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Spherical maximal function: LP — LP bounds

Consider the family of spherical averages A = {A;};~0, defined by

Acf(x) = LH f(x — ty)do(y)

where do denotes the normalized surface measure on the unit sphere S9—1,
Define the spherical maximal function as

Sf(x) = sup|Af(x)].

t>0

We have the bounds

@ Stein (1976) for d > 3,

@ Bourgain (1986) for d = 2.
ISFlp < IFl,  for %5 <p<o

)
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Spherical maximal function: LP — LP bounds

Consider the family of spherical averages A = {A;};~0, defined by

Acf(x) = LH f(x — ty)do(y)

where do denotes the normalized surface measure on the unit sphere S9—1,
Define the spherical maximal function as

Sf(x) = sup|Af(x)].

t>0

We have the bounds
@ Stein (1976) for d > 3,
@ Bourgain (1986) for d = 2.

@ Mockenhoupt—Segger—Sogge
(1992).

ISFlp < [IFl,  for 5% <p<w
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Spherical maximal function: LP — LP bounds

Consider the family of spherical averages A = {A;};~0, defined by

Acf(x) = LH f(x — ty)do(y)

where do denotes the normalized surface measure on the unit sphere S9—1,
Define the spherical maximal function as

Sf(x) = sup|Af(x)].

t>0

We have the bounds
@ Stein (1976) for d > 3,
@ Bourgain (1986) for d = 2.

@ Mockenhoupt—Segger—Sogge
(1992).

e Bourgain (1985) S : L7 — [71% for d > 3.

ISFlp < [IFl,  for 5% <p<w

)
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Spherical maximal function: LP — L9 bounds (d > 3)

LP(RY) — L9(RY) bounds for the local variant
S'f(x) = sup |Af(x)|

1<t<2

established by Schlag (1997), Schlag—Sogge (1997) and Lee (2003) (endpoint).

Q1

D. Beltran (UW-Madison)

d=3
Q1 =(0,0), @ = (%19,
Q= (% 5), Q= ( <(1 +1)’ 1)
S Pt (9% at @3, @
S'Pl S 1900 [Q, Q3)
S' 1P 190n (Q3,Qs), (@4, Q1]

sharp except RWT Q3, Q4

Q-
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Spherical maximal function: LP — L9 bounds (d = 2)

LP(RY) — L9(RY) bounds for the local variant

S’f(x): sup |A:f(x)]

1<t<2

established by Schlag (1997), Schlag—Sogge (1997) and Lee (2003) (endpoint).

Q=@

Qi =(0,0), @ =(%* 9,

Q= (1), Q=42 &0

Shopl 5 [9% ot Q,

Ql~

no bounds on on @ = @
S' 1P — 190n (Q3,Qa), (@4, Q1]
.. sharp except RWT Q4

Q1
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Sobolev embedding

sup |A:f| < sup |Aif] +Z sup |Afj|
1<t<2 ISt2—~— 5 1Ist<2
€]t |€]~2/

Heuristic: if |t; — to| <277, then |A,f| ~ |Asf
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Sobolev embedding

sup |A:f| < sup |Aif] +Z sup |Afj|
1<t<2 ISt2—~— 5 1Ist<2
€]t |€]~2/

Heuristic: if [t; — to| <277, then |A,f| ~ |As £

sup |Acfj| ~ sup Al = [S'fillq < 29| Acfilq
1<t<?2
te2 fN

More precisely: FTC + Halder,

2 (a=1)/q ; (2 1/q
sup |Af|7 < |A1;5-|q+q(J Al dt ) (J 0|7 dt )
1 1

1<t<2

1-1
”5 fHLq(]Rd) HAlfHLq R9) + HA f”Lq(R/fX[LQ])”atA fHLq RYx[1,2])
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Fixed-time estimates (t ~ 1)

Averaging operator:  ||Af|p < ||f]|p, 1< p<ow.
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Fixed-time estimates (t ~ 1)

Averaging operator:  ||Af|p < ||f]|p, 1< p<ow.
Stationary phase: A.f(€) = 5(t€)f(€), where

5(t6) = (2m) 2|t~ Ja (tl€]) = bo (tle]) + by b (tl¢]) ) etitlel

+

|§\<1 IEIZI

where
(d—1)
2

107b+(r)] < (L+r])” v € No.

{|A Fillp <
|, < 2

Plancherel:  |A¢fi|2 < 2™
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Fixed-time estimates (t ~ 1)

Averaging operator:  ||Af|p < ||f]|p, 1< p<ow.
Stationary phase: A.f(€) = 5(t€)f(€), where

5(t6) = (2m) 2|t~ Ja (tl€]) = bo (tle]) + by b (tl¢]) ) etitlel

+
|£\<1 lﬁlzl

where
(d—1)
2

07 b (r)] s (L +]r])”

A f;
:{| illo <27
Ao < 2
2J
o (L4 2x—y[ = eV

’yENo.

