An Introduction to Matrix Monotonicity, Realization Theory, and Non-commutative Function Theory

Kelly Bickel Bucknell University Lewisburg, PA

Mid-Atlantic Analysis Meeting Seminar September 25, 2020

1-variable Matrix Monotonicity

Let $E \subseteq \mathbb{R}$ be an interval and let $f : E \to \mathbb{R}$. Let A be an $n \times n$ self-adjoint matrix with spectrum $\sigma(A) \subseteq E$. Then

$$A = U egin{pmatrix} \lambda_1 & & \ & \ddots & \ & & \lambda_n \end{pmatrix} U^*, ext{ then } f(A) = U egin{pmatrix} f(\lambda_1) & & & \ & \ddots & \ & & f(\lambda_n) \end{pmatrix} U^*.$$

f is *n*-matrix monotone on *E* if whenever *A*, *B* are $n \times n$ self-adjoint matrices with spectrum $\sigma(A), \sigma(B) \subseteq E$,

 $A \leq B$ (B - A is positive semidefinite) implies $f(A) \leq f(B)$.

Ex.
$$f(x) = c + dx$$
, where $d \in [0, \infty)$. Then if $A \le B$,
 $f(B) - f(A) = (cI + dB) - (cI + dA) = d(B - A) \ge 0$.

f is matrix monotone on E if f is n-matrix monotone for all n.

Loewner's Theorem

Loewner's Theorem- Part 1

Let $n \ge 2$. A function $f : E \to \mathbb{R}$ is *n*-matrix monotone on *E* if and only if *f* is differentiable on *E* and for every distinct list $\{\lambda_1, \ldots, \lambda_n\} \subseteq E$, the divided difference matrix

$$M_{ij} = \begin{cases} \frac{f(\lambda_i) - f(\lambda_j)}{\lambda_i - \lambda_j} & \text{if } i \neq j \\ f'(\lambda_i) & \text{if } i = j \end{cases}$$

is positive semi-definite.

Let $\mathbb{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$. A **Pick function** is a holomorphic function mapping \mathbb{H} into $\overline{\mathbb{H}}$.

Loewner's Theorem- Part 2

A function $f : E \to \mathbb{R}$ is matrix monotone on E if and only if f analytically continues to \mathbb{H} as a map $f : \mathbb{H} \cup E \to \overline{\mathbb{H}}$ in the Pick class.

Ex 1.
$$f(x) = c + dx + \sum_{i=1}^{m} \frac{t_i}{\lambda_i - x}$$
 where $c \in \mathbb{R}$, $d, t_1, \ldots, t_m \ge 0$, and $\lambda_1, \ldots, \lambda_m \in \mathbb{R} \setminus E$.

Loewner's Theorem- Part 2

A function $f : E \to \mathbb{R}$ is matrix monotone on E if and only if f analytically continues to \mathbb{H} as a map $f : \mathbb{H} \cup E \to \overline{\mathbb{H}}$ in the Pick class.

Examples: log x, \sqrt{x} , tan x. Non-Examples: e^x , x^3 , sec x

- Many known proofs (see Barry Simon's book *Loewner's Theorem on Monotone Matrix Functions*)
- A key idea is the use of Nevanlinna representations for Pick functions.

A function $f : \mathbb{H} \to \mathbb{C}$ is a Pick function if and only if there is $a \in \mathbb{R}$, $b \ge 0$ and a finite positive Borel measure μ on \mathbb{R} such that

$$f(z) = a + bz + \int \frac{1+tz}{t-z} d\mu(t).$$

The complement of the support of μ is exactly the set where f analytically continues to be real valued. This is a **Nevanlinna Representation** for f.

Function theory on ${\mathbb D}$

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. The **Schur class** is the set of holomorphic $\phi : \mathbb{D} \to \overline{\mathbb{D}}$.

A Schur function ϕ is inner if $\lim_{r \geq 1} |\phi(r\tau)| = 1$ for a.e. $\tau \in \mathbb{T} = \partial \mathbb{D}$.

