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1-variable Matrix Monotonicity

Let E ✓ R be an interval and let f : E ! R. Let A be an n⇥ n self-adjoint matrix

with spectrum �(A) ✓ E . Then

A = U

0

B@
�1

. . .

�n

1

CAU⇤, then f (A) = U

0

B@
f (�1)

. . .

f (�n)

1

CAU⇤.

f is n-matrix monotone on E if whenever A,B are n ⇥ n self-adjoint matrices

with spectrum �(A),�(B) ✓ E ,

A  B (B � A is positive semidefinite) implies f (A)  f (B).

Ex. f (x) = c + dx , where d 2 [0,1). Then if A  B ,

f (B)� f (A) = (cI + dB)� (cI + dA) = d(B � A) � 0.

f is matrix monotone on E if f is n-matrix monotone for all n.
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Loewner’s Theorem

Loewner’s Theorem- Part 1

Let n � 2. A function f : E ! R is n-matrix monotone on E if and only if f is

di↵erentiable on E and for every distinct list {�1, . . . ,�n} ✓ E , the divided

di↵erence matrix

Mij =

(
f (�i )�f (�j )

�i��j
if i 6= j

f 0(�i ) if i = j

is positive semi-definite.

Let H = {z 2 C : Im(z) > 0}. A Pick function is a holomorphic function

mapping H into H.

Loewner’s Theorem- Part 2

A function f : E ! R is matrix monotone on E if and only if f analytically

continues to H as a map f : H [ E ! H in the Pick class.

Ex 1. f (x) = c + dx +

mX

i=1

ti
�i � x

where c 2 R, d , t1, . . . , tm � 0, and

�1, . . . ,�m 2 R \ E .
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Loewner’s Theorem

Loewner’s Theorem- Part 2

A function f : E ! R is matrix monotone on E if and only if f analytically

continues to H as a map f : H [ E ! H in the Pick class.

Examples: log x ,
p
x , tan x . Non-Examples: ex , x3, sec x

Many known proofs (see Barry Simon’s book Loewner’s Theorem on
Monotone Matrix Functions)

A key idea is the use of Nevanlinna representations for Pick functions.

A function f : H ! C is a Pick function if and only if there is a 2 R, b � 0 and a

finite positive Borel measure µ on R such that

f (z) = a+ bz +

Z
1 + tz

t � z
dµ(t).

The complement of the support of µ is exactly the set where f analytically

continues to be real valued. This is a Nevanlinna Representation for f .
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Function theory on D

Let D = {z 2 C : |z | < 1}.The Schur class is the set of holomorphic � : D ! D.

A Schur function � is inner if limr%1 |�(r⌧)| = 1 for a.e. ⌧ 2 T = @D.

The Cayley transform ↵ : D ! H is defined by ↵(z) = i
⇣

1+z
1�z

⌘
.

f is a Pick function i↵ � = ↵�1 � f � ↵ is Schur function.

f is real-valued on E ✓ R i↵ � is unimodular on ↵�1
(E ) and omits 1.

Realization Theory

Each Schur function � : D ! D has a transfer function realization, i.e.

�(z) = A+ B(1� zD)
�1zC for z 2 D, where

U =


A B
C D

�
:


C

M

�
!


C

M

�

is a contraction on a Hilbert space C�M. The operator U can be chosen to be

isometric, coisometric, or unitary.

With “minimal” M and U, this extends to any open I ✓ T where � is unimodular.
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Two-variable Realization Theory

(Agler ’90, Kummert ’89): Each Schur function � : D
2 ! D possess a transfer

function realization, i.e.

�(z) = A+ B(1� EzD)
�1EzC for z 2 D

2, where

U =


A B
C D

�
:


C

M

�
!


C

M

�

is a contraction on a Hilbert space C�M. The operator U can be chosen to be

isometric, coisometric, or unitary. M decomposes as M1 �M2 and

Ez = z1P1 + z2P2 where each Pj is the projection onto Mj .