Plancherel: ||A:f;]2 <

2 < 00,
1 <2

<p
<p

Annulus avg: |A:fi(x)| < J [F(y)|dy = |Aefilloe < 2||F|2
R
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Fixed-time estimates (t ~ 1)

Averaging operator:  ||Af|p < ||f]|p, 1< p<ow.
Stationary phase: A.f(€) = 5(t€)f(€), where

5(t6) = (2m) 2|t~ Ja (tl€]) = bo (tle]) + by b (tl¢]) ) etitlel

+

|§\<1 IEIZI

where
(d—1)
2

07 b (r)] s (L +]r])”

A f;
:{| illo <27
Ao < 2
2J
o (L4 2x—y[ = eV

’yENo.

Plancherel: ||A:f;]2 <

2 < 00,
1 <2

<p
<p

Annulus avg: |A:fi(x)| < J [F(y)|dy = |Aefilloe < 2||F|2
R

Derivative:  |0;Afi(x)| ~ |Acfi(x)] + 2| Af(x)|
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Local smoothing estimates

Recall:

IS, <27 2<p<w
Hyﬂb$2ﬁ““’ﬁWM, l1<p<2

@ good for d > 3
@ need extra gain 27/¢ for d = 2.
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Local smoothing estimates

Are there better estimates for
| Al Laraxp1,2]) S 2@ £,

than those implied just by |A:f|o(re) < |f], and a trivial t-integration?

Recall:

IS, <27 2<p<w
ISl < 2*f<f’*17>|\f|\p, 1<p<2

@ good for d > 3.
@ need extra gain 27/¢ for d = 2.
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Local smoothing estimates

Are there better estimates for
| Al Laraxp1,2]) S 2P| f|,
than those implied just by |A:f|o(re) < |f], and a trivial t-integration?

Yes: Sogge's local smoothing conjecture for the wave equation.

Recall:

IS, <27 2<p<w
Hyﬂb$2ﬂ”4*ﬁWM, l1<p<2

@ good for d > 3.

@ need extra gain 27/¢ for d = 2.
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Local smoothing estimates

Are there better estimates for
| Al Laraxp1,2]) S 2P| f|,
than those implied just by |A:f|o(re) < |f], and a trivial t-integration?

Yes: Sogge's local smoothing conjecture for the wave equation.

1 Recall:
7
1 oc<1l/q IS"fl, <277 2<p<®
2] —jo _i(d—1_4d
a2 ||s’r5-\|pszf<d DI, 1<p<2

@ good for d > 3.
@ need extra gain 27/¢ for d = 2.

NI 4+
T
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Local smoothing estimates

Are there better estimates for
| Al Laraxp1,2]) S 2@ £,

than those implied just by |A:f|o(re) < |f], and a trivial t-integration?

Yes: Sogge's local smoothing conjecture for the wave equation.

1 Recall:
7
1 oc<1l/q IS"fl, <277 2<p<®
2] —jo _i(d—1_4d
a2 ||s’r5-\|pszf<d DI, 1<p<2

@ good for d > 3.
@ need extra gain 27/¢ for d = 2.
@ Upgrade from S’ to S by LP theory.

1 1
2d 2 P
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Local smoothing estimates

Are there better estimates for
| Al Lara xp1,2]) S 2P| f|,
than those implied just by |A:f[o(re) < |f], and a trivial t-integration?

Yes: Sogge's local smoothing conjecture for the wave equation.

1 Recall:
q
) o<1/q 1", <27 2<p<®
57T . I
@t Sl < 2B, 12 p<2
2 ' ' .
. I ¢ J
i g, 155l < 21,
@ not good for d > 3.
N @ even worse for d = 2.
d-1 1 d-1 1 1
2d 2 d P
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Local smoothing estimates

Are there better estimates for
| Al Lara xp1,2]) S 2@ £,

than those implied just by |A:f[o(re) < |f], and a trivial t-integration?

Yes: Sogge's local smoothing conjecture for the wave equation.

1 Recall:
q
1] o<1a IS'6 ], < 27" 2<p< o
2 —jo X
PR IS"£, < 2*f<d*17>|\f|\p, 1<p<2
2d . )
d-1_{ “. S < 2| f4,
2(d+1) o 1,‘">q . -.__Q3 I JHOO £
G @ not good for d > 3. (Stein—Tomas)
; _ @ even worse for d = 2.
d-1 1 d—1 1 1
2d 2 d P

MAAM, October 9, 2020
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Spherical maximal function: LP — L9 bounds

LP(RY) — L9(RY) bounds for the local variant
S'f(x) = sup |Af(x)|

1<t<2

established by Schlag (1997), Schlag—Sogge (1997) and Lee (2003) (endpoint).