The Cayley transform $\alpha : \mathbb{D} \to \mathbb{H}$ is defined by $\alpha(z) = i\left(\frac{1+z}{1-z}\right)$.

• f is a Pick function iff $\phi = \alpha^{-1} \circ f \circ \alpha$ is Schur function.

• *f* is real-valued on $E \subseteq \mathbb{R}$ iff ϕ is unimodular on $\alpha^{-1}(E)$ and omits 1.

Realization Theory

Each Schur function $\phi : \mathbb{D} \to \overline{\mathbb{D}}$ has a transfer function realization, i.e.

$$\phi(z) = A + B(1 - zD)^{-1}zC \quad \text{for } z \in \mathbb{D}, \text{ where}$$
$$U = \begin{bmatrix} A & B \\ C & D \end{bmatrix} : \begin{bmatrix} \mathbb{C} \\ \mathcal{M} \end{bmatrix} \rightarrow \begin{bmatrix} \mathbb{C} \\ \mathcal{M} \end{bmatrix}$$

is a contraction on a Hilbert space $\mathbb{C} \oplus \mathcal{M}$. The operator U can be chosen to be isometric, coisometric, or unitary.

With "minimal" \mathcal{M} and U, this extends to any open $I \subseteq \mathbb{T}$ where ϕ is unimodular.

Two-variable Realization Theory

(Agler '90, Kummert '89): Each Schur function $\phi : \mathbb{D}^2 \to \overline{\mathbb{D}}$ possess a **transfer function realization**, i.e.

$$\phi(z) = A + B(1 - E_z D)^{-1} E_z C \quad \text{for } z \in \mathbb{D}^2, \text{ where}$$
$$U = \begin{bmatrix} A & B \\ C & D \end{bmatrix} : \begin{bmatrix} \mathbb{C} \\ \mathcal{M} \end{bmatrix} \to \begin{bmatrix} \mathbb{C} \\ \mathcal{M} \end{bmatrix}$$

is a contraction on a Hilbert space $\mathbb{C} \oplus \mathcal{M}$. The operator U can be chosen to be isometric, coisometric, or unitary. \mathcal{M} decomposes as $\mathcal{M}_1 \oplus \mathcal{M}_2$ and $E_z = z_1 P_1 + z_2 P_2$ where each P_i is the projection onto \mathcal{M}_i .

Applications on \mathbb{D}^2

- (Agler, '90) Nevanlinna-Pick Interpolation
- (Knese, '07) Infinitesimal Schwarz Lemma
- (Agler-McCarthy-Young, '12) Julia-Caratheódory Theorem
- (Agler-McCarthy-Young, '12) Loewner's theorem
- (B.-Pascoe-Sola, '18-19) Quantify boundary behavior of rational functions

Free or NC Sets

NC Function Theory: Began with J. Taylor and has had a meteoric recent resurgence.

Let W^d denote the *d*-dimensional matrix universe $W^d := \cup_{n=1}^{\infty} M_n(\mathbb{C})^d$.

A set $D \subseteq W^d$ is a **free set** if

• D is closed with respect to direct sums.

$$X = (X_1, \dots, X_d), Y = (Y_1, \dots, Y_d) \in D \text{ if and only if}$$

$$\begin{bmatrix} X \\ & Y \end{bmatrix} = \left(\begin{bmatrix} X_1 \\ & Y_1 \end{bmatrix}, \dots, \begin{bmatrix} X_d \\ & Y_d \end{bmatrix} \right) \in D.$$

• D is closed with respect to unitary similarity. If $X \in D \cap M_{n \times n}(\mathbb{C})^d$ and U is an $n \times n$ unitary, then $UXU^* = (UX_1U^*, \dots, UX_dU^*) \in D$.

Ex. The set of tuples (X_1, \ldots, X_d) of positive semi-definite matrices (of the same size) is a free set in W^d .

Free or NC Functions

Let D be a free set.

