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1-variable Matrix Monotonicity

Let E C R be an interval and let f : E — R. Let A be an n x n self-adjoint matrix
with spectrum o(A) C E. Then

A f(\1)
A=U U*, then f(A) = U U
An F(n)

f is n-matrix monotone on E if whenever A, B are n x n self-adjoint matrices
with spectrum o(A),o(B) C E,

A < B (B — Ais positive semidefinite) implies f(A) < f(B).

Ex. f(x) = c + dx, where d € [0,00). Then if A< B,

F(B) — f(A) = (cl + dB) — (cl + dA) = d(B — A) > 0.

f is matrix monotone on E if f is n-matrix monotone for all n.
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Loewner's Theorem

Loewner's Theorem- Part 1

Let n > 2. A function f : E — R is n-matrix monotone on E if and only if f is
differentiable on E and for every distinct list {\1,...,A,} C E, the divided

difference matrix . .
A —F(\ - .
(e

FiO)  ifi=j

is positive semi-definite.

Let H= {z € C:Im(z) > 0}. A Pick function is a holomorphic function
mapping H into H.

Loewner's Theorem- Part 2

A function f : E — R is matrix monotone on E if and only if f analytically
continues to H as a map f : HHU E — H in the Pick class.

ti

Ex 1. f(x) = d h R, d,t1,...,tm >0, and
X (x)=c+ x—&—;)\i  Where c € 1 an
Al,...,AmER\E.
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Loewner's Theorem

Loewner's Theorem- Part 2

A function f : E — IR is matrix monotone on E if and only if f analytically
continues to H as a map f : HU E — H in the Pick class.

3

Examples: log x, v/x, tanx.  Non-Examples: X, x>, sec x

@ Many known proofs (see Barry Simon's book Loewner’s Theorem on
Monotone Matrix Functions)

@ A key idea is the use of Nevanlinna representations for Pick functions.

A function f : H — C is a Pick function if and only if thereis a € R, b >0 and a
finite positive Borel measure i1 on R such that

14tz
P du(t).

f(z):a+bz+/

The complement of the support of i is exactly the set where f analytically

continues to be real valued. This is a Nevanlinna Representation for f.
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Function theory on D

Let D = {z € C: |z| < 1}.The Schur class is the set of holomorphic ¢ : D — D.

A Schur function ¢ is inner if lim, ~y [¢p(r7)| =1 for a.e. 7€ T = 9ID.

The Cayley transform o : D — H is defined by a(z) = i (}j; ) .

@ f is a Pick function iff ¢ = @~ o f o a is Schur function.

e f is real-valued on E C R iff ¢ is unimodular on a~!(E) and omits 1.

Realization Theory

Each Schur function ¢ : D — D has a transfer function realization, i.e.
#(z) = A+ B(1 —zD)"*zC for z€ D, where
U— A B| |C _ C
~|C DM M
is a contraction on a Hilbert space C @& M. The operator U can be chosen to be
isometric, coisometric, or unitary.

With “minimal” M and U, this extends to any open | C T where ¢ is unimodular.
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Two-variable Realization Theory

(Agler '90, Kummert '89): Each Schur function ¢ : D?> — D possess a transfer
function realization, i.e.

¢(z) =A+B(1— E,D)'E,C for z€ D? where

U— A B| |C _ C
“|C D| (M M
is a contraction on a Hilbert space C @ M. The operator U can be chosen to be

isometric, coisometric, or unitary. M decomposes as M1 & M> and
E, = z1P1 + 2P, where each P; is the projection onto M;.

Applications on D?
o (Agler, '90) Nevanlinna-Pick Interpolation
o (Knese, '07) Infinitesimal Schwarz Lemma
o (Agler-McCarthy-Young, '12) Julia-Caratheddory Theorem
o (Agler-McCarthy-Young, '12) Loewner's theorem
(

o (B.-Pascoe-Sola, '18-19) Quantify boundary behavior of rational functions
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Free or NC Sets

NC Function Theory: Began with J. Taylor and has had a meteoric recent
resurgence.

Let W denote the d-dimensional matrix universe W% := U2, M,(C)¢.