1 1
q q
e | N Q=@
d 2 A
1]
2 1
d—1 e
2d 1]
1] 5
d
+ + + ~+ } }
Q1 d-1 1 d—1 1 L @ 2 1
2d 2 d P 5 2
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Spherical maximal function: LP — L9 bounds

LP(RY) — L9(RY) bounds for the local variant

S'f(x) = sup |Af(x)|

1<t<2

established by Schlag (1997), Schlag—Sogge (1997) and Lee (2003) (endpoint).
The endpoint relies on Tao (2001) endpoint bilinear restriction thm for the cone.

1 1
q q
1 . Q=Qs
d 2
1]
2
d—1 |
2d
1]
d
: : —t
@ a1 1 d-1 1 L @ 2 1
2d 2 d 5 2
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Spherical maximal function: LP — L9 bounds

LP(RY) — L9(RY) bounds for the local variant
S'f(x) = sup |Af(x)|

1<t<2

established by Schlag (1997), Schlag—Sogge (1997) and Lee (2003) (endpoint).
All non-endpoint local-smoothing are known for d = 2 Guth-Wang—Zhang (2019)

1 1
q q
1 N Q=Qs
d 2 P
1]
: 1
d—1 | 1]
2d 1]
1 5
d
+ + + ~ } }
@ a1 1 d-1 1 L @ 2 1
2d 2 d P 5 2
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Variation norm

Given a subset E < R and a family of complex valued functions t — a; defined on
E, the r-variation of a = {a;}:cf is defined by

N_l 1/’,
- — r
|alv,(g) :=sup  sup ( Z |ag,., — ay] )
NeN t;<---<ty j=1
tjEE

for all 1 < r < o0, and replacing the £"-sum by a sup in the case r = 0.
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Variation norm

Given a subset E < R and a family of complex valued functions t — a; defined on
E, the r-variation of a = {a;}:cf is defined by

N—-1

1/r
P r
|lalv, gy == sup  sup ( Z lag, — a )
NeN ti<---<tpy i—1
tjEE =

for all 1 < r < o0, and replacing the £"-sum by a sup in the case r = 0.
Lépingle (1976): F = {E,f})2, martingale,

V.Fl, <|flpl<p<oo, r>2.
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Variation norm

Given a subset E < R and a family of complex valued functions t — a; defined on
E, the r-variation of a = {a;}:cf is defined by

1/r
sup (Z|atj+1 atj>

<<ty
tieE

for all 1 < r < o0, and replacing the £"-sum by a sup in the case r = 0.
Lépingle (1976): F = {E,f})2 l<p<oo, r>2.
Bourgain (1989): |V, Af|2(z) < HfHLZ(Z)v r > 2, where A = {An}nen is given by

1N
Anf(m) = N 2 f(m+n).

Given dyn system (X, u, T), implies bounds on V,A for A = {/KN}NeN given by

N
Anf(x 2

which yield an alternative proof of Birkhoff's pointwise ergodic theorem.
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Global variation operators for spherical averages

Given the family of spherical averages {A;}:~¢ consider

VL Af(x) = V,[Af](x) := |Af(x)

Vi ((0,90))-
Jones—Seeger—-Wright (2008):
2 2 if 24 <p<2d
P IVAflp < Ifl,  for {77° 1T
r>p/d if2d<p
Moreover, V, A : L7l L [d5° for r > 2,d>3.
All ranges of p and r are sharp, except for the critical case
r = p/d, p> 2d which was left open.
1 L
2d
1 1
rd
0+ e
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Global variation operators for spherical averages

Given the family of spherical averages {A;}:~¢ consider

VL Af(x) = V,[Af](x) := |Af(x) V, ((0,00)) -
Jones—Seeger—-Wright (2008):
2 2 if 24 <p<2d
P IVAflp < Ifl,  for {77° 1T
r>p/d if2d<p
Moreover, V, A : L7l L [d5° for r > 2,d>3.
All ranges of p and r are sharp, except for the critical case
r = p/d, p> 2d which was left open.
Theorem (BORSS, 2020)
1 L
2£ | Let d > 3, p > 2d. Then the operator V,;4A is of restricted
"(j) 1. weak type (p,p), i.e. maps LP1(RY) to LP®(RY).
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One writes
V,Af(x) < V&AL (x) + VSRAF(x)

where

1/r
VIAf(x) == sup  sup ( Z At F(x) = Ags F ()" )
NeN ki <--<ky ;257

is the dyadic or long variation operator and

VERAf(x) = (3 VAR () v
keZ

is the short variation operator, using variation within dyadic intervals I, = [2k, 2k+1].
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One writes
V,Af(x) < V&AL (x) + VSRAF(x)

where

1/r
VIAf(x) == sup  sup ( Z At F(x) = Ags F ()" )
NeN ki <--<ky ;257

is the dyadic or long variation operator and

VERAf(x) = (3 VAR () v

keZ

is the short variation operator, using variation within dyadic intervals I, = [2k, 2k+1].