Applications on D
2

(Agler, ’90) Nevanlinna-Pick Interpolation

(Knese, ’07) Infinitesimal Schwarz Lemma

(Agler-McCarthy-Young, ’12) Julia-Caratheódory Theorem

(Agler-McCarthy-Young, ’12) Loewner’s theorem

(B.-Pascoe-Sola, ’18-19) Quantify boundary behavior of rational functions
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Free or NC Sets

NC Function Theory: Began with J. Taylor and has had a meteoric recent

resurgence.

Let W d
denote the d-dimensional matrix universe W d

:= [1
n=1Mn(C)

d .

A set D ✓ W d
is a free set if

D is closed with respect to direct sums.

X = (X1, . . . ,Xd),Y = (Y1, . . . ,Yd) 2 D if and only if


X

Y

�
=

✓
X1

Y1

�
, . . . ,


Xd

Yd

�◆
2 D.

D is closed with respect to unitary similarity. If X 2 D \Mn⇥n(C)
d
and U is

an n ⇥ n unitary, then UXU⇤
= (UX1U⇤, . . . ,UXdU⇤

) 2 D.

Ex. The set of tuples (X1, . . . ,Xd) of positive semi-definite matrices (of the same

size) is a free set in W d
.
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Free or NC Functions

Let D be a free set.

Let f : D ! W 1
is a free function if f

Is graded: If X 2 Mn(C)
d \ D, then f (X ) 2 Mn(C).

Respects direct sums: If X ,Y 2 D, then

f


X

Y

�
=


f (X )

f (Y )

�
.

Respects similarity: If S is n ⇥ n & invertible with X , S�1XS 2 D, then

f (S�1XS) = S�1f (X )S .

Ex 1. Every non-commutative polynomial p 2 C[X1, . . . ,Xd ] is a free function on

every free set D.

Ex 2. f (X ) = X 1/2
1

⇣
X�1/2
1 X2X

�1/2
1

⌘1/2
X 1/2
1 is a free function on the set of

pairs (X1,X2) of positive semi-definite matrices
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The NC Loewner’s Theorem

The NC analogue of H
d
is

⇧
d
= {X 2 W d

: ImXi =
1
2i (Xi � X ⇤

i ) > 0, i = 1, . . . , d}.

The Free Pick class is the set of free functions f that map ⇧
d
into ⇧1.

The NC analogue of R
d
is Rd

:= {X 2 W d
: Xi = X ⇤

i , i = 1, . . . , d}.

A real convex domain is a free set D in Rd
such that for each n, D \Mn(C)

d
is

convex and open.

A function f is matrix monotone on a real convex domain D ✓ Rd
if

X  Y implies f (X )  f (Y ) for all X ,Y 2 D.

Non-commutative Loewner’s Theorem (Pascoe-Tully-Doyle 2017, Pascoe 2017)

Let D be a convex real domain.

A free function f : D ! R is matrix monotone on D if and only if f extends
to a function in the free Pick class continuous on D [ ⇧

d .
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Any questions?
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My Collaborators!

(a) J. E. Pascoe, University of Florida (b) Ryan Tully-Doyle, Cal Poly, SLO

Based on our preprint: Analytic continuation of concrete realizations and the

McCarthy Champagne conjecture
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Introduction

Loewner’s Theorem

A function f : E ! R is matrix monotone on E if and only if f analytically

continues to H as a map f : H [ E ! H in the Pick class.

Question: What is the analogue in 2 (commuting) variables?

Let E ✓ R
2
be convex and let f : E ! R. If A = (A1,A2) is a pair of commuting

self-adjoint n ⇥ n matrices, with joint spectrum �(A) ✓ E , then

Aj = U

0

B@
�j
1

. . .

