, an octahedron.

2.2. Optimal factorization of the Rips complex. Since we assume that sensors
can ascertain communication links, it follows that the 1-dimensional skeleton of
the Cech complex can be determined directly from the sensor data. In the best
of worlds, the Vietoris—Rips complex of the communication graph would suffice
to capture the Cech complex: unfortunately, this is not true. However, one can
“squeeze” the Cech complex (something hard to compute) in between R and R,
(something computable on the hardware level). In this subsection, we detail this
nesting and prove optimality.

Theorem 2.5. Let X be a set of points in R and C.(X) the Cech complex of the cover of
X by balls of radius €/2. Then there is chain of inclusions

€ 2d

Re(X) CC(X) CRe(X) whenever - P

M
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Moreover, this ratio is the smallest for which the inclusions hold in general.

Proof: The second inclusion is trivial because the criterion for inclusion of a simplex
in R, is weaker than the criterion for inclusion of a simplex in C, (if the balls of
radius €/2 centered at the vertices have a common intersection then each pair of
vertices is separated by distance at most €).

The first inclusion is equivalent to the following assertion: if a collection of points
in R? is such that every pair is separated by a distance at most ¢, then the balls of
radius ¢/2 centered on these points have a common intersection. Proving this for a
set of k£ + 1 points implies that every k-simplex of R,/ belongs also to Ce.

We will prove it first for a set of d’' + 1 points {zg, z1, ...,z }, where d’ < d. Con-
sider the function f : RY — R defined:

fly) = Jnax, s =yl

This is continuous and moreover f(y) — +oo as ||y|| — oo, so it follows that f has
a global minimum f(yo), say. Define the critical vertices to be those points x; for
which [|lz; — yoll = f (o).

Note that there is no vector v which separates, in the sense that v - (z; — yo) > 0 for
each critical vertex x;. For such a vector we could calculate that

i = woll? = Nl — (o + M) + 220 (25 — 30)
>z — (yo + )12
for all A > 0 and therefore f(yo+Av) < f(yo) for 0 < A\ < 1, contradicting minimal-

ity. Since no separating vector exists, yo must lie in the convex hull of the critical
vertices.

It is convenient to make the translation z; = x; — y9. We can now find a convex
combination agZo+ a1y +- - - +agZqr = 0 for some d” < d’, after relabeling so that

xo, 21, . ..,2q are critical vertices, the coefficients a; are strictly positive, and ay is
1
the largest of the terms ag, a1, ...,aq/. Then =g = Zle(ai /ap)z; and so
d//
2 S 2 SN
—f(o)® = =ll&oll> = (ai/ao)do - &
i=1

At least one of the d” terms on the right-hand side must satisfy (a;/ag)Zo - &; <
—f(y0)?/d", which can be weakened and rearranged to f(yo)?/d < —32¢ - 2;. We
also know that f(yo)? = ||20/|*> = 4:]|*. Putting this together

Fo)> (L + (2/d) +1) < ||@ol|® — 2@0 - @5 + || 24
= &0 — &l* = [|wo — x:]|* < (€)°

€ 2d €
<2<
fwo) =5\ g1 53

and hence
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It follows that the balls of radius €/2 centered on the given d + 1 points must meet
at yg.

For a set of greater than d+-1 points, the result follows by applying Helly’s theorem
[7]. This asserts that a collection of k > d + 2 convex sets in R? has a nonempty
common intersection provided only that the same is true for each subset of size d +
1. If we have k points spanning a simplex in R, we have just established that each
set of d + 1 of the €/2-balls at these vertices must have a nonempty intersection. By
Helly’s theorem, the same is true for the entire set of k balls. Hence the vertices
span a simplex in C..

The lower bound on ¢/¢€’ is tight in the case of a regular d-simplex. O

2.3. Sensor complexes. In order to determine coverage, it is necessary to know
that there are no ‘holes’ in the interior of the cover; as well, one must check that
the cover extends sufficiently far out to the boundary of the domain. This latter
condition prompts the following:

Definition 2.6. Given a system with fence-detection as per assumption A4, define
the strong and weak fence subcomplexes, 7; C R, and F,, C R,, respectively, to
be the maximal subcomplexes of R, and R,, whose vertices lie within distance 7
of the 0D.

Lemma 2.7. Under the assumptions of our main theorem (in particular r. > rs/ V?2), any
collection of nodes in D which form a simplex of R has its convex hull entirely contained
within U.