e For V43 A one uses Lépingle’s inequality (r > 2); holds for 1 < p < .
@ The condition r > 2 does not seem to enter in V"; which restricts p-range.
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Local variation operators for spherical averages

We explore the existence of LP(R?) — L9(R?) bounds for

VI Af(x) := |Af(x)

Vi ([1,2])

for 1 < r < o0, which are meant to refine the bounds on

Slf(X) = sup |Atf(X)|, recaII HAl’fJNLP—»Lq(Lx) $ 2j/qHAtﬂ'HLP4>L‘7(L‘7)-

1<t<2
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Local variation operators for spherical averages

We explore the existence of LP(R?) — L9(R?) bounds for

V/Af(x) := |Af()ly,

Ve([1,2])

for 1 < r < oo, which are meant to refine the bounds on

Slf(X) = sup |Atf(X)|, recaII HAl’fJNLP—»Lq(Lx) $ 2j/qHAtﬂ'HLP4>L‘7(L‘7)-

1<t<2

Embedding (Plancherel-Polya inequality):
Bl/r N V AN Bl/r

r,1 r,00>

where the Besov spaces B ,(IR) can be defined by

/
leleg, = (2 (2* [elp) )"

|T|~2’

8
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Local variation operators for spherical averages

We explore the existence of LP(R?) — L9(R?) bounds for

V/Af(x) := |Af()ly,

Ve([1,2])

for 1 < r < oo, which are meant to refine the bounds on

Slf(X) = sup |Atf(X)|, recaII HAl’fJNLP—»Lq(Lx) $ 2j/qHAtﬂ'HLP4>L‘7(L‘7)-

1<t<2

Embedding (Plancherel-Polya inequality):
Bl/r N V AN Bl/r

r,1 r,00>

where the Besov spaces B ,(IR) can be defined by

/
leleg, = (2 (2* [elp) )"

|T|~2’

8

< 2i/r

Space-time FT of A.f(x): e t(T£l{) — |‘Atf;.HLP—>L4(Bl/’) <

Al o —ra(Lry-
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LP(RY) — L9(RY) bounds for V/Aif d > 3

Theorem (BORSS, 2020)

If r> %, d = 3: sharp except RWT Q3, Qs

D. Beltran (UW-Madison)

—_
T =

Variation bounds spherical averages

VIA:LPY — 197 at Q3, Q,
VIA:LPY > 19 at [Q, Qs)
VIA:LP - 19 at (@3, Qs)
VIA:LP - 19 at
[Q1(r), P(r)], [P(r), Qa(r)),
(Qui(r), @(r))
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LP(RY) — L9(RY) bounds for V/Aif d > 3

Theorem (BORSS, 2020)
If ﬁ <r< %, d > 3: sharp except RWT Qs, left open (Qs3, Q4(r)]

1
q Ql(r): (%aid)a
d-1 Q= (G4 ).
d Qs = (d; 1
3 d ' d
d+1 d—1)
) ( ) = (% (dr(l) )
2] Q4( ) ( rd((i;,ll)a %)
d-1
2d
il VIA: [P 9% at Q
L VIA: P — L9 at (@2, Q3)

VIA: P — L9 at
1 5 [@i(r), Qu(r), (Qu(r), @)
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LP(RY) — L9(RY) bounds for V/Aif d > 3

Theorem (BORSS, 2020)
fl<r<_ % andd=>4or

Q=

Q
Q||
-

N|=
.

T
L

é<r<

3 %andd:3:

- ae &
—

sharp, left open

[Q2(r), @s(r)], [Qs(r), Qa(r)]

Qi(r) = (75, 79)

@ (r) = (U525 ),
Qs(r) = (U250 7 n):
Qu(r) = (1— &5, L),

VIA: P — L9 at
[Qu(r), Qa(r)), (Qu(r), Q2(r))

MAAM, October 9, 2020
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Why partial results for d

- . . . 4 d
@ for d = 3 we only obtain sharp results in the partial range 5 < r < /5.

d

o for d = 4, sharp results are obtained for all 1 < r < 75

D. Beltran (UW-Madison) Variation bounds spherical averages MAAM, October 9, 2020



Why partial results for d

- . . . 4 d
@ for d = 3 we only obtain sharp results in the partial range 5 < r < /5.

o for d = 4, sharp results are obtained for all 1 < r < ﬁ.
Banach space condition 1 < r < oo for the variation norm.

One can extend, with modifications, V, to the range 0 < r < 1 (Bergh—Peetre). In
this context:

@ Our analysis yields positive results in the range r > EEZi;

@ One can formulate conjectural results for VA for <r<1lford=>=4.
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Why partial results for d

- . . . 4 d
@ for d = 3 we only obtain sharp results in the partial range 5 < r < /5.

o for d = 4, sharp results are obtained for all 1 < r < ﬁ.
Banach space condition 1 < r < oo for the variation norm.