A set D C WY is a free set if

@ D is closed with respect to direct sums.
X=(X1,...,Xqs), Y =(Y1,..., Yq) € D if and only if

(R

o D is closed with respect to unitary similarity. If X € DN M,x,(C)¢ and U is
an n X n unitary, then UXU* = (UX U*, ..., UXyU*) € D.

Ex. The set of tuples (Xi,...,Xy) of positive semi-definite matrices (of the same
size) is a free set in W,
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Free or NC Functions

Let D be a free set.

Let f : D — W1 is a free function if f
e Is graded: If X € M,(C)? N D, then f(X) € M,(C).

@ Respects direct sums: If X, Y € D, then

T =1 ol

@ Respects similarity: If S is n x n & invertible with X, S™1XS € D, then
f(STIXS) = ST (X)S.

Ex 1. Every non-commutative polynomial p € C[Xi, ..., Xy] is a free function on
every free set D.

- _ 1/2
Ex 2. f(X) = Xll/2 (Xl 1/2X2X1 1/2) Xll/2 is a free function on the set of

pairs (X1, Xa) of positive semi-definite matrices
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The NC Loewner’'s Theorem

The NC analogue of H is

NY={Xew’: ImX;=2(X;— X*)>0,i=1,....d}.
The Free Pick class is the set of free functions f that map M into MZ.
The NC analogue of R? is RY := {X € W9 : X; = X*,i=1,...,d}.

A real convex domain is a free set D in R? such that for each n, D N M,(C)9 is
convex and open.

A function f is matrix monotone on a real convex domain D C R? if

X <Y implies f(X) < f(Y) forall X,Y € D.

Non-commutative Loewner's Theorem (Pascoe-Tully-Doyle 2017, Pascoe 2017)

Let D be a convex real domain.

A free function f : D — R is matrix monotone on D if and only if f extends
to a function in the free Pick class continuous on D U 9.
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Any questions?
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My Collaborators!

Based on our preprint: Analytic continuation of concrete realizations and the
McCarthy Champagne conjecture
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Introduction

Loewner's Theorem

A function f : E — IR is matrix monotone on E if and only if f analytically
continues to H as a map f : HU E — H in the Pick class.

Question: What is the analogue in 2 (commuting) variables?

Let E C R? be convex and let f : E — R. If A= (A1, A) is a pair of commuting
self-adjoint n x n matrices, with joint spectrum o(A) C E, then

Y f(M, A7)
Ai=U U*, then f(A) = U U,
N F(AR A7)

n

f is globally matrix monotone on E if whenever A = (A;, A;) and B = (B, By)
are pairs of commuting n x n self-adjoint matrices with o(A),o(B) C E,

A;j < Bj forj=1,2 implies f(A)<f(B).
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Two-variable Loewner Theorem

f is locally matrix monotone on E if whenever +(t) is a C! path of commuting
pairs of self-adjoint matrices with o(y(t)) C E and ~/(t) > 0 for i = 1,2, then

t;1 < t, implies that f(~(t1)) < f(y(t2)).

Note: In 1-variable, local monotonicity implies global monotonicity. Assume
A < B and set y(t) = (1 — t)A+ tB. Then v/(t) = B — A >0 and

f(A) = f(7(0)) < f(7(1)) = f(B).

In 2-variables, pairs of commuting matrices A and B cannot necessarily be
connected by a curve of pairs of commuting self-adjoint matrices.

Agler-McCarthy-Young 2012, Pascoe 2019

A function f : E — R is locally matrix monotone on E if and only if f analytically
continues to H? as a map f : EUH? — H in the Pick class.
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The McCarthy Champagne Conjecture

McCarthy Champagne Conjecture (MCC):

Every 2-variable Pick function that analytically continues across
an open convex set £ C R? (and is real-valued there)
is globally matrix monotone when restricted to E.
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The Rational Case

Agler-McCarthy-Young 2012

Let f be a rational function of two variables. Let ' be the zero-set of the
denominator of f. Assume f is real-valued on R?\ . Let E be an open rectangle
in R2\T.

Then f is globally matrix monotone on E if and only if f analytically
continues to H? as a Pick function.

Recall: o : D — H defined by a(z) =i (i*i) :

Let ¢ = a1 ofoa. Then ¢ is rational and holomorphic on D? and |¢(7)| =
a.e. on T? = (OD)?. So, ¢ is inner and extends continuously to a~!(E) C T?.

