Explicit Salem Sets in Euclidean Space

Kyle Hambrook

San Jose State University
November 6, 2020

Outline

(1) Hausdorff Dimension
(2) Fourier Dimension
(3) Salem Sets
4) Kahane's Problem
(5) And Its Resolution
(6) Some Related Problems

Hausdorff Dimension

Let $A \subseteq \mathbb{R}^{d}$ be Borel set. Let $\alpha \geq 0$.
$R=$ Rectangle $=\prod_{i=1}^{d}\left[a_{i}, b_{i}\right], \operatorname{Vol}(R)=\prod_{i=1}^{d}\left(b_{i}-a_{i}\right)$.

Hausdorff Dimension

Let $A \subseteq \mathbb{R}^{d}$ be Borel set. Let $\alpha \geq 0$.
$R=$ Rectangle $=\prod_{i=1}^{d}\left[a_{i}, b_{i}\right], \operatorname{Vol}(R)=\prod_{i=1}^{d}\left(b_{i}-a_{i}\right)$.
Lebesgue measure:

$$
\lambda(A)=\inf \left\{\sum_{n=1}^{\infty} \operatorname{Vol}\left(R_{n}\right): A \subseteq \bigcup_{n=1}^{\infty} R_{n}\right\}
$$

Hausdorff Dimension

Let $A \subseteq \mathbb{R}^{d}$ be Borel set. Let $\alpha \geq 0$.
$R=$ Rectangle $=\prod_{i=1}^{d}\left[a_{i}, b_{i}\right], \operatorname{Vol}(R)=\prod_{i=1}^{d}\left(b_{i}-a_{i}\right)$.
Lebesgue measure:

$$
\lambda(A)=\inf \left\{\sum_{n=1}^{\infty} \operatorname{Vol}\left(R_{n}\right): A \subseteq \bigcup_{n=1}^{\infty} R_{n}\right\}
$$

α-Hausdorff measure:

$$
\mathcal{H}^{\alpha}(A)=\lim _{\delta \rightarrow 0^{+}} \inf \left\{\sum_{n=1}^{\infty}\left(\operatorname{Vol}\left(R_{n}\right)\right)^{\alpha}: A \subseteq \bigcup_{n=1}^{\infty} R_{n}, \operatorname{diam}\left(R_{n}\right)<\delta\right\}
$$

Hausdorff Dimension

Let $A \subseteq \mathbb{R}^{d}$ be Borel set. Let $\alpha \geq 0$.
$R=$ Rectangle $=\prod_{i=1}^{d}\left[a_{i}, b_{i}\right], \operatorname{Vol}(R)=\prod_{i=1}^{d}\left(b_{i}-a_{i}\right)$.
Lebesgue measure:

$$
\lambda(A)=\inf \left\{\sum_{n=1}^{\infty} \operatorname{Vol}\left(R_{n}\right): A \subseteq \bigcup_{n=1}^{\infty} R_{n}\right\}
$$

α-Hausdorff measure:

$$
\mathcal{H}^{\alpha}(A)=\lim _{\delta \rightarrow 0^{+}} \inf \left\{\sum_{n=1}^{\infty}\left(\operatorname{Vol}\left(R_{n}\right)\right)^{\alpha}: A \subseteq \bigcup_{n=1}^{\infty} R_{n}, \operatorname{diam}\left(R_{n}\right)<\delta\right\}
$$

Hausdorff Dimension

Let $A \subseteq \mathbb{R}^{d}$ be Borel set. Let $\alpha \geq 0$.
$R=$ Rectangle $=\prod_{i=1}^{d}\left[a_{i}, b_{i}\right], \operatorname{Vol}(R)=\prod_{i=1}^{d}\left(b_{i}-a_{i}\right)$.
Lebesgue measure:

$$
\lambda(A)=\inf \left\{\sum_{n=1}^{\infty} \operatorname{Vol}\left(R_{n}\right): A \subseteq \bigcup_{n=1}^{\infty} R_{n}\right\}
$$

α-Hausdorff measure:

$$
\mathcal{H}^{\alpha}(A)=\lim _{\delta \rightarrow 0^{+}} \inf \left\{\sum_{n=1}^{\infty}\left(\operatorname{Vol}\left(R_{n}\right)\right)^{\alpha}: A \subseteq \bigcup_{n=1}^{\infty} R_{n}, \operatorname{diam}\left(R_{n}\right)<\delta\right\}
$$

Hausdorff Dimension:
$\operatorname{dim}_{H}(A)=\alpha_{0}=$ the number α where $\mathcal{H}^{\alpha}(A)$ jumps from 0 to ∞