One can extend, with modifications, V, to the range 0 < r < 1 (Bergh—Peetre). In
this context:

2(d+1)
d(d—1)-

@ One can formulate conjectural results for VA for <r<1lford=>=4.

@ Our analysis yields positive results in the range r >

Our positive results for d > 3 pivot around “Stein—Tomas”: more sophisticated

restriction technology should give further partial results between ﬁ <r< 3((34_'3
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Why partial results for d

B . . . 4
@ for d = 3 we only obtain sharp results in the partial range 5 < r <

_d_
d-1°

_d_
d—1-
o for d = 4, sharp results are obtained for all 1 < r <

Banach space condition 1 < r < oo for the variation norm.

One can extend, with modifications, V, to the range 0 < r < 1 (Bergh—Peetre). In
this context:

2(d+1)
d(d—1)"

@ Our analysis yields positive results in the range r >

@ One can formulate conjectural results for VA for <r<1lford=>=4.

Our positive results for d > 3 pivot around “Stein—Tomas”: more sophisticated

restriction technology should give further partial results between ﬁ <r< 3((34_'3

The conjectured bounds seem to be slightly weaker than the local smoothing or
Bochner—Riesz conjecture, but stronger than Kakeya conjecture (work in progress).
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d—1
2
d(d 1)
2(d +1)

1)/d

d(d—1)/(d? >>'1> e

D. Beltran (UV

1/d
1)/(d*+1)

1
2
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LP(RY) — LI(RY) bounds for V/Aif d =2

Optimal result, up to endpoints, due to the recent full resolution of Sogge's problem
in 2 4+ 1 dimensions by Guth, Wang and Zhang, that is,

OYPTEAL LY S LA(LY.

Theorem (BORSS, 2020)
If r>5/2, d = 2: sharp but no endpoints

1
. Q= Qs Py = (5 20),
i1 Qi(r) = (355 2;)5
QQ = Q3 = (%a %)’
% V Q4 = (%7 %)
1
1 Vr' P — L9 0n (@Qi(r), Qx(r))
1
L1

N = A
ol 4+
Nl—= 4
—_
T I
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LP(RY) — LI(RY) bounds for V/Aif d =2

Optimal result, up to endpoints, due to the recent full resolution of Sogge's problem
in 2 4+ 1 dimensions by Guth, Wang and Zhang, that is,

OYPTEAL LY S LA(LY.

Theorem (BORSS, 2020)
If 2 < r<5/2, d=2: sharp but no endpoints

V] 1P — L9 on (Qu(r), @(r))

ﬂ
N
oI

2r 2r
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LP(RY) — LI(RY) bounds for V/Aif d =2
Optimal result, up to endpoints, due to the recent full resolution of Sogge's problem
in 2 4+ 1 dimensions by Guth, Wang and Zhang, that is,

OPTEAL LY s LA(LY).

Theorem (BORSS, 2020)
Ifr<2= , d = 2, unbounded.

i
1 2-3211 1
2r 2r 5 r 2

oI
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LP(RY) — LI(RY) bounds for V/Aif d =2
Optimal result, up to endpoints, due to the recent full resolution of Sogge's problem
in 2 4+ 1 dimensions by Guth, Wang and Zhang, that is,

OPTEAL LY s LA(LY).

Theorem (BORSS, 2020)
Ifr<2= , d = 2, unbounded.

r=2= also unbounded
(work in progress)

i
1 2-3211 1
2r 2r 5 r 2

oI
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Key single scale estimates ||.A; zo—a(1r)

Let A;f(x, t) = A¢fi(x). Recall

IV AL ot < IA ooy < 20 1A 1o atoqery.
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Key single scale estimates ||.A; zo—a(1r)

Let A;f(x, t) = A¢fi(x). Recall

IV AL ot < IA ooy < 20 1A 1o atoqery.

2 Afl. < 2|f
Ann avg: |Afi(x)| < f i le(y)ldy . |Afillo < 2/ fl2
re (1+2[|x —y| = t) Al o2y < [F
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Key single scale estimates ||.A; zo—a(1r)

Let A;f(x, t) = A¢fi(x). Recall

IV AL ot < IA ooy < 20 1A 1o atoqery.

2 Afl. < 2|f
Ann avg: |Afi(x)| < f i le(y)ldy . |Afillo < 2/ fl2
re (1+2[|x —y| = t) Al o2y < [F

(d E9)

A 202y < 277
For p = q, fixed-time estimates: HA fHLm(Loc) [0
A fll ey S [l

112
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Key single scale estimates ||.A; zo—a(1r)

Let A;f(x, t) = A¢fi(x). Recall

IV AL ot < IA ooy < 20 1A 1o atoqery.

