\section*{\textbf{Q-FACTORIAL LAURENT RINGS}}

UGO BRUZZO§†‡ AND ANTONELLA GRASSI¶

§ Institut des Hautes Études Scientifiques, Le Bois-Marie, 91440 Bures-sur-Yvette, France
† Istituto Nazionale di Fisica Nucleare, Sezione di Trieste
¶ Department of Mathematics, University of Pennsylvania, David Rittenhouse Laboratory, 209 S 33rd Street, Philadelphia, PA 19104, USA

\textbf{Abstract.} Dolgachev proves that the ring naturally associated to a generic Laurent polynomial in d variables, $d \geq 4$, is factorial \cite{Dolgachev} (for any field k). We prove a sufficient condition for the ring associated to a very general complex Laurent polynomial in $d=3$ variables to be \mathbb{Q}-factorial.

\section{1. Introduction}

In \cite{Dolgachev} Dolgachev proves that the ring A_F naturally associated to generic Laurent polynomial F in d variables, $d \geq 4$, with coefficients in any field k, is factorial. The basic ingredient in Dolgachev’s proof is Grothendieck’s Lefschetz-type theorem (\cite{Grothendieck}, Prop. 3.12) which, among other things, shows that under suitable conditions, the natural restriction map $\text{Pic}(X) \to \text{Pic}(Y)$, where X is a scheme and Y is subvariety corresponding to an ideal sheaf in \mathcal{O}_X, is an isomorphism. This result can be applied only when $d \geq 4$.

\textit{Date:} February 22, 2011.

1991 \textit{Mathematics Subject Classification}. 16S34, 14J70, 14M25.

E-mail: bruzzo@sissa.it, grassi@sas.upenn.edu.
† On leave of absence from Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy

Support for this work was provided by the NSF Research Training Group Grant DMS-0636606, by PRIN “Geometria delle varietà algebriche e dei loro spazi dei moduli ” and the INFN project pi14 “Nonperturbative dynamics of gauge theories”. U.B. is a member of the VBAC group.
In this paper we consider the case \(d = 3 \), assuming that \(k = \mathbb{C} \), and prove a sufficient condition for the ring \(A_F \) to be \(\mathbb{Q} \)-factorial (Theorem 3.1). The proof of this fact follows the lines of Dolgachev’s proof, with Grothendieck’s result replaced by a Noether-Lefschetz theorem for hypersurfaces in toric 3-folds (Theorem 2.5) that we proved in [2].

Acknowledgement. We thank Igor Dolgachev for interesting correspondence leading to this result. The authors are grateful for the hospitality and support offered by the University of Pennsylvania, SISSA and IHES.

2. Preliminaries

We follow the notation in [1] and [2]. Let \(M \) be a \(d \)-dimensional lattice, \(N = \text{Hom}(M, \mathbb{Z}) \) and \(T(\Sigma) = N \otimes \mathbb{C}^* \) the associated algebraic torus. Let \(\Sigma \subset N^* \) be a complete simplicial fan, and denote by \(\mathbb{P}_\Sigma \) the corresponding complete toric variety. The torus \(T(\Sigma) \) naturally acts on \(\mathbb{P}_\Sigma \); \(T_\tau \subset \mathbb{P}_\Sigma \) denotes the orbit of a subset of \(\mathbb{P}_\Sigma \) corresponding to a face \(\tau \) of \(\Sigma \) under this action; the open dense orbit is denoted by \(\mathbb{P}_0^\Sigma \).

Definition 2.1. [1, Def. 4.13] A hypersurface \(X \) in \(\mathbb{P}_\Sigma \) is nondegenerate if \(X \cap T_\tau \) is a smooth 1-codimensional subvariety of \(T_\tau \) for all faces \(\tau \) in \(\Sigma \).

\(\mathbb{P}_\Sigma \) has only abelian quotient singularities, and is therefore an orbifold.

Proposition 2.2. [1, Prop. 3.5, 4.15] Let \(L \) be an ample line bundle on \(\mathbb{P}_\Sigma \). The hypersurface \(X \subset \mathbb{P}_\Sigma \) given by the zero locus of a generic section of \(L \) is nondegenerate. Moreover, \(X \) is an orbifold.

Since \(X \) is an orbifold, its complex cohomology has a pure Hodge structure [8]. This is an essential point in the proof of our Theorem 2.5.

Definition 2.3 (The Cox Ring [3]). Consider a variable \(z_i \) for each 1-dimensional cone \(\zeta_i, i = 1, \ldots, n \) in \(\Sigma \), and let \(S(\Sigma) = \mathbb{C}[z_1, \ldots, z_n] \).

The Cox ring has a natural gradation given by its class group \(Cl(\Sigma) \) of \(\mathbb{P}_\Sigma \).

Let \(L \) be an ample line bundle on \(\mathbb{P}_\Sigma \), and let \(f \in H^0(\mathbb{P}_\Sigma, L) \simeq S(\Sigma)_\beta \), where \(\beta = \text{deg}(L) \).