Let $f : D \to W^1$ is a free function if f

- Is graded: If $X \in M_n(\mathbb{C})^d \cap D$, then $f(X) \in M_n(\mathbb{C})$.
- Respects direct sums: If $X, Y \in D$, then

$$f\begin{bmatrix} X & \\ & Y \end{bmatrix} = \begin{bmatrix} f(X) & \\ & f(Y) \end{bmatrix}.$$

• Respects similarity: If S is $n \times n$ & invertible with $X, S^{-1}XS \in D$, then

$$f(S^{-1}XS) = S^{-1}f(X)S.$$

Ex 1. Every non-commutative polynomial $p \in \mathbb{C}[X_1, \ldots, X_d]$ is a free function on every free set D.

Ex 2. $f(X) = X_1^{1/2} \left(X_1^{-1/2} X_2 X_1^{-1/2} \right)^{1/2} X_1^{1/2}$ is a free function on the set of pairs (X_1, X_2) of positive semi-definite matrices

The NC Loewner's Theorem

The NC analogue of \mathbb{H}^d is

$$\Pi^{d} = \{ X \in W^{d} : \ \operatorname{Im} X_{i} = \frac{1}{2i} (X_{i} - X_{i}^{*}) > 0, i = 1, \dots, d \}.$$

The **Free Pick class** is the set of free functions f that map Π^d into $\overline{\Pi^1}$.

The NC analogue of \mathbb{R}^d is $R^d := \{X \in W^d : X_i = X_i^*, i = 1, \dots, d\}.$

A **real convex domain** is a free set D in \mathbb{R}^d such that for each $n, D \cap M_n(\mathbb{C})^d$ is convex and open.

A function f is **matrix monotone** on a real convex domain $D \subseteq R^d$ if

$$X \leq Y$$
 implies $f(X) \leq f(Y)$ for all $X, Y \in D$.

Non-commutative Loewner's Theorem (Pascoe-Tully-Doyle 2017, Pascoe 2017)

Let D be a convex real domain.

A free function $f : D \to R$ is matrix monotone on D if and only if f extends to a function in the free Pick class continuous on $D \cup \Pi^d$.

Any questions?

Matrix Monotonicity in the Quasi-Rational Setting

Kelly Bickel Bucknell University Lewisburg, PA Joint work with J.E. Pascoe and Ryan Tully-Doyle

Mid-Atlantic Analysis Meeting Seminar September 25, 2020

My Collaborators!

(a) J. E. Pascoe, University of Florida

(b) Ryan Tully-Doyle, Cal Poly, SLO

Based on our preprint: Analytic continuation of concrete realizations and the McCarthy Champagne conjecture

Loewner's Theorem

A function $f : E \to \mathbb{R}$ is matrix monotone on E if and only if f analytically continues to \mathbb{H} as a map $f : \mathbb{H} \cup E \to \overline{\mathbb{H}}$ in the Pick class.

Question: What is the analogue in 2 (commuting) variables?

Let $E \subseteq \mathbb{R}^2$ be convex and let $f : E \to \mathbb{R}$. If $A = (A_1, A_2)$ is a pair of commuting self-adjoint $n \times n$ matrices, with joint spectrum $\sigma(A) \subseteq E$, then

$$A_j = U \begin{pmatrix} \lambda_1^j & & \\ & \ddots & \\ & & \lambda_n^j \end{pmatrix} U^*, \text{ then } f(A) = U \begin{pmatrix} f(\lambda_1^1, \lambda_1^2) & & \\ & \ddots & \\ & & f(\lambda_n^1, \lambda_n^2) \end{pmatrix} U^*.$$

f is **globally matrix monotone on E** if whenever $A = (A_1, A_2)$ and $B = (B_1, B_2)$ are pairs of commuting $n \times n$ self-adjoint matrices with $\sigma(A), \sigma(B) \subseteq E$,

$$A_j \leq B_j$$
 for $j = 1, 2$ implies $f(A) \leq f(B)$.

f is **locally matrix monotone on E** if whenever $\gamma(t)$ is a C^1 path of commuting pairs of self-adjoint matrices with $\sigma(\gamma(t)) \subseteq E$ and $\gamma'_i(t) \ge 0$ for i = 1, 2, then

$$t_1 \leq t_2$$
 implies that $f(\gamma(t_1)) \leq f(\gamma(t_2))$.