Hausdorff Dimension

Let $A \subseteq \mathbb{R}^{d}$ be Borel set. Let $\alpha \geq 0$.
$R=$ Rectangle $=\prod_{i=1}^{d}\left[a_{i}, b_{i}\right], \operatorname{Vol}(R)=\prod_{i=1}^{d}\left(b_{i}-a_{i}\right)$.
Lebesgue measure:

$$
\lambda(A)=\inf \left\{\sum_{n=1}^{\infty} \operatorname{Vol}\left(R_{n}\right): A \subseteq \bigcup_{n=1}^{\infty} R_{n}\right\}
$$

α-Hausdorff measure:

$$
\mathcal{H}^{\alpha}(A)=\lim _{\delta \rightarrow 0^{+}} \inf \left\{\sum_{n=1}^{\infty}\left(\operatorname{Vol}\left(R_{n}\right)\right)^{\alpha}: A \subseteq \bigcup_{n=1}^{\infty} R_{n}, \operatorname{diam}\left(R_{n}\right)<\delta\right\}
$$

Hausdorff Dimension:

$\operatorname{dim}_{H}(A)=\alpha_{0}=$ the number α where $\mathcal{H}^{\alpha}(A)$ jumps from 0 to ∞
$=\sup \left\{\alpha: \mathcal{H}^{\alpha}(A)>0\right\}$

Hausdorff Dimension Agrees With Intuition

Point: Hausdorff Dimension $=0$

Plane: Hausdorff Dimension $=2$

Line: Hausdorff Dimension = 1

Sphere: Hausdorff Dimension $=2$

Hausdorff Dimension of Fractals: Middle-1/3 Cantor Set

\longleftarrow Cantor Set

Hausdorff Dimension of Fractals: Middle-1/3 Cantor Set

Hausdorff Dimension of Fractals: Middle-1/3 Cantor Set

\longleftarrow Cantor Set
Lebesgue Measure $=$ "Length" $=0$
Hausdorff Dimension $=\frac{\log 2}{\log 3}=0.6309 \ldots$

Hausdorff Dimension of Fractals: Middle-1/3 Cantor Set

$$
\begin{gathered}
\leftarrow \text { Cantor Set } \\
\text { Lebesgue Measure }=\text { "Length" }=0 \\
\text { Hausdorff Dimension }=\frac{\log 2}{\log 3}=0.6309 \ldots \\
C_{1 / 3}=\bigcap_{n=1}^{\infty} \bigcup_{k=0}^{3^{n-1}-1}\left(\left[\frac{3 k+0}{3^{n}}, \frac{3 k+1}{3^{n}}\right] \cup\left[\frac{3 k+2}{3^{n}}, \frac{3 k+3}{3^{n}}\right]\right)
\end{gathered}
$$

More Fractals

Figure: Sierpinski Triangle $\left(\operatorname{dim}_{H}=\frac{\log 3}{\log 2}\right)$, graph of Brownian motion $\left(\operatorname{dim}_{H}=\frac{3}{2}\right)$, and surface of Romanesco broccoli ("dim $\left.{ }_{H} " \approx 1.26\right)$

Hausdorff Dimension in Terms of Energy Integral

Theorem (Frostman)

$$
\operatorname{dim}_{H}(A)=\sup \left\{\alpha: \exists \mu \in \mathcal{M}(A) \text { s.t. } I_{\alpha}(\mu)<\infty\right\}
$$

Hausdorff Dimension in Terms of Energy Integral

Theorem (Frostman)

$$
\operatorname{dim}_{H}(A)=\sup \left\{\alpha: \exists \mu \in \mathcal{M}(A) \text { s.t. } I_{\alpha}(\mu)<\infty\right\}
$$

Definition (Energy Integral of μ)

$$
I_{\alpha}(\mu):=\iint|x-y|^{-\alpha} d \mu(x) d \mu(y)
$$

Hausdorff Dimension in Terms of Energy Integral

Theorem (Frostman)

$$
\operatorname{dim}_{H}(A)=\sup \left\{\alpha: \exists \mu \in \mathcal{M}(A) \text { s.t. } I_{\alpha}(\mu)<\infty\right\}
$$

Definition (Energy Integral of μ)

$$
I_{\alpha}(\mu):=\iint|x-y|^{-\alpha} d \mu(x) d \mu(y)
$$

Definition

$\mathcal{M}(A)$ is the set of all non-zero finite Borel measures on \mathbb{R}^{d} with $\operatorname{supp}(\mu) \subseteq A$.

Definition

$\operatorname{supp}(\mu)$ is the smallest closed set C with $\mu\left(\mathbb{R}^{d} \backslash C\right)=0$.