Remark 2.8. It follows from Lemma 2.7 that Theorem 3.4 is true in the trivial situa-
tion where D — N;(0D) is entirely contained inside some d-simplex of R .

The lemma can be read out of the following more precise result.

Lemma 2.9. Let p belong to the convex hull of points xq,x1,...,x; € R? and suppose

€ >e\/2d/(d+1). If |x; — xj|| < eforalli,j, then ||p — ;|| < €/2 for some i.

Proof: By Theorem 2.5, the balls of radius ¢ /2 centered at the points x; are guaran-
teed to meet at a common point y. Let p = apzg + a121 + - - - + arzy be a convex
combination of the nodes (so the a; are nonnegative and sum to unity). We re-
arrange this as 0 = apZo + a121 + - - - + arZ where 2; = x; — p. Taking the dot
product with § = y — p we find that 0 = aoZo - § + @121 - §y + - - - + axZx - ¥ so for

some ¢ we must have &; - § < 0. In that case
(€/2)? > o —yll® = Iz —al> = [|&l® — 22 -9+ I9]?

I2:l|* = [l — pl*

v

as required. O

Remark 2.10. If k < d then the hypothesis in the preceding lemma can be weakened
to ¢ > ey/2k/(k + 1), since we can work in a k-dimensional affine subspace of R?.
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3. A HOMOLOGICAL CRITERION FOR COVERAGE

Our criterion for coverage is based on the homology of the inclusion map ¢ :
(Rs, Fs) — (Ruw, Fw). We claim that coverage is implied by having a nonzero gen-
erator for the top-dimensional relative homology group Hy(Rs, Fs) which persists
(remains nonzero) under the induced homomorphism ¢, to Hg(R., Fu)-

3.1. Intuition and persistence. With assumptions A5 and A6, the top dimensional
relative homology H;(D, N;(0D)) has rank one. Furthermore, it is true that Hg (U U
N;:(0D), N;(0D)) is nonzero if and only if ¢/ contains D — N;(0D). However, we
cannot compute U directly. The simplicial complex which captures the topology
of U — the Cech complex — is impossible to compute without coordinates or at
least accurate distances between sensors. Rips complexes are, in contrast, very
manageable merely with communication data (and hence computable on the hard-
ware level). Thus, it would make sense to hope that if H;(Rs, Fs) is nonzero, then
U CD-— N; (67))

But this is not always the case. Consider the 2-d setting of Fig. 2, in which there is
a cycle of points within F; all of which are attached to a single vertex in R; — Fs.
This cycle is such that two of the edges are of length r, while the other two edges
are of length ¢ < 5 As such, neither of the diagonals is of length r, and is therefore
not present in Fs. This system has Hy(Rs, Fs) # 0: there exist “fake” relative 2-
cycles which do not imply coverage of the entire domain. Other fake cycles can be
generated from the examples of Fig. 1 in any dimension.

/
y

FIGURE 2. A fake generator for Hy(R, F,) which is annihilated by
inclusion ¢, into Ha(R., Fy). The strip illustrated is a collar of ra-
dius ry.

Note, however, what happens to this relative 2-cycle under increasing the commu-
nication radius from r, to r,,, then the loop in F; is “filled in” by diagonals, and the
image of this fake class under ¢, is the zero element of Hy(R,, Fy,). Assuming that
these points are a portion of a larger subset of nodes, it is not necessarily the case that
H3 (R, Fw) = 0, since there may be a new fake 2-cycle which comes into existence



COVERAGE IN SENSOR NETWORKS VIA PERSISTENT HOMOLOGY 9

at the longer communication lengths: but the original fake 2-cycle is annihilated
by ¢..

3.2. Preliminary lemmas. All of the difficulty in proving coverage comes from the
analysis of the cover near the boundary 0D. For applications to sensor networks,
we wish to minimize constraints on the number and types of boundary compo-
nents. As a result, we can guarantee coverage only outside of a neighborhood of
the boundary. We begin with some technical results concerning the geometry of
how the fence nodes are situated.

Lemma 3.1. Let N;:(0D) = R? — (D — N:(9D)) denote the extended collar of D. For
any collection of nodes in D which form a simplex of Fs, its convex hull lies within N;(0D),
or else we are in the trivial case described in Remark 2.8.