Note: In 1-variable, local monotonicity implies global monotonicity. Assume $A \le B$ and set $\gamma(t) = (1 - t)A + tB$. Then $\gamma'(t) = B - A \ge 0$ and

$$f(A) = f(\gamma(0)) \le f(\gamma(1)) = f(B).$$

In 2-variables, pairs of commuting matrices A and B cannot necessarily be connected by a curve of pairs of commuting self-adjoint matrices.

Agler-McCarthy-Young 2012, Pascoe 2019

A function $f : E \to \mathbb{R}$ is locally matrix monotone on E if and only if f analytically continues to \mathbb{H}^2 as a map $f : E \cup \mathbb{H}^2 \to \overline{\mathbb{H}}$ in the Pick class.

The McCarthy Champagne Conjecture

McCarthy Champagne Conjecture (MCC):

Every 2-variable Pick function that analytically continues across an open convex set $E \subseteq \mathbb{R}^2$ (and is real-valued there) is globally matrix monotone when restricted to E.

The Rational Case

Agler-McCarthy-Young 2012

Let f be a rational function of two variables. Let Γ be the zero-set of the denominator of f. Assume f is real-valued on $\mathbb{R}^2 \setminus \Gamma$. Let E be an open rectangle in $\mathbb{R}^2 \setminus \Gamma$.

Then *f* is globally matrix monotone on *E* if and only if *f* analytically continues to \mathbb{H}^2 as a Pick function.

Recall:
$$\alpha : \mathbb{D} \to \mathbb{H}$$
 defined by $\alpha(z) = i\left(\frac{1+z}{1-z}\right)$.

Let $\phi = \alpha^{-1} \circ f \circ \alpha$. Then ϕ is rational and holomorphic on \mathbb{D}^2 and $|\phi(\tau)| = 1$ a.e. on $\mathbb{T}^2 = (\partial \mathbb{D})^2$. So, ϕ is inner and extends continuously to $\alpha^{-1}(E) \subseteq \mathbb{T}^2$.

Proof Idea.

- Identify a useful transfer function realization for ϕ .
- Transfer this realization to \mathbb{H}^2 to get a realization for f.
- Use additional/known results to conclude global matrix monotonicity.

Realization Review

Each Schur function $\phi : \mathbb{D}^2 \to \overline{\mathbb{D}}$ possess a transfer function realization, i.e.

$$\phi(z) = A + B(1 - E_z D)^{-1} E_z C \quad \text{for } z \in \mathbb{D}^2, \text{ where}$$
$$U = \begin{bmatrix} A & B \\ C & D \end{bmatrix} : \begin{bmatrix} \mathbb{C} \\ \mathcal{M} \end{bmatrix} \to \begin{bmatrix} \mathbb{C} \\ \mathcal{M} \end{bmatrix}$$

is a contraction on a Hilbert space $\mathbb{C} \oplus \mathcal{M}$. The operator U can be chosen to be isometric, coisometric, or unitary.

The **Realization Hilbert space** \mathcal{M} decomposes as $\mathcal{M}_1 \oplus \mathcal{M}_2$ and $E_z = z_1 P_1 + z_2 P_2$ where each P_j is the projection onto \mathcal{M}_j .

Ex. Let
$$\phi(z) = \frac{2z_1z_2 - z_1 - z_2}{2 - z_1 - z_2}$$
. Set

$$U = \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 0 & \sqrt{2}/2 & \sqrt{2}/2 \\ \sqrt{2}/2 & 1/2 & -1/2 \\ \sqrt{2}/2 & -1/2 & 1/2 \end{bmatrix} \text{ and } E_z = \begin{bmatrix} z_1 & 0 \\ 0 & z_2 \end{bmatrix}.$$

Then $\phi(z) = A + B(1 - E_z D)^{-1} E_z C$ for $z \in \mathbb{D}^2$.