Fourier Transform of a Measure

Definition

If $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, the Fourier transform of f is

$$
\widehat{f}(\xi)=\int_{\mathbb{R}^{d}} e^{-2 \pi i \xi \cdot x} f(x) d x \quad \text { for } \xi \in \mathbb{R}^{d}
$$

Definition

If μ is a measure on \mathbb{R}^{d}, the Fourier transform of μ is

$$
\widehat{\mu}(\xi)=\int_{\mathbb{R}^{d}} e^{-2 \pi i \xi \cdot x} d \mu(x) \quad \text { for } \xi \in \mathbb{R}^{d}
$$

Hausdorff Dimension in Terms of Fourier Transform

Theorem (Frostman)

$$
\operatorname{dim}_{H}(A)=\sup \left\{\alpha: \exists \mu \in \mathcal{M}(A) \text { s.t. } I_{\alpha}(\mu)<\infty\right\}
$$

Definition (Energy Integral of μ)

$$
I_{\alpha}(\mu):=\iint|x-y|^{-\alpha} d \mu(x) d \mu(y)=C \int|\widehat{\mu}(\xi)|^{2}|\xi|^{\alpha-d} d \xi
$$

Hausdorff Dimension in Terms of Fourier Transform

Theorem (Frostman)

$$
\operatorname{dim}_{H}(A)=\sup \left\{\alpha: \exists \mu \in \mathcal{M}(A) \text { s.t. } I_{\alpha}(\mu)<\infty\right\}
$$

Definition (Energy Integral of μ)

$$
I_{\alpha}(\mu):=\iint|x-y|^{-\alpha} d \mu(x) d \mu(y)=C \int|\widehat{\mu}(\xi)|^{2}|\xi|^{\alpha-d} d \xi
$$

Proof of Second Equality.
By Parseval and the convolution theorem for Fourier transforms,

$$
\begin{aligned}
I_{\alpha}(\mu) & =\int\left(|\cdot|^{-\alpha} * \mu\right)(y) d \mu(y)=\int(\mid \cdot \widehat{\mid-\alpha} * \mu)(\xi) \overline{\widehat{\mu}}(\xi) d \xi \\
& =\int \widehat{|\cdot|^{-\alpha}}(\xi) \widehat{\mu}(\xi) \overline{\widehat{\mu}}(\xi) d \xi=C \int|\widehat{\mu}(\xi)|^{2}|\xi|^{\alpha-d} d \xi
\end{aligned}
$$

Hausdorff Dimension in Terms of Fourier Transform

Theorem (Frostman)

$$
\operatorname{dim}_{H}(A)=\sup \left\{\alpha: \exists \mu \in \mathcal{M}(A) \text { s.t. } I_{\alpha}(\mu)<\infty\right\}
$$

Definition (Energy Integral of μ)

$$
I_{\alpha}(\mu):=\iint|x-y|^{-\alpha} d \mu(x) d \mu(y)=C \int|\widehat{\mu}(\xi)|^{2}|\xi|^{\alpha-d} d \xi
$$

Hausdorff Dimension in Terms of Fourier Transform

Theorem (Frostman)

$$
\operatorname{dim}_{H}(A)=\sup \left\{\alpha: \exists \mu \in \mathcal{M}(A) \text { s.t. } I_{\alpha}(\mu)<\infty\right\}
$$

Definition (Energy Integral of μ)

$$
I_{\alpha}(\mu):=\iint|x-y|^{-\alpha} d \mu(x) d \mu(y)=C \int|\widehat{\mu}(\xi)|^{2}|\xi|^{\alpha-d} d \xi
$$

Remark

$I_{\alpha}(\mu)<\infty$ is about the decay of $\widehat{\mu}(\xi)$ at ∞.

Hausdorff Dimension in Terms of Fourier Transform

Theorem (Frostman)

$$
\operatorname{dim}_{H}(A)=\sup \left\{\alpha: \exists \mu \in \mathcal{M}(A) \text { s.t. } I_{\alpha}(\mu)<\infty\right\}
$$

Definition (Energy Integral of μ)

$$
I_{\alpha}(\mu):=\iint|x-y|^{-\alpha} d \mu(x) d \mu(y)=C \int|\widehat{\mu}(\xi)|^{2}|\xi|^{\alpha-d} d \xi
$$

Remark

$I_{\alpha}(\mu)<\infty$ is about the decay of $\widehat{\mu}(\xi)$ at ∞.

Remark

If $\mu \in \mathcal{M}(A)$ decays like $|\widehat{\mu}(\xi)|^{2} \lesssim|\xi|^{-\beta}$, then $\beta \leq \operatorname{dim}_{H}(A)$.