Proof Idea.
o Identify a useful transfer function realization for ¢.
@ Transfer this realization to H? to get a realization for f.
@ Use additional/known results to conclude global matrix monotonicity.
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Realization Review

Each Schur function ¢ : D?> — D possess a transfer function realization, i.e.

#(z)=A+B(1—E,D)'E,C forzeD? where

U— A B| |C . C
—|C D| M M
is a contraction on a Hilbert space C ® M. The operator U can be chosen to be
isometric, coisometric, or unitary.

The Realization Hilbert space M decomposes as M; & M5 and
E, = z21P1 4+ z,P> where each P; is the projection onto M;.

2 — 7 —
Ex. Let ¢(z) = % Set

0 V2/2 V2/2
A B 2 0
U= =[v2/2 1/2 -1/2| and E, = |7 :
{C D} V2/2 —1/2 1)2 [0 ZJ

Then ¢(z) = A+ B(1 — E,D)"'E,C for z € D?.
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Global Monotonicity for Rational Functions

(Ball-Sadosky-Vinnikov, 2005), (Knese, 2011): If ¢ is rational & inner with
deg ¢ = (m1, my) then ¢ has a unitary transfer function realization with
dim My = my; and dim M> = m».

Agler-McCarthy-Young 2012

Let f be a rational function of two variables. Let [ be the zero-set of the
denominator of f. Assume f is real-valued on R? \ . Let E be an open rectangle
in R2\ T.

Then f is globally matrix monotone on E if and only if f analytically
continues to H? as a Pick function.

Let a(z) =i (H—z> and ¢ = a1 o f o . (Assume that deg ¢ = degdenom(¢).)

1-z
@ ¢ is rational and inner on D? and extends continuously to a~}(E) C T2.
o ¢ has a minimal TRF: ¢(z) = A+ B(1 — E,D)'E,C, for all z € D?.
e (1— E,D) ! is defined on a~1(E) and so, the TFR extends to a~1(E).
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Goal of Project

Prove the McCarthy
Champagne Conjecture for a much
larger class of functions



Hilbert Spaces for Inner Functions

Let H?(D?) denote the Hardy space on D?:

H? = H*(D?) = {f € Hol(D?) : ||f||3. = lim /T |f(r7)|?dm(T) < oo}.

Let M,, and M,, denote multiplication by z and z, on H?.
Let ¢ : D> — D be inner, i.e. ¢ € Hol(D?) and Ii/n(w1 |p(r7)| = 1 for a.e. T € T2

Then we can define some useful subspaces of H? using ¢:

e ¢H? is a Hilbert subspace of H?.
o Ky = H? 6 pH?
@ 5" = the maximal subspace of K invariant under M,

e SPin = K, © S is invariant under multiplication by M,,

Define the realization Hilbert spaces of ¢ by
My = SP" &S M, S and My = S & M, S
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Realizations for inner functions

Let ¢ : D? — D be inner and recall
Ml — 2min o Mzzsénin and MQ — Sinax o leslmax-
Set M = M; & M, and let P; be the projection of H? onto M;. Define

o-[2 8- [5] 5]

Ax = ¢(0)x for all x € C

Bf = £(0) for all f € M

Cx = (PlM;"qu- PQM:2¢) x for all x e C
Df = (PLMj; + P,My) f.

Theorem 1 (B. Knese, 2016, B.-Pascoe-Tully-Doyle, 2020)

Then U is a coisometry and if E, = z1P; + 2, P>, then

#(z) = A+ B(1 — E,D)*E,C for z € D°.

See also, (Ball-Sadosky-Vinnikov, 2005), (B.-Knese 2013), (Ball-Bolotnikv 2012),
(Ball-Sadosky-Vinnikov-Kaliuzhnyi-Verbovetskyi, 2015)

1/17



Quasi-Rational Functions

¢ is quasi-rational with respect to an open / C T if ¢ is inner and extends
continuously to T x / with |¢(7)] =1for 7 € T x [.