Global Monotonicity for Rational Functions

(Ball-Sadosky-Vinnikov, 2005), (Knese, 2011): If ϕ is rational & inner with deg $\phi = (m_1, m_2)$ then ϕ has a unitary transfer function realization with dim $\mathcal{M}_1 = m_1$ and dim $\mathcal{M}_2 = m_2$.

Agler-McCarthy-Young 2012

Let f be a rational function of two variables. Let Γ be the zero-set of the denominator of f. Assume f is real-valued on $\mathbb{R}^2 \setminus \Gamma$. Let E be an open rectangle in $\mathbb{R}^2 \setminus \Gamma$.

Then *f* is globally matrix monotone on *E* if and only if *f* analytically continues to \mathbb{H}^2 as a Pick function.

Let
$$lpha(z)=i\left(rac{1+z}{1-z}
ight)$$
 and $\phi=lpha^{-1}\circ f\circ lpha.$ (Assume that deg $\phi=$ deg denom (ϕ) .)

- ϕ is rational and inner on \mathbb{D}^2 and extends continuously to $\alpha^{-1}(E) \subseteq \mathbb{T}^2$.
- ϕ has a minimal TRF: $\phi(z) = A + B(1 E_z D)^{-1} E_z C$, for all $z \in \mathbb{D}^2$.
- $(1 E_z D)^{-1}$ is defined on $\alpha^{-1}(E)$ and so, the TFR extends to $\alpha^{-1}(E)$.

Goal of Project Prove the McCarthy Champagne Conjecture for a much larger class of functions

Hilbert Spaces for Inner Functions

Let $H^2(\mathbb{D}^2)$ denote the Hardy space on \mathbb{D}^2 :

$$H^{2} = H^{2}(\mathbb{D}^{2}) = \left\{ f \in \operatorname{Hol}(\mathbb{D}^{2}) : \|f\|_{H^{2}}^{2} = \lim_{r \nearrow 1} \int_{\mathbb{T}^{2}} |f(r\tau)|^{2} dm(\tau) < \infty \right\}.$$

Let M_{z_1} and M_{z_2} denote multiplication by z_1 and z_2 on H^2 .

Let $\phi : \mathbb{D}^2 \to \mathbb{D}$ be inner, i.e. $\phi \in \operatorname{Hol}(\mathbb{D}^2)$ and $\lim_{r \neq 1} |\phi(r\tau)| = 1$ for a.e. $\tau \in \mathbb{T}^2$. Then we can define some useful subspaces of H^2 using ϕ :

- ϕH^2 is a Hilbert subspace of H^2 .
- $K_{\phi} = H^2 \ominus \phi H^2$
- $S_1^{max} =$ the maximal subspace of K_ϕ invariant under M_{z_1}
- $S_2^{min} = K_\phi \ominus S_1^{max}$ is invariant under multiplication by M_{z_2}

Define the **realization Hilbert spaces** of ϕ by

$$\mathcal{M}_1 = S_2^{\textit{min}} \ominus M_{z_2} S_2^{\textit{min}}$$
 and $\mathcal{M}_2 = S_1^{\textit{max}} \ominus M_{z_1} S_1^{\textit{max}}$

Realizations for inner functions

Let $\phi:\mathbb{D}^2\to\mathbb{D}$ be inner and recall

$$\mathcal{M}_1 = S_2^{min} \ominus M_{z_2}S_2^{min}$$
 and $\mathcal{M}_2 = S_1^{max} \ominus M_{z_1}S_1^{max}$

Set $\mathcal{M} = \mathcal{M}_1 \oplus \mathcal{M}_2$ and let P_j be the projection of H^2 onto \mathcal{M}_j . Define

$$U = \begin{bmatrix} A & B \\ C & D \end{bmatrix} : \begin{bmatrix} \mathbb{C} \\ \mathcal{M} \end{bmatrix} \to \begin{bmatrix} \mathbb{C} \\ \mathcal{M} \end{bmatrix} \text{ as follows:}$$