Hausdorff Dimension and Fourier Dimension

Theorem (Hausdorff Dimension)

$$
\operatorname{dim}_{H}(A)=\sup \left\{\alpha \in[0, d]: \exists \mu \in \mathcal{M}(A) \text { s.t. } \int|\widehat{\mu}(\xi)|^{2}|\xi|^{\alpha-d} d \xi<\infty\right\}
$$

Hausdorff Dimension and Fourier Dimension

Theorem (Hausdorff Dimension)

$$
\operatorname{dim}_{H}(A)=\sup \left\{\alpha \in[0, d]: \exists \mu \in \mathcal{M}(A) \text { s.t. } \quad \int|\widehat{\mu}(\xi)|^{2}|\xi|^{\alpha-d} d \xi<\infty\right\}
$$

Definition (Fourier Dimension)

$$
\operatorname{dim}_{F}(A)=\sup \left\{\beta \in[0, d]: \exists \mu \in \mathcal{M}(A) \text { s.t. }|\widehat{\mu}(\xi)|^{2} \lesssim|\xi|^{-\beta}\right\}
$$

Hausdorff Dimension and Fourier Dimension

Theorem (Hausdorff Dimension)

$$
\operatorname{dim}_{H}(A)=\sup \left\{\alpha \in[0, d]: \exists \mu \in \mathcal{M}(A) \text { s.t. } \quad \int|\widehat{\mu}(\xi)|^{2}|\xi|^{\alpha-d} d \xi<\infty\right\}
$$

Definition (Fourier Dimension)

$$
\operatorname{dim}_{F}(A)=\sup \left\{\beta \in[0, d]: \exists \mu \in \mathcal{M}(A) \text { s.t. }|\widehat{\mu}(\xi)|^{2} \lesssim|\xi|^{-\beta}\right\}
$$

Theorem

$$
\operatorname{dim}_{F} A \leq \operatorname{dim}_{H} A
$$

Hausdorff Dimension vs Fourier Dimension

Fourier dimension depends on the ambient space, while Hausdorff dimension does not.

Example

- If we view L as an interval in \mathbb{R}, then

$$
\operatorname{dim}_{F} L=\operatorname{dim}_{H} L=1
$$

- If we view L as a line segment in \mathbb{R}^{2}, then

$$
\operatorname{dim}_{F} L=0 \quad \text { and } \quad \operatorname{dim}_{H} L=1
$$

Hausdorff Dimension vs Fourier Dimension

Examples

- If A is a k-dimensional plane in \mathbb{R}^{d} with $k<d$, then

$$
\operatorname{dim}_{F} A=0 \quad \text { and } \quad \operatorname{dim}_{H} A=k
$$

- If $A \subseteq(d-1)$-dimensional plane in \mathbb{R}^{d}, then

$$
\operatorname{dim}_{F} A=0 \quad \text { and } \quad \operatorname{dim}_{H} A \in[0, d-1]
$$

Hausdorff Dimension vs Fourier Dimension

Examples

- If A is a k-dimensional plane in \mathbb{R}^{d} with $k<d$, then

$$
\operatorname{dim}_{F} A=0 \quad \text { and } \quad \operatorname{dim}_{H} A=k
$$

- If $A \subseteq(d-1)$-dimensional plane in \mathbb{R}^{d}, then

$$
\operatorname{dim}_{F} A=0 \quad \text { and } \quad \operatorname{dim}_{H} A \in[0, d-1]
$$

Proof.
If $A \subseteq\left\{x \in \mathbb{R}^{d}: x \cdot \xi_{0}=c\right\}$, and $\mu \in \mathcal{M}(A)$, then

$$
\widehat{\mu}\left(n \xi_{0}\right)=\int_{A} e^{-2 \pi i n \xi_{0} \cdot x} d \mu(x)=e^{-2 \pi i n c} \mu(A) \neq 0
$$

which does not go to zero as $\xi=n \xi_{0} \rightarrow \infty$.

Hausdorff Dimension vs Fourier Dimension

Examples

- If $C_{1 / 3}=$ middle- $1 / 3$ Cantor set in \mathbb{R}, then

$$
\operatorname{dim}_{F} C_{1 / 3}=0 \quad \text { and } \quad \operatorname{dim}_{H} C_{1 / 3}=\frac{\log 2}{\log 3}
$$

- If $C_{\delta}=$ middle- δ Cantor set in \mathbb{R}, then

$$
\operatorname{dim}_{F} C_{\delta}<\operatorname{dim}_{H} C_{\delta} \quad \text { for all } \delta \in(0,1)
$$

and

$$
0<\operatorname{dim}_{F} C_{\delta} \quad \text { for almost every } \delta \in(0,1)
$$

- If $\operatorname{dim}_{F} C_{\delta}>0$, then $2 /(1-\delta)$ is not a Pisot number (i.e., an algebraic integer whose conjugates are strictly less than 1 in absolute value).
- If $\operatorname{dim}_{F} A>0$, then A generates \mathbb{R}^{d} as an additive group.

Salem Sets

Theorem

$$
\operatorname{dim}_{F} A \leq \operatorname{dim}_{H} A
$$

Definition
A set Borel set $A \subseteq \mathbb{R}^{d}$ is called a Salem set if

$$
\operatorname{dim}_{F} A=\operatorname{dim}_{H} A
$$

Examples

- For some non-Salem sets, see the previous slide.
- Point $=$ Salem set of dimension 0
- Sphere $=$ Salem set of dimension $d-1$
- Ball $=$ Salem set of dimension d
- Salem sets of dimensions $\alpha \neq 0, d-1, d$ are harder to find.