Proof: 1t suffices, by Carathéodory’s Theorem [7], to show that the d-dimensional
skeleton of F; lies within N;(0D). First consider the (d — 1)-skeleton. For k < d —1
let g, x1,...,2, € Xy define a k-simplex o in F;. By Remark 2.10, for any z € o
there is an z; such that ||z; — z|| < rg4/(d — 1)/2d. Combining this with the fact that

x; € Xy using the triangle inequality yields « € N;(9D).

Now suppose z lies in some d-simplex ¢ but is not in the (d — 1)-skeleton. Then o
is not degenerate, and x must lie in its interior. Since D — N;(0D) = D — N;(9D) is
connected and does not meet 0o, it is either entirely contained in the interior of ¢
or it is disjoint from o. Thus, either we are in the trivial situation of Remark 2.8, or
z € N;(0D). O

Remark 3.2. The proof is easier if we are not concerned with obtaining optimal
dimension-dependent bounds. Then we can simply say that for any simplex o
(regardless of its dimension) and = € o there is a vertex x; such that ||z; — z| <

rs/V2.

The last and most technical lemma is a variant of Theorem 2.5 adapted to a (d — 1)-
cycle in a thickened hypersurface in R of thickness A. By this we mean a domain
homeomorphic to a closed (d — 1)-dimensional manifold cross an interval, which
can be foliated by line segments of length no more than A.

Lemma 3.3. Let S C R? be a thickened hypersurface of thickness A and let X C S denote
a collection of points which forms a (d — 1)-cycle [y] € Hy—1(Re(X)), for some € > 0 such
that ~ is contained entirely within S. If [y] = 0in Hy_1(S), then [y] = 0 in the € Rips
complex R (X), where

(3.1) e/:\/AQ-i-QeQd;l.

Proof: Denote by ~ the cycle as a geometric (d — 1)-cycle in S and let U’ denote the
union over X of balls of radius € /2. For our choice of € it follows from Remark 2.10
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and Pythagoras’ theorem that U/’ contains the set I/ obtained by covering every
point of ~y (simplices as well as vertices) with a ball of radius A /2.

Assume by way of contradiction that [y] # 0 in Hy_1(Re (X)) yet is trivial in
H; 1(S). From Theorem 2.5, R (X) C Co(X) C Re(X). Thus, 7 is a nontrivial
cycle in Co(X). By the Cech Theorem and Alexander duality, there exists a point
p € S —U' enclosed by 7.

Since S has thickness A, there is a line segment ¢ in S of length at most A passing
through p and connecting the two boundary components of S. As + is trivial in
H;1(S), the two endpoints of ¢ are homologically not enclosed by ~, unlike p.
For this reason ¢ must cross v at least once on each side of p. Thus ¢ intersects
U in at least two disjoint segments. Each such segment has length at least A/2:
contradiction. O

3.3. The coverage criterion. The following theorem is our principal coverage cri-
terion:

Theorem 3.4. For a fixed set of nodes X in a domain D C R? satisfying assumptions
A1-A6, the sensor cover U contains D — N;(0D) if the homomorphism

(32) Ly © Hd(R&fs) - Hd(Rwafw)

induced by the inclusion v : Rs — R, is nonzero.

Proof: To start with, we can assume that we are not in the situation covered by
Remark 2.8, where the theorem is trivially true.

Consider the simplicial realization map ¢ : Ry — D which sends vertices of R to
the points X C D and which sends a k-simplex of R, to the (potentially degenerate)
k-simplex given by the convex hull of the vertices implicated. Since the exceptional
case is excluded, Lemma 3.1 implies that o takes the pair (R, Fs) to (R, N:(0D));
we therefore construct the following diagram from the long exact sequences of the
pairs:

Ox

(33) Hd(R&fs) Hd—l(fs)
Hy(R?, N;(0D)) - Hq1(N#(0D))

Here, 6, acts on a class [a] € Hy(Rs, Fs) by taking the boundary: é.[a] = [0a] €
Hg_1(Fs). The diagram of Eqn. (3.3) is commutative: 6,0, = 0.6,. The homology
class 0.0.[a] measures the degree of dc, or how many times the boundary of «
“wraps around” the extended collar N;(9D).