Ann avg: |Af(x)| < f 2 ()] dy —s | 1Achllo = ZIf
! e (14 2||x —y| = ¢|)V A fll oo 1y S [l
=)
| Ajfll2ey S 27777 |fl2
For p = q, fixed-time estimates: HAJfHLoc(Lw) < | flw
Ay S 1l
The Stein—Tomas estimate
_jd 1l _1
| Al aqray S 2778 HE7a) |5, g =20

can be improved into a square function Stein—Tomas estimate

2(d+1
| A a2y < 2 3 f]2, q= %~
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| Ajllirw) essentially local

o If Q cube of |Q| ~ 1, Ai(flg) = A(flg)ligg if t € [1,2].

g = \OQ

g\)ﬁ &

B
k } 2‘;.
o
X
a]
&
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| Ajllirw) essentially local

o If Q cube of |Q| ~ 1, Ai(flg) = A(flg)ligg if t € [1,2].

o Aif(x,t) = Aefi(x) = Kj ¢ * f(x) gets mildly delocalised:
2J

T B = Wl <w @)™ =10, e 1.2

[Ki.e ()] <w
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| Ajllirw) essentially local

o If Q cube of |Q| ~ 1, Ai(flg) = A(flg)ligg if t € [1,2].

o Aif(x,t) = Aefi(x) = Kj ¢ * f(x) gets mildly delocalised:
2J

T B = Wl <w @)™ =10, e 1.2

[Ki.e ()] <w

o If Q cube of |Q] ~ 1, |Aj(flg)

r® = |Ai(flg)

tr®)l1oq + error term
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| Ajllirw) essentially local

o If Q cube of |Q| ~ 1, Ai(flg) = A(flg)ligg if t € [1,2].

o Aif(x,t) = Aifi(x) = Kj ¢ = f(x) gets mildly delocalised:
2J

T B = Wl <w @)™ =10, e 1.2

[Ki.e ()] <w

o If Q cube of |Q] ~ 1, |Aj(flg)
By Holder's inequality, if pg < p1

r® = |Ai(flg)

tr®)l1oq + error term

T10A;(FLQ) | Lacrry < [A;llLeo—ra(Lry

flQfem < Al —raqerylflg]m

and one can sum over a tiling of RY provided py < p; < q.
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| Ajllirw) essentially local

o If Q cube of |Q| ~ 1, Ai(flg) = A(flg)ligg if t € [1,2].

o Aif(x,t) = Aifi(x) = Kj ¢ = f(x) gets mildly delocalised:
2J

T B = Wl <w @)™ =10, e 1.2

[Ki.e ()] <w

o If Q cube of |Q] ~ 1, |Aj(flg)
By Holder's inequality, if pg < p1

r® = |Ai(flg)

tr®)l1oq + error term

T10A;(FLQ) | Lacrry < [A;llLeo—ra(Lry

flQfem < Al —raqerylflg]m

and one can sum over a tiling of RY provided py < p; < q.

Increase the exponent p on the right, keeping r and g fixed.
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Localization

For po < p1 < qo, 1 <r < oo, and every N € N,

A | o — a0 (Lry S HAJ'HLP0—>L‘70(U) + Cy2 7N,

1
q
,a=pr
1] -’
qo
1]
q
T i T v l
1/pmax(q) - 1/pmin(q) 1 5

Figure: If A} ir0— 1900y < 279%%, then || Aj]1p—1a(1p) < 2779 in the blue triangle and
1Al Lo o Lpmax @)y < 2779/ in the red triangle.

MAAM, October 9, 2020

Variation bounds spherical averages

D. Beltran (UW-Madison)



I Al p— ra(Lry bounds

1
q
11 »
///‘ i
PEERRERS )
o | Combined with the 2//7 loss:
7z 1
//:” | @ all claimed interior bounds
s ; for V!A.
A . .
% 1 o« 3 1 @ maximal function-type
[ONNAN 1 . . .
1 ) endpoints implied by
| 1 -y - .
a—1 | | | Bourgain's interpolation
a2t | | ! trick
2(d+1) | ’
1
1
2
S
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The hard endpoint

Theorem (BORSS, 2020)

Ifr>%,d>3:

e Q) = (5. %),
d—1 @ = (%’ %)
K Q= (%1, 3),
Qi = (1 )
% ]
a1 VIA:LP — 19 at
1] [Qu(r), P(r)] w [P(r), Qa(r))
’ and analogous boundary
L segment [Ql(r),zQ4(r)) for
1<r< gty

—_
T I
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The hard endpoint

Instead of | V//Af|; < 277¢|f|,, we need to keep the frequency scales together.
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The hard endpoint

Instead of | V//Af|; < 277¢|f|,, we need to keep the frequency scales together.