Salem Sets of Every Dimension

Theorem (Salem (1951))
For every $\alpha \in(0,1)$, there exists a Salem set $A \subseteq \mathbb{R}$ with dimension α.

Salem Sets of Every Dimension

Theorem (Salem (1951))
For every $\alpha \in(0,1)$, there exists a Salem set $A \subseteq \mathbb{R}$ with dimension α.
Theorem (Kahane (1966))
For every $\alpha \in(0, d)$, there exists a Salem set $A \subseteq \mathbb{R}^{d}$ with dimension α.

Salem Sets of Every Dimension

Theorem (Salem (1951))
For every $\alpha \in(0,1)$, there exists a Salem set $A \subseteq \mathbb{R}$ with dimension α.
Theorem (Kahane (1966))
For every $\alpha \in(0, d)$, there exists a Salem set $A \subseteq \mathbb{R}^{d}$ with dimension α.

Remarks

- Salem's Construction: Random Cantor sets
- Kahane's Construction: Images of Brownian motion
- There are many other random constructions (e.g., by Kahane, Shapiro, Bluhm, Łaba and Pramanik, Chen and Seeger).

Salem Sets of Every Dimension

Theorem (Salem (1951))
For every $\alpha \in(0,1)$, there exists a Salem set $A \subseteq \mathbb{R}$ with dimension α.
Theorem (Kahane (1966))
For every $\alpha \in(0, d)$, there exists a Salem set $A \subseteq \mathbb{R}^{d}$ with dimension α.

Remarks

- Salem's Construction: Random Cantor sets
- Kahane's Construction: Images of Brownian motion
- There are many other random constructions (e.g., by Kahane, Shapiro, Bluhm, Łaba and Pramanik, Chen and Seeger).

Problem (Kahane (1966))
Can we find explicit (i.e., non-random) Salem sets in \mathbb{R}^{d} of every dimension?

Explicit Salem Sets in \mathbb{R}

Definition (Set of τ-Well-Approximable Numbers)

$$
E(\tau)=\left\{x \in \mathbb{R}:\left|x-\frac{r}{q}\right| \leq|q|^{-\tau} \text { for } \infty \text {-many }(q, r) \in \mathbb{Z} \times \mathbb{Z}\right\}
$$

Explicit Salem Sets in \mathbb{R}

Definition (Set of τ-Well-Approximable Numbers)

$$
E(\tau)=\left\{x \in \mathbb{R}:\left|x-\frac{r}{q}\right| \leq|q|^{-\tau} \text { for } \infty \text {-many }(q, r) \in \mathbb{Z} \times \mathbb{Z}\right\}
$$

Example
Given $x=\pi$, find $(q, r) \in \mathbb{Z} \times \mathbb{Z}$ such that

$$
\left|x-\frac{r}{q}\right| \leq|q|^{-2}
$$

Explicit Salem Sets in \mathbb{R}

Definition (Set of τ-Well-Approximable Numbers)

$$
E(\tau)=\left\{x \in \mathbb{R}:\left|x-\frac{r}{q}\right| \leq|q|^{-\tau} \text { for } \infty \text {-many }(q, r) \in \mathbb{Z} \times \mathbb{Z}\right\}
$$

Example
Given $x=\pi$, find $(q, r) \in \mathbb{Z} \times \mathbb{Z}$ such that

$$
\left|x-\frac{r}{q}\right| \leq|q|^{-2}
$$

Taking $\frac{r}{q}=\frac{314159}{10^{5}}=3.14159$ doesn't work:

$$
\left|x-\frac{r}{q}\right|=\left|\pi-\frac{314159}{10^{5}}\right|=0.0000026535 \ldots>10^{-10}=|q|^{-2}
$$

Explicit Salem Sets in \mathbb{R}

Definition (Set of τ-Well-Approximable Numbers)

$$
E(\tau)=\left\{x \in \mathbb{R}:\left|x-\frac{r}{q}\right| \leq|q|^{-\tau} \text { for } \infty \text {-many }(q, r) \in \mathbb{Z} \times \mathbb{Z}\right\}
$$

Example

Given $x=\pi$, find $(q, r) \in \mathbb{Z} \times \mathbb{Z}$ such that

$$
\left|x-\frac{r}{q}\right| \leq|q|^{-2}
$$

Taking $\frac{r}{q}=\frac{314159}{10^{5}}=3.14159$ doesn't work:

$$
\left|x-\frac{r}{q}\right|=\left|\pi-\frac{314159}{10^{5}}\right|=0.0000026535 \ldots>10^{-10}=|q|^{-2}
$$

But the simpler rational $\frac{r}{q}=\frac{22}{7}=3 . \overline{142857}$ does:

$$
\left|x-\frac{r}{q}\right|=\left|\pi-\frac{22}{7}\right|=0.0012644 \ldots<7^{-2}=|q|^{-2}
$$

Explicit Salem Sets in \mathbb{R}

Definition (Set of τ-Well-Approximable Numbers)

$$
E(\tau)=\left\{x \in \mathbb{R}:\left|x-\frac{r}{q}\right| \leq|q|^{-\tau} \text { for } \infty \text {-many }(q, r) \in \mathbb{Z} \times \mathbb{Z}\right\}
$$

Theorem (Dirichlet (1834))
$E(\tau)=\mathbb{R}$ when $\tau \leq 2$.

