TALKS AND ABSTRACTS:
I. Arefeva, Stringy Models of Cosmological Dark Energy
Recent astronomical observations show that the Universe is
presently expanding with acceleration. This remarkable discovery
suggests that the bulk of energy density in the Universe is
gravitationally repulsive and appears like an unknown form of
energy (dark energy) with negative pressure. It is believed that a
new particle and/or gravitational physics is required to explain
the acceleration of of the Universe.
There are various phenomenological models of the dark energy but
there was not a model based on fundamental principles. I will
consider a model for the dark energy which is derived from the
string field theory describing the nonBPS brane decay. In this
model the acceleration of the Universe is driven by a nonlocal
stringy Higgs mechanism.
M. Becker,
Flux Compactifications, Cosmology and the Standard Model of
Elementary Particles
In this talk I shall discuss flux compactifications of Mtheory and string
theory
and study their implications for Cosmology, the Standard Model of Elementary
Particles and Mathematics.
R. Britto, Singularities of Particle Interactions
Elementary particle interactions are
measured by complex functions that are strongly constrained by unitarity.
Study of their analytic structure reveals
new relations among particle processes.
These relations greatly simplify computations and expand our
understanding of quantum field theory.
L. Caporaso, Neron models and moduli theory
Neron models are universal objects that have been
extensively studied and used in arithmetic algebraic geometry
(during the second half of the twentieth century).
We introduce them in connection with the moduli theory
of curves and indicate some further applications
of a more geometric character.
A. Ceresole, Geometric Tools in Supergravity and String Theory
Supergravity, the gauge theory of the SuperPoincare algebra, is the low energy effective field theory of Superstrings.
There are many supergravity models depending on the spacetime dimension D, the number N of supersymmetry
generators and the coupling to matter multiplets. They are highly constrained by physical, geometrical and algebraic principles. I will illustrate some of these principles, emphasizing the mathematical tools that are guiding our progress towards the understanding of Mtheory.
E. Cheung, Strings in gravimagnetic field
Closed string theory in NappiWitten modela background of
planepolarized gravitational waves supported by a null NS
fluxis proved to be exactly solvable via wakimoto free fields.
not only the complete string treelevel interaction amplitudes
for the scattering of an arbitrary number of particles can be
determined but also the quantum string vertex operators can
be constructed explicitly. i will present the classical geodesic
and the semiclassical wavefunction analysis before introducing the
abstract conformal field theory techniques.
A. Degeratu, The Positive Mass Conjecture for NonSpin Manifolds.
The Positive Mass Conjecture states that the total mass of an
asymptotically flat manifold with positive scalar curvature is never
negative. For 3manifolds this was proved first by Schoen and Yau using
minimal surfaces techniques. Subsequently, Witten gave another proof based
on the properties of the Dirac operator. In this talk I will present the
proof of the Positive Mass Conjecture for large classes of asymptotically
flat nonspin manifolds. This is joint work with Mark Stern.
X. De la Ossa, Arithmetic of CalabiYau Manifolds
L. Dolan, Conformal Operators and Partially Massless Fields
B. Fantechi, On moduli spaces with selfdual obstruction theories
This is joint work in progress with Kai Behrend, UBC Vancouver.
Let $X$ be a moduli space; we say that it has an obstruction theory of
expected dimension $d$ if at every point $x$ we are given an
obstruction space $T^2_xX$ such that $\dim T_xX\dim T^2_xX=d$. The
theory is selfdual if $T^2_xX$ is naturally dual to $T_xX$ (which
implies $d=0). This happens for instance to the Donaldson Thomas moduli
space of stable sheaves of fixed determinant on a CalabiYau 3fold.
We prove that being selfdual restricts the possible singularities of
$X$. We give some evidence for the following conjectures: 1) such an
$X$ can be locally described as zero locus of a closed oneform on
manifold $M$; 2) the virtual degree, defined only for $X$ compact,
extends to a virtual Euler characteristic defined for arbitrary $X$ and
additive over open covers.
Y. Ito, The McKay correspondence
The McKay correspondence shows us a bridge between algebra and
geometry for a resolution of quotient singularities. It was observed in
dimension two in 1979 mathematically. The generalized McKay correspondence
was developed around 1995 based on the results in the superstring theory.
After that, Physicists used the correspondence in physically to explain
mirror symmetry. Now we can also see some bridges between mathematics and
physics. I would like to show you these interesting relations in this talk.
R. Kallosh, Flux vacua and the index of the Dirac operator on the brane
C.C. M. Liu, MarinoVafa Formula of OnePartition Hodge Integrals
I will describe applications and proof of a formula of Hodge
integrals conjectured by Marino and Vafa based on joint works
with Kefeng Liu and Jian Zhou.
D. McDuff, Symplectic Geometry: a meeting ground
C. Nappi, Yangians in strings and gauge theories
S. Paban, Evolution of Gravitationally Unstable de
Sitter Compactifications
A. Peet, Stringy resolution of spacetime
singularities
R. Piene, Counting curves on a surface
To solve a problem in enumerative algebraic geometry: how many geometric
objects of a given type satisfy certain given conditions? there are two
obvious methods: specializing the objects and/or the conditions so that
the answer becomes "obvious" from a combinatorial point of view, or using
intersection theory on a suitable parameter space. In this talk the
objects will be curves lying on a surface, and I will show how the shape
of the generating function for such a problem can be understood via the
two methods.
L. Randall, To be confirmed
S. Salur,
N. Saulina, BPS Black Holes,Topological Strings and qdeformed YangMills,
I will first review recent connection between
the black hole entropy and the topological
string partition sum. Then, I will talk
about counting of bound states of BPS black
holes on local CalabiYau 3folds involving
a Riemann surface of genus g. I will explain
how this counting problem reduces to computing
qdeformed U(N) Yang Mills partition sum on
Riemann surface. Finally, I will demonstrate how
in the large N limit this partition sum
is expressed in terms of topological string amplitudes.
E. Silverstein, The Uses of Tachyons
General relativity breaks down near singularities and
other regions where small features appear in the spacetime geometry.
In these regimes, extra degrees of freedom can become important
and affect the dynamics of the spacetime. In the framework of string
theory, one of the
simplest such modes is a string wound around a small circle in the geometry,
which can develop a negative mass squared leading to an instability.
I will review how the dynamics of such modes provides simple examples
of topology changing processes and resolution of conical singurities in
spacetime
(including ongoing application to spacelike singularities). Although
our physical methods of analysis are not mathematically rigorous, it is also
interesting to note
that the topology
changing dynamics has some intriguing similarities to methods
used in classifying 3manifolds (Ricci flows applied to the geometrization
conjecture).
M. Symington, Making a smooth torus action symplectic, or almost...
Some of the most powerful tools for understanding the topology of
symplectic fourmanifolds, in particular the theory of pseudoholomorphic
curves and Lefschetz fibrations, are inspired by complex algebraic
geometry. Recent works of Taubes, Donaldson, Auroux and Katzarkov show
that these techniques can be generalized to apply to an easily identified
class of smooth fourmanifolds that includes "almost all" closed
manifolds. The manifolds in question are called nearsymplectic.
The presence of torus actions on a manifold should aid in the
determination of moduli spaces of (noncompact) pseudoholomorphic curves.
I will explain this motivation and present a simple classification of
toric nearsymplectic manifolds in terms of generalized moment map images.
This is joint work with David Gay.