Now let [o] € Hy(Rs, Fs) be a class for which ¢, [a] # 0.
Case 1: 0.0.[a] # 0.
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By commutativity of Eqn. (3.3), d.o.[a] = o0.ds]a] # 0. Hence, o.[a] # 0. As-
sume that &/ does not contain D — N;(0D) and choose p € D — (N;(0D) U U).
Since, by Lemma 2.7, every point in 0(R;) lies within U/, this implies that o :
(Rs, Fs) — (R4, N;(0D)) factors through the pair (R — p, N;(9D)). However,
Hy(RY—p, N;(0D)) = 0since, by Alexander duality, Hy(R?—p, N;(0D)) = H(R?—
N;:(0D), p), which vanishes since R? — N;(9D) is connected. This gives the contra-
diction o.[a| = 0. Thus U contains D — N;(0D) after all.

Case 2: 0.0.[a] = 0.

We demonstrate that this case is impossible under the hypothesis t.[a] # 0. We
construct the following commutative diagram with three rows, the top and bottom
of which come from the long exact sequence of the pairs (R, Fs) and (R, Fu)
respectively. The middle row comes from the pair (R,,, F,,) — the Rips and Fence
complexes computed at the “midrange” signal of radius

5. B \/7d—5+2\/2d(d—1)
. Tm = Ts 2d .

The inclusion map ¢ : (Rs, Fs) — (R, Fuw) factors through the pair (R, Fpn).

TN

s O
Hy(Ron) 2> Hy(Rm, Frn) ——> Hy_1(Fyn)
H, ‘

| 5*

s O«
(3.5) Hy(Ry) 2 Hy(Ry, Fy) ——> Hy_(F)
)
(Rw) L> Hd(RwaFw) — Hd—l(fw)

Represent the relative homology class [o] by an explicit cycle «, comprised of sim-
plices in Ry — F. We claim that the geometric (d — 1)-cycle o(da) is contained in a
particular shell S, defined as follows. Let ¥ denote the hypersurface(s) of points at
the precise fence detection radius:

Y={zeD:|xz—-0D| =rs}

Let S denote the set of points in R? within distance r,+/(d — 1)/2d of ¥ on the
interior side (i.e. the side of 3 corresponding to the interior of D), and within dis-
tance ry of ¥ on the exterior side. It is helpful to define a signed distance function
|h(z)| = d(x,X) with h(x) positive iff = is on the exterior side; then S is defined by

the inequalities —rs+/(d — 1)/2d < h(z) < rs.

Let o be a simplex in the geometric (d — 1)-cycle da. Since o € Fj, each vertex z;
satisfies h(x;) > 0. On the other hand, o is a face of some d-simplex 7 € Ry — F
from the cycle a. Since 7 ¢ F the other vertex y of 7 must be on the interior side
of ¥, so h(y) < 0.
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For all p € 0 we have

h(p) < h(y) + llp —yll < h(y) + mgX(llfﬂi —yll) <O0+17s=rs

Next, by Remark 2.10, we have ||p — z;|| < r5+/(d — 1)/2d for some i. Therefore

h(p) = h(z;) — |lp — @il| 2 0 =15/ (d —1)/2d = —r5/(d — 1) /2d

These inequalities prove that 0 C S; and in general this shows that the geometric
realisation of O« is entirely contained in S.

From A6, we know that S is a disjoint collection of thickened (d — 1)-dimensional
surfaces in R? each of thickness at most

d—1
(3.6) A=r, (1“/%)'

Since o,d4[a] = 0, we know that the cycle 9o/ is nullhomologous within S. Apply
Lemma 3.3 with e = r,, A as above, and

= d—5+2y/2d(d 1
(3.7) e'—\/A2—|—262dd1—7"s\/7 5+2d( ),

to conclude that by increasing the radius from r; to r,, the cycle do/ becomes triv-
ial: hence, t.d.[a] =0 € Hg—1(Fpm).

We may now rule out Case 2 as follows. By hypothesis, [o] € Hq(Rs, F;) is nonzero,
as is txtx[a] € Hg(Ruy, Fu). In the present case, t.04[a] = 0in Hy_1(Fy,). Commu-
tativity of Eqn. (3.5) implies that d.t.[a] = 0. By exactness of this row, v[a] =
J«[¢] for some [¢] € Hi(Ry). An application of Theorem 2.5 implies that the
map ¢y : Hy(Rm) — Ha(R.) factors through the homology of the Cech complex
Cw = Cy(X) of the cover of X with balls of radius r,,/2:

(38) Ly - Hd(Rm) — Hd(Cw) — Hd(Rw)

From the Cech Theorem, C,, has the homotopy type of a subset of R%. Any such
subset has vanishing homology in dimension d; hence Hy(C,,) = 0. We conclude
that ¢, [(] = 0. It follows from commutativity of Eqn. (3.5) that

(3.9) 0 = ju(eal€]) = 1 (j[¢]) = 2 (ex[e]) # 0.