Explicit Salem Sets in \mathbb{R}

Definition (Set of τ-Well-Approximable Numbers)

$$
E(\tau)=\left\{x \in \mathbb{R}:\left|x-\frac{r}{q}\right| \leq|q|^{-\tau} \text { for } \infty \text {-many }(q, r) \in \mathbb{Z} \times \mathbb{Z}\right\}
$$

Theorem (Dirichlet (1834))
$E(\tau)=\mathbb{R}$ when $\tau \leq 2$.

Theorem (Jarnik-Besicovitch (1929-1932))
$E(\tau)$ has Hausdorff dimension $2 / \tau$ when $\tau>2$.

Explicit Salem Sets in \mathbb{R}

Definition (Set of τ-Well-Approximable Numbers)

$$
E(\tau)=\left\{x \in \mathbb{R}:\left|x-\frac{r}{q}\right| \leq|q|^{-\tau} \text { for } \infty \text {-many }(q, r) \in \mathbb{Z} \times \mathbb{Z}\right\}
$$

Theorem (Dirichlet (1834))
$E(\tau)=\mathbb{R}$ when $\tau \leq 2$.

Theorem (Jarnik-Besicovitch (1929-1932))
$E(\tau)$ has Hausdorff dimension $2 / \tau$ when $\tau>2$.

Theorem (Kaufman (1981))
$E(\tau)$ is a Salem set of dimension $2 / \tau$ when $\tau>2$.

Explicit Salem Sets in $\mathbb{R}^{d}: d>1$?

Definition

$$
E_{\mathrm{rot}}(\tau)=\left\{x \in \mathbb{R}^{d}:|x| \in E(\tau)\right\}
$$

Explicit Salem Sets in $\mathbb{R}^{d}: d>1$?

Definition

$$
E_{\mathrm{rot}}(\tau)=\left\{x \in \mathbb{R}^{d}:|x| \in E(\tau)\right\}
$$

Theorem (Bluhm (1996))
$E_{\text {rot }}(\tau)$ is a Salem set with dimension $d-1+\frac{2}{\tau}$ for every $\tau>2$.

Explicit Salem Sets in $\mathbb{R}^{d}: d>1$?

Definition

$$
E_{\mathrm{rot}}(\tau)=\left\{x \in \mathbb{R}^{d}:|x| \in E(\tau)\right\}
$$

Theorem (Bluhm (1996))
$E_{\text {rot }}(\tau)$ is a Salem set with dimension $d-1+\frac{2}{\tau}$ for every $\tau>2$.

Remarks

- Gives explicit Salem sets in \mathbb{R}^{d} of every dimension $\alpha \in(d-1, d)$.
- Leaves $\alpha \in(0, d-1)$.

Explicit Salem Sets in $\mathbb{R}^{d}: d>1$?

In number theory, the natural multi-dimensional version of $E(\tau)$ is:

Explicit Salem Sets in $\mathbb{R}^{d}: d>1$?

In number theory, the natural multi-dimensional version of $E(\tau)$ is:
Definition
$E(m, n, \tau)=\left\{x \in \mathbb{R}^{m n}:|x q-r| \leq|q|^{-\tau+1}\right.$ for ∞-many $\left.(q, r) \in \mathbb{Z}^{n} \times \mathbb{Z}^{m}\right\}$ Here $x \in \mathbb{R}^{m n}$ is viewed as an $m \times n$ matrix and $|\cdot|$ is the max norm.

Explicit Salem Sets in $\mathbb{R}^{d}: d>1$?

In number theory, the natural multi-dimensional version of $E(\tau)$ is:
Definition
$E(m, n, \tau)=\left\{x \in \mathbb{R}^{m n}:|x q-r| \leq|q|^{-\tau+1}\right.$ for ∞-many $\left.(q, r) \in \mathbb{Z}^{n} \times \mathbb{Z}^{m}\right\}$ Here $x \in \mathbb{R}^{m n}$ is viewed as an $m \times n$ matrix and $|\cdot|$ is the max norm.