�j
n

1

CAU
⇤, then f (A) = U

0

B@
f (�1

1
,�2

1
)

. . .

f (�1
n
,�2

n
)

1

CAU
⇤.

f is globally matrix monotone on E if whenever A = (A1,A2) and B = (B1,B2)

are pairs of commuting n ⇥ n self-adjoint matrices with �(A),�(B) ✓ E ,

Aj  Bj for j = 1, 2 implies f (A)  f (B).
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Two-variable Loewner Theorem

f is locally matrix monotone on E if whenever �(t) is a C
1
path of commuting

pairs of self-adjoint matrices with �(�(t)) ✓ E and �0
i
(t) � 0 for i = 1, 2, then

t1  t2 implies that f (�(t1))  f (�(t2)).

Note: In 1-variable, local monotonicity implies global monotonicity. Assume

A  B and set �(t) = (1� t)A+ tB . Then �0(t) = B � A � 0 and

f (A) = f (�(0))  f (�(1)) = f (B).

In 2-variables, pairs of commuting matrices A and B cannot necessarily be

connected by a curve of pairs of commuting self-adjoint matrices.

Agler-McCarthy-Young 2012, Pascoe 2019

A function f : E ! R is locally matrix monotone on E if and only if f analytically

continues to H
2
as a map f : E [H

2 ! H in the Pick class.
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The McCarthy Champagne Conjecture

McCarthy Champagne Conjecture (MCC):

Every 2-variable Pick function that analytically continues across

an open convex set E ✓ R
2
(and is real-valued there)

is globally matrix monotone when restricted to E .
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The Rational Case

Agler-McCarthy-Young 2012

Let f be a rational function of two variables. Let � be the zero-set of the

denominator of f . Assume f is real-valued on R
2 \ �. Let E be an open rectangle

in R
2 \ �.

Then f is globally matrix monotone on E if and only if f analytically

continues to H
2
as a Pick function.

Recall: ↵ : D! H defined by ↵(z) = i

⇣
1+z

1�z

⌘
.

Let � = ↵�1 � f � ↵. Then � is rational and holomorphic on D
2
and |�(⌧)| = 1

a.e. on T
2
= (@D)2. So, � is inner and extends continuously to ↵�1

(E ) ✓ T
2.

Proof Idea.

Identify a useful transfer function realization for �.

Transfer this realization to H
2
to get a realization for f .

Use additional/known results to conclude global matrix monotonicity.
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Realization Review

Each Schur function � : D
2 ! D possess a transfer function realization, i.e.

�(z) = A+ B(1� EzD)
�1

EzC for z 2 D
2, where

U =


A B

C D

�
:


C

M

�
!


C

M

�

is a contraction on a Hilbert space C�M. The operator U can be chosen to be

isometric, coisometric, or unitary.

The Realization Hilbert space M decomposes as M1 �M2 and

Ez = z1P1 + z2P2 where each Pj is the projection onto Mj .

Ex. Let �(z) =
2z1z2 � z1 � z2

2� z1 � z2
. Set

U =


A B

C D

�
=

2

4
0

p
2/2

p
2/2p

2/2 1/2 �1/2p
2/2 �1/2 1/2

3

5 and Ez =


z1 0

0 z2

�
.

Then �(z) = A+ B(1� EzD)
�1

EzC for z 2 D
2.
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Global Monotonicity for Rational Functions

(Ball-Sadosky-Vinnikov, 2005), (Knese, 2011): If � is rational & inner with

deg � = (m1,m2) then � has a unitary transfer function realization with

dimM1 = m1 and dimM2 = m2.

Agler-McCarthy-Young 2012

Let f be a rational function of two variables. Let � be the zero-set of the

denominator of f . Assume f is real-valued on R
2 \ �. Let E be an open rectangle

in R
2 \ �.

Then f is globally matrix monotone on E if and only if f analytically

continues to H
2
as a Pick function.

Let ↵(z) = i

⇣
1+z

1�z

⌘
and � = ↵�1 � f � ↵. (Assume that deg � = deg denom(�).)