22120 — 71 — z . . .
Ex. Let 6(z) = % Let 1 be a one-variable inner function that
—Z1— 22
omits the value 1 on some open | C T. Then

#(z) 1= 0 (z1,¢¥(2)) is quasi-rational on /.

e Compositions of rational inner functions with (fairly) general 1-variable inner
functions are quasi-rational.

@ Quasi-rational functions behave like rational functions in 1 of the variables
(¢(+,72) is a finite Blaschke product for m € /).

@ The set of quasi-rational functions is closed with respect to finite products.

o If (¢,) is a sequence of quasi-rational functions on / that converges to some
function ¢ both in the H?(D?) norm and locally uniformly on D? U (T x /),
the ¢ is quasi-rational on /.
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Continuation of the Realization

Theorem 2 (B.-Pascoe-Tully-Doyle, 2020)

If ¢ is quasi-rational with respect to /, then (1 — E,D)~! exists for all 7 € T x /.

Theorem 2 implies

¢(z)=A+B(1—E,D)'E,C forzeD*U(T x /)

Structure of the Proof
@ Show that (1 — E; D) has dense range.
@ Show that (1 — E; D) is bounded below.
Main Tools

@ Behavior of (1 — E; D) on a dense set of M.

o (B.-Knese '13). All f € M extend to Q D D? U (D x /) and point evaluation
is a bounded linear functional on M for all z € Q.

o J. : My — H?(D) defined by (J.f)(z) = f(z,7) is an isometry for all 7 € /.
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¢ is quasi-rational with respect to an open / C T if ¢ is inner and extends
continuously to T x / with |¢(7)] =1for 7 € T x [.

Let a(z) =i (F‘i) D — H.

Theorem 3 (B.-Pascoe-Tully-Doyle, 2020)

Let ¢ be quasi-rational with respect to an open / C T, and let f = aogpoa!.

Then £ is globally matrix monotone on every open rectangle £ C R x «(/)
(as long as ¢ omits the value 1 on a~1(E)).

Proof Idea: Theorem 2 implies that
#(z)=A+B(1—-ED)'E,C forzeD?>U(T x /).
@ Using conformal maps to assume E = (0,00)? and f(c0,00) € R.
e Transfer this realization to H? to get a realization for f on H? U (0, 00)?

@ Use NC Loewner Theorem to conclude monotonicity.
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Transferring Realizations

Corollary 1 (B.-Pascoe-Tully-Doyle, 2020)

Assume ¢(z) = A+ B(1 — E,D)71E,C for z € QU {(1,1)} such that
° ¢(z) #A1in Q,
@ 71,20 £ 1forz € Q,
@ and the realization also holds at (1,1) and ¢(1,1) # 1.

Ty T

Let f=aogoatand T=i(l+U)(1-U)"t=
Tor T2

} . Then

f(w) = Tig — Tia(Ew + T22) ' Toy for w € o(Q).

For us, U is unitary, so T is self-adjoint. Then
T— Tan T _ja 7"
Toan Ta v AT
forae R, v € M, and A a self-adjoint operator on M. So

f(w) =a—((A+ Ew)"",7)  for w e H* U (0, 00).
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Theorem 3 (B.-Pascoe-Tully-Doyle, 2020)

Let ¢ be quasi-rational with respect to an open / C T, and let f = a0 gpoa L.

Then f is globally matrix monotone on every open rectangle £ C R x «(/)
(as long as f is well defined on E).

Proof: By Theorem 2, ¢(z) = A+ B(1 — E,D)"*E,C for ze D> U(T x /).
Assume E = (0,00). Then there exist a € R,v € M and self-adjoint A such that:
f(w) =a—((A+Ew)",7)  for w e H? U (0, 00)%.

Because this holds on (0,00)?, A must be positive semi-definite.
Then f extends to a free Pick function defined on M9 by Pascoe-Tully-Doyle '17.

Since A is positive semi-definite, f extends to the real convex free domain D C R?
consisting of pairs of positive definite matrices and maps it into R?.

By the NC Loewner Theorem, f is matrix monotone on D in the NC sense.

Assume A = (A1, Az), B = (By, By) are pairs of commuting self-adjoint n x n
matrices such that o(A),o(B) € (0,00)? and each A; < B;. Then A,B € D and
so, f(A) < f(B). 16/h7



Thanks for listening!