•
$$Ax = \phi(0)x$$
 for all $x \in \mathbb{C}$

•
$$Bf = f(0)$$
 for all $f \in \mathcal{M}$

•
$$\mathit{Cx} = \left(\mathit{P}_{1}\mathit{M}_{\mathit{z}_{1}}^{*}\phi + \mathit{P}_{2}\mathit{M}_{\mathit{z}_{2}}^{*}\phi\right)x$$
 for all $x \in \mathbb{C}$

•
$$Df = (P_1 M_{z_1}^* + P_2 M_{z_2}^*) f.$$

Theorem 1 (B. Knese, 2016, B.-Pascoe-Tully-Doyle, 2020)

Then U is a coisometry and if $E_z = z_1 P_1 + z_2 P_2$, then

$$\phi(z) = A + B(1 - E_z D)^{-1} E_z C \quad \text{ for } z \in \mathbb{D}^2.$$

See also, (Ball-Sadosky-Vinnikov, 2005), (B.-Knese 2013), (Ball-Bolotnikv 2012), (Ball-Sadosky-Vinnikov-Kaliuzhnyi-Verbovetskyi, 2015)

 ϕ is quasi-rational with respect to an open $I \subseteq \mathbb{T}$ if ϕ is inner and extends continuously to $\mathbb{T} \times I$ with $|\phi(\tau)| = 1$ for $\tau \in \mathbb{T} \times I$.

Ex. Let $\theta(z) = \frac{2z_1z_2 - z_1 - z_2}{2 - z_1 - z_2}$. Let ψ be a one-variable inner function that omits the value 1 on some open $I \subseteq \mathbb{T}$. Then

 $\phi(z) := \theta(z_1, \psi(z_2))$ is quasi-rational on *I*.

- Compositions of rational inner functions with (fairly) general 1-variable inner functions are quasi-rational.
- Quasi-rational functions behave like rational functions in 1 of the variables $(\phi(\cdot, \tau_2) \text{ is a finite Blaschke product for } \tau_2 \in I)$.
- The set of quasi-rational functions is closed with respect to finite products.
- If (φ_n) is a sequence of quasi-rational functions on *I* that converges to some function φ both in the H²(D²) norm and locally uniformly on D² ∪ (T × I), the φ is quasi-rational on *I*.

Continuation of the Realization

Theorem 2 (B.-Pascoe-Tully-Doyle, 2020)

If ϕ is quasi-rational with respect to I, then $(1 - E_{\tau}D)^{-1}$ exists for all $\tau \in \mathbb{T} \times I$.

Theorem 2 implies

$$\phi(z) = A + B(1 - E_z D)^{-1} E_z C \quad \text{ for } z \in \mathbb{D}^2 \cup (\mathbb{T} \times I)$$

Structure of the Proof

- Show that $(1 E_{\tau}D)$ has dense range.
- Show that $(1 E_{\tau}D)$ is bounded below.

Main Tools

- Behavior of $(1 E_{\tau}D)$ on a dense set of \mathcal{M} .
- (B.-Knese '13). All $f \in \mathcal{M}$ extend to $\Omega \supseteq \mathbb{D}^2 \cup (\overline{\mathbb{D}} \times I)$ and point evaluation is a bounded linear functional on \mathcal{M} for all $z \in \Omega$.
- $J_{\tau}: \mathcal{M}_1 \to H^2(\mathbb{D})$ defined by $(J_{\tau}f)(z) = f(z, \tau)$ is an isometry for all $\tau \in I$.

Main Theorem

 ϕ is quasi-rational with respect to an open $I \subseteq \mathbb{T}$ if ϕ is inner and extends continuously to $\mathbb{T} \times I$ with $|\phi(\tau)| = 1$ for $\tau \in \mathbb{T} \times I$.