� is rational and inner on D
2
and extends continuously to ↵�1

(E ) ✓ T
2.

� has a minimal TRF: �(z) = A+ B(1� EzD)
�1

EzC , for all z 2 D
2
.

(1� EzD)
�1

is defined on ↵�1
(E ) and so, the TFR extends to ↵�1

(E ).
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Goal of Project

Prove the McCarthy

Champagne Conjecture for a much

larger class of functions
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Hilbert Spaces for Inner Functions

Let H
2
(D

2
) denote the Hardy space on D

2
:

H
2
= H

2
(D

2
) =

⇢
f 2 Hol(D

2
) : kf k2

H2 = lim
r%1

Z

T2

|f (r⌧)|2dm(⌧) <1
�
.

Let Mz1
and Mz2

denote multiplication by z1 and z2 on H
2
.

Let � : D
2 ! D be inner, i.e. � 2 Hol(D

2
) and lim

r%1

|�(r⌧)| = 1 for a.e. ⌧ 2 T
2
.

Then we can define some useful subspaces of H
2
using �:

�H2
is a Hilbert subspace of H

2
.

K� = H
2  �H2

S
max

1
= the maximal subspace of K� invariant under Mz1

S
min

2
= K�  S

max

1
is invariant under multiplication by Mz2

Define the realization Hilbert spaces of � by

M1 = S
min

2  Mz2
S
min

2 and M2 = S
max

1  Mz1
S
max

1 .
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Realizations for inner functions

Let � : D
2 ! D be inner and recall

M1 = S
min

2  Mz2
S
min

2 and M2 = S
max

1  Mz1
S
max

1 .

Set M = M1 �M2 and let Pj be the projection of H
2
onto Mj . Define

U =


A B

C D

�
:


C

M

�
!


C

M

�
as follows:

Ax = �(0)x for all x 2 C

Bf = f (0) for all f 2M
Cx =

�
P1M

⇤
z1
�+ P2M

⇤
z2
�
�
x for all x 2 C

Df =
�
P1M

⇤
z1
+ P2M

⇤
z2

�
f .

Theorem 1 (B. Knese, 2016, B.-Pascoe-Tully-Doyle, 2020)

Then U is a coisometry and if Ez = z1P1 + z2P2, then

�(z) = A+ B(1� EzD)
�1

EzC for z 2 D
2.

See also, (Ball-Sadosky-Vinnikov, 2005), (B.-Knese 2013), (Ball-Bolotnikv 2012),

(Ball-Sadosky-Vinnikov-Kaliuzhnyi-Verbovetskyi, 2015)
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Quasi-Rational Functions

� is quasi-rational with respect to an open I ✓ T if � is inner and extends

continuously to T⇥ I with |�(⌧)| = 1 for ⌧ 2 T⇥ I .

Ex. Let ✓(z) =
2z1z2 � z1 � z2

2� z1 � z2
. Let  be a one-variable inner function that

omits the value 1 on some open I ✓ T. Then

�(z) := ✓ (z1, (z2)) is quasi-rational on I .

Compositions of rational inner functions with (fairly) general 1-variable inner

functions are quasi-rational.

Quasi-rational functions behave like rational functions in 1 of the variables

(�(·, ⌧2) is a finite Blaschke product for ⌧2 2 I ).

The set of quasi-rational functions is closed with respect to finite products.

If (�n) is a sequence of quasi-rational functions on I that converges to some

function � both in the H
2
(D

2
) norm and locally uniformly on D

2 [ (T⇥ I ),

the � is quasi-rational on I .
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Continuation of the Realization

Theorem 2 (B.-Pascoe-Tully-Doyle, 2020)

If � is quasi-rational with respect to I , then (1� E⌧D)
�1

exists for all ⌧ 2 T⇥ I .

Theorem 2 implies

�(z) = A+ B(1� EzD)
�1

EzC for z 2 D
2 [ (T⇥ I )

Structure of the Proof

Show that (1� E⌧D) has dense range.