Contradiction. Case 2 is impossible under the assumption that
(3.10)

. 2d \/7d—5+2,/2d(d—1) ~ \/7d—5+2\/2d(d—1)
Te =T\ a1 2d o d+1

which is satisfied for any value of d when, as in A3, r, > 7 V10. O
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4. REMARKS

Remark 4.1. This is by no means a sharp criterion. It is first of all clearly possible to
have the criterion always fail for injudicious choices of 7y, ., or r,,. For example,
if r,, is extremely large, then all nodes will be in (weak) communication and the
complex R,, will be a single high-dimensional simplex with vanishing homology.
Likewise, if . is much larger than the bound in Assumption A3, then there will be
many instances of coverage without a homological forcing.

This being said, we note that even if one chooses the minimal acceptable bounds
from Assumption A3, it is still not hard to arrange the points to cover D — N;(9D)
without the homological criterion detecting this. The companion paper [5] gives a
detailed examination in the single-radius case which is generally applicable in this
setting.

Remark 4.2. The complexes (R, F,) used in case 2 of the proof of Theorem 3.4 are
purely auxiliary: there is no need to ever compute these objects. They are required
to determine the degree of the boundary of the relative cycle in the collar of the
domain. As can be seen from the convolutions of the midrange signal construction,
this is a delicate task.

Remark 4.3. One can improve the constants of Assumptions A3, A5, and A6 by
using the expressions in the proof which depend on the dimension d. Specifically,
we have

A3 The radii of communication rg, r, and the covering radius r. satisfy

7d —5+2+/2d(d —1
(41) d ; Twzrs\/ i ( )7

> -
Te=T\5@+ 1) d+1

where d is the dimension of the domain.
A5 The restricted domain D — N;(9D) is connected, where

d—1
2d
A6 The fence detection boundary {z € D : ||z — dD|| = rs} has internal injec-

4.2) N;i(0D) ={x € D: ||lx — OD| < 7}, where 7 = ry + 7

.. . d—1 NS .
tivity radius at least r; 50 and external injectivity radius at least r.

For example, in the case d = 2, the constants for A3 become:

1 13
(43) Te > TsAl 5 ; Tw = Ts\| = -

3 3
the latter of which is a significant improvement over the /10 bound for arbitrary d.
Remark 4.4. We note that if the homological criterion is satisfied with a class [a] €

H4(Rs, Fs), then the cover is generated only by the vertices of the chain «.. Thus, by
minimizing the choice of generator a within its persistent homology class, we can
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relax the redundancy of the cover. This has clear implications to issues of power
conservation in sensor networks: see [5] for details.

Remark 4.5. The precise statement of A6 in terms of injectivity radii requires the
curve to be smooth. From the proof of Theorem 3.4, it is clear that the crucial
condition is to have the shell S represent annular domains of thickness bounded
by %rs. In practice, having D piecewise-linear is admissible: even though the in-
jectivity radii degenerate to zero, the set S is still an annular region(s) of width
bounded by some larger length, depending on the sharpness of the curves. For a
piecewise-linear 0D, an increase in r, based on the angle of the sharpest corner in
the outermost boundary component makes the criterion rigorous.

Remark 4.6. The coverage criterion presented here is a very specific type of cover-
age: stationary blanket coverage. There are interesting questions involving, e.g.,
barrier coverage (in which one want the cover to separate a given domain) and
sweeping coverage (in which the nodes move and ‘sweep” a cover over time). The
paper [5] gives homological criteria for these settings and more in the simpler case
of d = 2 and controlled boundary nodes. We believe that the techniques of the
current paper may be used to derive a persistent homology criterion applicable to
these broader problems. The primary difficulty is in controlling what happens near
the boundary of the domain.

Remark 4.7. We note that homology is computable, and that the coverage criterion
of Theorem 3.4 can be checked in practice. We do not emphasize the computational
issues. Is suffices to note that we have used the computational homology software
package Plex [22]. Simulations have been written using MATLAB as the frontend
(primarily for generating the simplicial complexes from various point-data sets,
and for data formatting and visualization.) The current implementation of Plex
computes the dimensions of persistent homology groups (using algorithms as in
[8, 21]), which is enough to check whether the homomorphism ¢, in the criterion of
Theorem 3.4 is nonvanishing.
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