This is about simultaneous Diophantine approximation of linear forms, i.e., having good approximate integer solutions of several linear forms at once:

$$
\begin{aligned}
&\left|x_{11} q_{1}+x_{12} q_{2}+\cdots+x_{1 n} q_{n}-r_{1}\right| \leq|q|^{-\tau+1} \\
&\left|x_{21} q_{1}+x_{22} q_{2}+\cdots+x_{2 n} q_{n}-r_{2}\right| \leq|q|^{-\tau+1} \\
& \vdots \\
&\left|x_{m 1} q_{1}+x_{m 2} q_{2}+\cdots+x_{m n} q_{n}-r_{m}\right| \leq|q|^{-\tau+1}
\end{aligned}
$$

Explicit Salem Sets in $\mathbb{R}^{d}: d>1$?

In number theory, the natural multi-dimensional version of $E(\tau)$ is:
Definition
$E(m, n, \tau)=\left\{x \in \mathbb{R}^{m n}:|x q-r| \leq|q|^{-\tau+1}\right.$ for ∞-many $\left.(q, r) \in \mathbb{Z}^{n} \times \mathbb{Z}^{m}\right\}$ Here $x \in \mathbb{R}^{m n}$ is viewed as an $m \times n$ matrix and $|\cdot|$ is the max norm.

Theorem (Bovey-Dodson (1986))
$\operatorname{dim}_{H} E(m, n, \tau)=m(n-1)+\frac{m+n}{\tau}$ for every $\tau>1+\frac{n}{m}$

Explicit Salem Sets in $\mathbb{R}^{d}: d>1$?

In number theory, the natural multi-dimensional version of $E(\tau)$ is:
Definition
$E(m, n, \tau)=\left\{x \in \mathbb{R}^{m n}:|x q-r| \leq|q|^{-\tau+1}\right.$ for ∞-many $\left.(q, r) \in \mathbb{Z}^{n} \times \mathbb{Z}^{m}\right\}$ Here $x \in \mathbb{R}^{m n}$ is viewed as an $m \times n$ matrix and $|\cdot|$ is the max norm.

Theorem (Bovey-Dodson (1986))
$\operatorname{dim}_{H} E(m, n, \tau)=m(n-1)+\frac{m+n}{\tau}$ for every $\tau>1+\frac{n}{m}$
Theorem (Hambrook (2015))
$\operatorname{dim}_{F} E(m, n, \tau) \geq \frac{2 n}{\tau}$ for every $\tau>1+\frac{n}{m}$

Explicit Salem Sets in $\mathbb{R}^{d}: d>1$?

In number theory, the natural multi-dimensional version of $E(\tau)$ is:
Definition
$E(m, n, \tau)=\left\{x \in \mathbb{R}^{m n}:|x q-r| \leq|q|^{-\tau+1}\right.$ for ∞-many $\left.(q, r) \in \mathbb{Z}^{n} \times \mathbb{Z}^{m}\right\}$ Here $x \in \mathbb{R}^{m n}$ is viewed as an $m \times n$ matrix and $|\cdot|$ is the max norm.

Theorem (Bovey-Dodson (1986))
$\operatorname{dim}_{H} E(m, n, \tau)=m(n-1)+\frac{m+n}{\tau}$ for every $\tau>1+\frac{n}{m}$
Theorem (Hambrook (2015))
$\operatorname{dim}_{F} E(m, n, \tau) \geq \frac{2 n}{\tau}$ for every $\tau>1+\frac{n}{m}$
But we don't know whether $E(m, n, \tau)$ is Salem because

$$
m(n-1)+\frac{m+n}{\tau}>\frac{2 n}{\tau}
$$

Explicit Salem Sets in $\mathbb{R}^{d}: d=2$

Definition

$$
E(\mathbb{C}, \tau)=\left\{x \in \mathbb{R}^{2}:\left|x-\frac{r}{q}\right| \leq|q|^{-\tau} \text { for } \infty \text {-many }(q, r) \in \mathbb{Z}^{2} \times \mathbb{Z}^{2}\right\}
$$

Here r / q is interpreted via the identification $\mathbb{R}^{2} \simeq \mathbb{C}$.

Explicit Salem Sets in $\mathbb{R}^{d}: d=2$

Definition

$$
E(\mathbb{C}, \tau)=\left\{x \in \mathbb{R}^{2}:\left|x-\frac{r}{q}\right| \leq|q|^{-\tau} \text { for } \infty \text {-many }(q, r) \in \mathbb{Z}^{2} \times \mathbb{Z}^{2}\right\}
$$

Here r / q is interpreted via the identification $\mathbb{R}^{2} \simeq \mathbb{C}$.
Theorem (Hambrook (2017))
$E(\mathbb{C}, \tau)$ is a Salem set with dimension $4 / \tau$ for every $\tau>2$.