Besov reduction for the endpoint: the bound
V! Aflis < LA o gy < IF1

follows from

|2 Ml |, gy S (52770508 9)"

Jj=0 j=0

provided 1 < r<ow,2<g<ow,1<p<owsatisfy r,p<gq.

Space-time FT of A,f(x): e (7€) 4 L P-theory (q = 2).
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The hard endpoint

Instead of | V//Af|; < 277¢|f|,, we need to keep the frequency scales together.

Besov reduction for the endpoint: the bound
V! Aflis < LA o gy < IF1
follows from

£ ®)] e (22 1)

provided 1 < r<ow,2<g<ow,1<p<owsatisfy r,p<gq.

Space-time FT of A,f(x): e (7€) 4 L P-theory (q = 2).

| 146

j=0

The single-scale bound [ A;f] () < 27/||f[, only yields

f. —ilr|f
DT . <32l

j=0

we want to upgrade the RHS to ¢9.
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The hard endpoint

Let 1 < pg < qo < 0. Assume that

Supzjd/qoHAj”[_noHqu(Lpo) Co 0. ST sq fn : hh = po = 2 qdo = 2(d+1)

e ’ d—1
Let go < q < ® and define m = %pi and pmm(q) - 21— Po)' Assume
that p, r satisfy
< f pmin(9) < P < pmax(9),
pein(@) < p < qand 4" <P I_ Pmin(q) < P < pmax(q)
r<pmax(q) if pmax(q) < p < gq.

Then for all {f;}j>0,

|2 1410, < €000+ (S 2#1518) ™
Jj=

Jj=0

Take r = q/d, so that 2779 = 2—Ja/r,

D. Beltran (UW-Madison)
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The hard endpoint

T I

1/pmax(q) 1/pmin(q) 1

1
Po

Figure: Bounds for multi-scale frequency sums with 27799 smoothness hold for r = p in
the interior of the blue triangle.
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The hard endpoint

Q=
a

I
©

a 8=
. .

1/pmax(q) 1/pmin(q) 1

1
Po
Figure: Bounds for multi-scale frequency sums with 27799 smoothness hold for r = p in
the interior of the blue triangle.
@ d > 3: Stein—Tomas square function as input, and setting r = q/d, gives
e strong bounds on [Q1(r), P(r)] (horizontal) and [P(r), Qs) for r > %.

e strong bounds on [Qi(r), Qa(r)) for 1 < r < %.

MAAM, October 9, 2020
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The hard endpoint

Q=
a

I
©

a 8=
. .

1/pmax(q) 1/pmin(q) 1

1
Po
Figure: Bounds for multi-scale frequency sums with 27799 smoothness hold for r = p in
the interior of the blue triangle.
@ d > 3: Stein—Tomas square function as input, and setting r = q/d, gives
e strong bounds on [Q1(r), P(r)] (horizontal) and [P(r), Qs) for r > %.
e strong bounds on [Qi(r), Qa(r)) for 1 < r < %.

o d =2, need sharp | A1 (1n) < 275%% beyond ST. Currently 2-/7/a+/=,

MAAM, October 9, 2020
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Fefferman—Stein sharp maximal function

Goal: 1/
< Clp, )1+ Go) (X 27)£2)

Jj=0

| Al

Jj=0

La(R9)
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Fefferman—Stein sharp maximal function

Goal:

: /
|14, 0 < SO0+ (X2 l50)’

j=0 j=0
Given G € L%(R?), the Fefferman—Stein sharp maximal function is defined as
—supj ’G f G(W)dW’dy
x€Q Q

which satisfies
|Gllg < c(q)|G*|q for go < g < 0.

Use this with our function on the LHS:

1/r
G(x) = J A (x, £)]" dt) .
Jj=0
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We estimate

G*(x) < Gi(x) + Gu(x) + G (x)
where,
6i00:= s f [ 3 (14550l - | 145600l dw)|dy,

QReQ(x) JQ i<—
L(Q)20 0<j<—L(Q)

6= s | X 1Al dy.
(L?(EQQ(<X0) iz=H
G (x) := sup JZHAJE'(%') %

QeQ(x) JQ;
[@=o  7°

and Q(x) is the collection of all cubes containing x and 2H(®@) ~ /(Q).
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—
Y
o

G\Z’/:—Z,(Q) — %I

\/w (,(k\u&&,m‘\lb\r\,
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Estimate for G,

Gi(x) = sup )(Q\ > (14550

AR O

v = | 1Al dw)|ay
Q
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Estimate for G,

6= sp [ |5 (Ml — [ 1Ashw. e aw)|ay
iy olos :
Fubini:
—L(Q) 0
sup D ajl= sup D fai@-nl <), sup [a_i(q)-nl
Q<Q(x) 0<; < 1(Q) QeQ(x) b =0 Qe0(x)
L(Q)<0 L(Q)<0 L(@)<—n

e¢]
Z sup  sup  |aj|.
n=0J20 QeQ o (x)
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Estimate for G,