Definition 2.4. The Jacobian ring of \(f \) is the quotient \(R(f) = S(\Sigma)/J(f) \), where \(J(f) \) is the ideal in \(S(\Sigma) \) generated by the derivatives of \(f \).
The Jacobian ring $R(f)$ inherits a natural gradation from $S(\Sigma)$.

The next theorem was proved in [2], and will be key to proving our result about Laurent rings. We assume $d = 3$. We recall that the Picard number is defined as the rank of the class group.

Theorem 2.5. [2] Let P_{Σ} a complete simplicial toric variety, and $X \subset P_{\Sigma}$ a very general hypersurface cut by a section f of an ample line bundle L such that the multiplication morphism

$$R(f)_{\beta} \otimes R(f)_{\beta_0} \rightarrow R(f)_{2\beta - \beta_0}$$

is surjective (here $\beta = \text{deg}(L)$ and $\beta_0 = -\text{deg}(K_{P_{\Sigma}})$, where $K_{P_{\Sigma}}$ is the canonical bundle of P_{Σ}). Then X has the same Picard number as P_{Σ}.

Recall that a property is very general if it holds in the complement of countably many proper subvarieties.

3. Q-factorial Laurent rings

The ring $\mathbb{C}[M]$ may be identified with the ring of regular functions on the torus $T(\Sigma) \simeq \mathbb{P}^0_{\Sigma} \subset P_{\Sigma}$. An element $F \in \mathbb{C}[M]$ is called a Laurent polynomial; F may be regarded as a section of L, and it defines a hypersurface X_F in P_{Σ}.

Let $\Delta \subset M \otimes \mathbb{R}$ be the polytope uniquely determined by the fan Σ (see [7], Lemma 2.3). To each Laurent polynomial F on can associate a polytope Δ_F, called the Newton polytope of F. This is most easily described by choosing an isomorphism $M \simeq \mathbb{Z}^d$, writing

$$F = \sum_{i_1, \ldots, i_d \in \mathbb{Z}^d} a_{i_1, \ldots, i_d} t_1^{i_1} \cdots t_d^{i_d}$$

and defining

$$\text{supp}(F) = \{i_1, \ldots, i_d \in \mathbb{Z}^d | a_{i_1, \ldots, i_d} \neq 0\}.$$

Δ_F is then defined to be the convex hull of $\text{supp}(F)$ and $\Gamma(\Delta)$ the set of all Laurent polynomials such that $\Delta_F \subset \Delta$. $\Gamma(\Delta)$ is a finite dimensional vector space over \mathbb{C}.

By results given in [6] (see also [7], Chapter 2) a Laurent polynomial F extends to a meromorphic function on P_{Σ}, which is a section of an ample line bundle L_F. Thus, F may be regarded as an element in $S(\Sigma)_\beta$, where $\beta = \text{deg}(L_F)$. Denote by A_F the ring $\mathbb{C}[M]/(F)$.
Theorem 3.1. Let \(d = 3 \), and let \(F \) be a very general Laurent polynomial in \(\Gamma(\Delta) \); set \(\beta = \deg(L_F) \) and \(\beta_0 = -\deg(K_{P_F}) \). If the multiplication morphism

\[
R(F)_{\beta} \otimes R(F)_{\beta-\beta_0} \rightarrow R(F)_{2\beta-\beta_0}
\]

is surjective, the ring \(A_F \) is \(\mathbb{Q} \)-factorial.

The proof that \(A_F \) is \(\mathbb{Q} \)-factorial follows closely the proof of Theorem 1.1 in [4]. The basic idea is to formulate the problem in a geometric way:

Proof. Let \(X_F \subset P_\Sigma \) be the hypersurface cut by \(F \) (as a section of \(L_F \)). By Proposition 2.2 the hypersurface \(X_F \) is nondegenerate, and is an orbifold.

Note that the ring \(A_F \) may be identified with the ring of regular functions on the affine part \(U_F = X_F \cap P^0_\Sigma \) of \(X_F \). Since the Picard group of \(P^0_\Sigma \) is trivial, every Cartier divisor in \(P_\Sigma \) is linearly equivalent to a divisor supported in \(P_\Sigma - P^0_\Sigma \). By Theorem 2.5, \(X_F \) has the same Picard number as \(P_\Sigma \), i.e., \(\rho(X_F) = \rho(P_\Sigma) \). Then any Cartier divisor in \(X_F \) is linearly equivalent modulo torsion to a divisor supported in \(X_F - U_F \), so that \(\text{Pic}(U_F) \otimes \mathbb{Q} = 0 \). Since \(U_F \) is normal (actually smooth), then \(\text{Cl}(U_F) \otimes \mathbb{Q} = 0 \). As \(U_F \simeq \text{Spec}(A_F) \), we have \(\text{Cl}(A_F) \otimes \mathbb{Q} = 0 \).

\[\square \]

References