Show that (1� E⌧D) is bounded below.

Main Tools

Behavior of (1� E⌧D) on a dense set of M.

(B.-Knese ’13). All f 2M extend to ⌦ ◆ D
2 [ (D⇥ I ) and point evaluation

is a bounded linear functional on M for all z 2 ⌦.

J⌧ : M1 ! H
2
(D) defined by (J⌧ f )(z) = f (z , ⌧) is an isometry for all ⌧ 2 I .
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Main Theorem

� is quasi-rational with respect to an open I ✓ T if � is inner and extends

continuously to T⇥ I with |�(⌧)| = 1 for ⌧ 2 T⇥ I .

Let ↵(z) = i

⇣
1+z

1�z

⌘
: D! H.

Theorem 3 (B.-Pascoe-Tully-Doyle, 2020)

Let � be quasi-rational with respect to an open I ✓ T, and let f = ↵ � � � ↵�1
.

Then f is globally matrix monotone on every open rectangle E ✓ R⇥ ↵(I )
(as long as � omits the value 1 on ↵�1

(E )).

Proof Idea: Theorem 2 implies that

�(z) = A+ B(1� EzD)
�1

EzC for z 2 D
2 [ (T⇥ I ).

Using conformal maps to assume E = (0,1)
2
and f (1,1) 2 R.

Transfer this realization to H
2
to get a realization for f on H

2 [ (0,1)
2

Use NC Loewner Theorem to conclude monotonicity.
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Transferring Realizations

Corollary 1 (B.-Pascoe-Tully-Doyle, 2020)

Assume �(z) = A+ B(1� EzD)
�1

EzC for z 2 ⌦ [ {(1, 1)} such that

�(z) 6= 1 in ⌦,

z1, z2 6= 1 for z 2 ⌦,

and the realization also holds at (1, 1) and �(1, 1) 6= 1.

Let f = ↵ � � � ↵�1
and T = i(1 + U)(1� U)

�1
=


T11 T12

T21 T22

�
. Then

f (w) = T11 � T12(Ew + T22)
�1

T21 for w 2 ↵(⌦).

For us, U is unitary, so T is self-adjoint. Then

T =


T11 T12

T21 T22

�
=


a �⇤

� A

�
,

for a 2 R, � 2M, and A a self-adjoint operator on M. So

f (w) = a�
⌦
(A+ Ew )

�1�, �
↵
M for w 2 H

2 [ (0,1)
2.
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Theorem 3 (B.-Pascoe-Tully-Doyle, 2020)

Let � be quasi-rational with respect to an open I ✓ T, and let f = ↵ � � � ↵�1
.

Then f is globally matrix monotone on every open rectangle E ✓ R⇥ ↵(I )
(as long as f is well defined on E ).

Proof: By Theorem 2, �(z) = A+ B(1� EzD)
�1

EzC for z 2 D
2 [ (T⇥ I ).

Assume E = (0,1)
2
. Then there exist a 2 R, � 2M and self-adjoint A such that:

f (w) = a�
⌦
(A+ Ew )

�1�, �
↵
M for w 2 H

2 [ (0,1)
2.

Because this holds on (0,1)
2
, A must be positive semi-definite.

Then f extends to a free Pick function defined on ⇧
d
by Pascoe-Tully-Doyle ’17.

Since A is positive semi-definite, f extends to the real convex free domain D ✓ R
2

consisting of pairs of positive definite matrices and maps it into R
1
.

By the NC Loewner Theorem, f is matrix monotone on D in the NC sense.

Assume A = (A1,A2),B = (B1,B2) are pairs of commuting self-adjoint n ⇥ n

matrices such that �(A),�(B) 2 (0,1)
2
and each Aj  Bj . Then A,B 2 D and

so, f (A)  f (B). 16 / 17



Thanks for listening!
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