Gi(x) = sup )(\ > (460l - )( A6 (w, )] dw )| dy
5 1o essieo :
Fubini:
—L(Q) ©
sup > lal= sup Y Jairal <) sup laiq)nl
QeQ(x) o<j<—1(Q) QeQ(x) oo a0 Q€Q(x)
L(Q)<0 L(Q)<0 L(Q<-n

0

= Z sup  sup  |aj|.
n=0J20 QeQ o (x)

Then Gi(x) < 32,20 51,n(x), where
Gual) i=sup sup | [LA6( ) = | 1A (we ) | ay
J20 QeQ_,_;(x) JQ Q
and one uses cancellation and the single-scale estimate to obtain

. 1/q
lg < 2_"(2 2‘Jd\|1§\|g> for p, g, r in the desired range.
Jj=0

Hgl,n
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Estimate for Gy

G(x) := ng? : L D IA4fi(y, )
€ X .
1(Q)=0 i=z-L(Q)

Lr d.yv
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Estimate for Gy

Gu(x) = sup )( S 1Ayl dy.
eQ(x
L(Q)<0 Qj>-L(Q)
As before, we can rewrite it as
Gu(x) < Z mr,nF(X)
n=0
where, for a sequence F = {fj};>o,
M, oF(x) = sup suP f |46y, ) L dy
JjZn QeQ,—(x)

It suffices to show

[Pl < G2 090 (3 271515)

j=n
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dy.

M, ,F(x) = sup  sup )(Q 4],

Jjzn QeQ,—;(x)
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dy.

M, ,F(x) = sup  sup )(Q 4],

Jjzn QeQ,—;(x)

Uniform estimate in n: single-scale estimate, via Hardy—Littlewood and ¢9 < ¢*

. 1/q
I, oFlg < (Y 27#1618)

jzn
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M oFx) = s sup )(Q [Ai£ ()], dy.

Jj=Zn QeQ,_j(x

Uniform estimate in n: single-scale estimate, via Hardy—Littlewood and ¢9 < ¢*

(S2g13) "

jzn

197, F g

A

Crucial gainin nif r = p = pg, g = 0:

190000, F oo < 27"/ sup | .

Jj=zn

Q=
Q

I
T

The gaininnatr=p=py, qg=00,

% ] N is interpolated with the uniform
1] \‘\\S estimates for r = p = pmin(p) and
q Tl r = p = pmax(q) on the boundary of

the blue triangle to yield summable

t - A
1/pmax(q) 1/pmin(q) 1 p bounds in the interior.

3=
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dy.

M oFx) = s sup )(Q 4],

Jj=Zn QeQ,_j(x

Uniform estimate in n: single-scale estimate, via Hardy—Littlewood and ¢9 < ¢

I, oFlg < (Y 27#1519)

jzn

1/q

Crucial gainin nif r = p = pg, g = 0:

—nd
190, F oo < 27" sup ] -

Jj=zn

Just use Holder's and the single-scale estimate:

1 1/qo
M, F(x)<s s — | |A:f:(y, )% d
maf <o s (i [ 146018 )

Jj=n QeQ,_j(x

Ssup  sup | QY@ f
Jj=Zn QeQ,_j(x)

< 27"% sup |fj] -
jzn

MAAM, October 9, 2020
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Estimate for Gy,

G (x) == sup j 2 1A £ (y, )l dy
QEQ X) j>0
L(Q)>0

Essentially local operator at unit scale. Large cubes are just an error term.

Follows from the case L(Q) = 0, i.e., from Gj;.
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Estimate for Gy,

Gui(x) :== sup j DUIAf(y, ) dy
QGQ X) J>0
L(Q)>0

Essentially local operator at unit scale. Large cubes are just an error term.

Follows from the case L(Q) = 0, i.e., from G;. Let

W) = 2 IAf e, Uew) = sup IU(Y)dY-

Given a cube Q € Q(x) with L(@) > 0 we may tile Q into cubes of side length 1
and get

LU dy < | Us(w) dw < M [Us] (%)
Q Q
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Estimate for Gy,

Gui(x) :== sup j DUIAf(y, ) dy
QGQ X) J>0
L(Q)>0

Essentially local operator at unit scale. Large cubes are just an error term.

Follows from the case L(Q) = 0, i.e., from G;. Let

W) = 2 IAf e, Uew) = sup IU(Y)dY-

Given a cube Q € Q(x) with L(@) > 0 we may tile Q into cubes of side length 1
and get

)( Uly )( Us(w) dw < My [Us] ().

By a very crude estimate we can replace Uy by G;; and get

G (x) < Muc[Gn](x).
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Thanks!

D. Beltran (U

adison) Variation bounds spherical averages