Let
$$\alpha(z) = i\left(\frac{1+z}{1-z}\right) : \mathbb{D} \to \mathbb{H}.$$

Theorem 3 (B.-Pascoe-Tully-Doyle, 2020)

Let ϕ be quasi-rational with respect to an open $I \subseteq \mathbb{T}$, and let $f = \alpha \circ \phi \circ \alpha^{-1}$.

Then *f* is globally matrix monotone on every open rectangle $E \subseteq \mathbb{R} \times \alpha(I)$ (as long as ϕ omits the value 1 on $\alpha^{-1}(E)$).

Proof Idea: Theorem 2 implies that

$$\phi(z) = A + B(1 - E_z D)^{-1} E_z C$$
 for $z \in \mathbb{D}^2 \cup (\mathbb{T} \times I)$.

• Using conformal maps to assume $E = (0,\infty)^2$ and $f(\infty,\infty) \in \mathbb{R}$.

- Transfer this realization to \mathbb{H}^2 to get a realization for f on $\mathbb{H}^2 \cup (0,\infty)^2$
- Use NC Loewner Theorem to conclude monotonicity.

Transferring Realizations

Corollary 1 (B.-Pascoe-Tully-Doyle, 2020)

Assume $\phi(z) = A + B(1 - E_z D)^{-1} E_z C$ for $z \in \Omega \cup \{(1,1)\}$ such that

- $\phi(z) \neq 1$ in Ω ,
- $z_1, z_2 \neq 1$ for $z \in \Omega$,
- and the realization also holds at (1,1) and $\phi(1,1)
 eq 1$.

Let
$$f = \alpha \circ \phi \circ \alpha^{-1}$$
 and $T = i(1+U)(1-U)^{-1} = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix}$. Then
$$f(w) = T_{11} - T_{12}(E_w + T_{22})^{-1}T_{21} \text{ for } w \in \alpha(\Omega).$$

For us, U is unitary, so T is self-adjoint. Then

$$T = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} = \begin{bmatrix} a & \gamma^* \\ \gamma & A \end{bmatrix},$$

for $a \in \mathbb{R}$, $\gamma \in \mathcal{M}$, and A a self-adjoint operator on \mathcal{M} . So

$$f(w) = a - \left\langle (A + E_w)^{-1} \gamma, \gamma \right\rangle_{\mathcal{M}}$$
 for $w \in \mathbb{H}^2 \cup (0, \infty)^2$.

Theorem 3 (B.-Pascoe-Tully-Doyle, 2020)

Let ϕ be quasi-rational with respect to an open $I \subseteq \mathbb{T}$, and let $f = \alpha \circ \phi \circ \alpha^{-1}$. Then f is globally matrix monotone on every open rectangle $E \subseteq \mathbb{R} \times \alpha(I)$ (as long as f is well defined on E).

Proof: By Theorem 2, $\phi(z) = A + B(1 - E_z D)^{-1} E_z C$ for $z \in \mathbb{D}^2 \cup (\mathbb{T} \times I)$.

Assume $E = (0, \infty)^2$. Then there exist $a \in \mathbb{R}, \gamma \in \mathcal{M}$ and self-adjoint A such that: $f(w) = a - \langle (A + E_w)^{-1} \gamma, \gamma \rangle_{\mathcal{M}}$ for $w \in \mathbb{H}^2 \cup (0, \infty)^2$.

Because this holds on $(0,\infty)^2$, A must be positive semi-definite.

Then f extends to a free Pick function defined on Π^d by Pascoe-Tully-Doyle '17.

Since A is positive semi-definite, f extends to the real convex free domain $D \subseteq R^2$ consisting of pairs of positive definite matrices and maps it into R^1 .

By the NC Loewner Theorem, f is matrix monotone on D in the NC sense.

Assume $A = (A_1, A_2), B = (B_1, B_2)$ are pairs of commuting self-adjoint $n \times n$ matrices such that $\sigma(A), \sigma(B) \in (0, \infty)^2$ and each $A_j \leq B_j$. Then $A, B \in D$ and so, $f(A) \leq f(B)$.

Thanks for listening!