Explicit Salem Sets in $\mathbb{R}^{d}: d=2$

Definition

$$
E(\mathbb{C}, \tau)=\left\{x \in \mathbb{R}^{2}:\left|x-\frac{r}{q}\right| \leq|q|^{-\tau} \text { for } \infty \text {-many }(q, r) \in \mathbb{Z}^{2} \times \mathbb{Z}^{2}\right\}
$$

Here r / q is interpreted via the identification $\mathbb{R}^{2} \simeq \mathbb{C}$.
Theorem (Hambrook (2017))
$E(\mathbb{C}, \tau)$ is a Salem set with dimension $4 / \tau$ for every $\tau>2$.

Remarks

- Gives Salem sets in \mathbb{R}^{2} of every dimension $\alpha \in(0,2)$.
- Resolves Kahane's problem when $d=2$.

Explicit Salem Sets in $\mathbb{R}^{d}: d=2$

Definition

$$
E(\mathbb{C}, \tau)=\left\{x \in \mathbb{R}^{2}:\left|x-\frac{r}{q}\right| \leq|q|^{-\tau} \text { for } \infty \text {-many }(q, r) \in \mathbb{Z}^{2} \times \mathbb{Z}^{2}\right\}
$$

Here r / q is interpreted via the identification $\mathbb{R}^{2} \simeq \mathbb{C}$.
Theorem (Hambrook (2017))
$E(\mathbb{C}, \tau)$ is a Salem set with dimension $4 / \tau$ for every $\tau>2$.

Remarks

- Gives Salem sets in \mathbb{R}^{2} of every dimension $\alpha \in(0,2)$.
- Resolves Kahane's problem when $d=2$.

Remarks on Proof
Kaufman's proof applies almost verbatim. The hard part was coming up with the set $E(\mathbb{C}, \tau)$ where Kaufman's proof would work.

Explicit Salem Sets in $\mathbb{R}^{d}: d=4$?

Since $\mathbb{R}^{2} \simeq \mathbb{C}$ worked, it is natural to try

$$
\begin{gathered}
\mathbb{R}^{4} \simeq \mathbb{H}(=\text { the set of quaternions }) \\
(a, b, c, d)=a+b i+c j+d k \\
i^{2}=j^{2}=k^{2}=i j k=-1
\end{gathered}
$$

Definition

$$
E(\mathbb{H}, \tau)=\left\{x \in \mathbb{R}^{4}:\left|x-\frac{r}{q}\right| \leq|q|^{-\tau} \text { for } \infty \text {-many }(q, r) \in \mathbb{Z}^{4} \times \mathbb{Z}^{4}\right\}
$$

Remarks

The proof that $E(\mathbb{H}, \tau)$ is Salem fails because there is no good divisor bound for the quaternions.

Explicit Salem Sets in $\mathbb{R}^{d}:$ All d

Definition

$$
E(K, B, \tau)=\left\{x \in \mathbb{R}^{d}:\left|x-\frac{r}{q}\right| \leq|q|^{-\tau} \text { for } \infty \text {-many }(q, r) \in \mathbb{Z}^{d} \times \mathbb{Z}^{d}\right\}
$$

$K=$ degree d field extension of \mathbb{Q} (i.e., a number field)
$\mathcal{O}(K)=$ ring of integers of K
$B=\left\{\omega_{1}, \ldots, \omega_{d}\right\}=$ integral basis for K

$$
\begin{gathered}
\mathbb{Q}^{d} \simeq K, \quad \mathbb{Z}^{d} \simeq \mathcal{O}(K), \quad \mathbb{R}^{d} \simeq \mathbb{R} \omega_{1}+\cdots+\mathbb{R} \omega_{d} \\
\left(q_{1}, \ldots, q_{d}\right)=q_{1} \omega_{1}+\cdots+q_{d} \omega_{d}
\end{gathered}
$$

Explicit Salem Sets in \mathbb{R}^{d} : All d

Definition

$$
E(K, B, \tau)=\left\{x \in \mathbb{R}^{d}:\left|x-\frac{r}{q}\right| \leq|q|^{-\tau} \text { for } \infty \text {-many }(q, r) \in \mathbb{Z}^{d} \times \mathbb{Z}^{d}\right\}
$$

$K=$ degree d field extension of \mathbb{Q} (i.e., a number field)
$\mathcal{O}(K)=$ ring of integers of K
$B=\left\{\omega_{1}, \ldots, \omega_{d}\right\}=$ integral basis for K

$$
\begin{gathered}
\mathbb{Q}^{d} \simeq K, \quad \mathbb{Z}^{d} \simeq \mathcal{O}(K), \quad \mathbb{R}^{d} \simeq \mathbb{R} \omega_{1}+\cdots+\mathbb{R} \omega_{d} \\
\left(q_{1}, \ldots, q_{d}\right)=q_{1} \omega_{1}+\cdots+q_{d} \omega_{d}
\end{gathered}
$$

Theorem (Fraser, Hambrook (2019))
$E(K, B, \tau)$ is a Salem set with dimension $2 d / \tau$ for every $\tau>2$.

Explicit Salem Sets in $\mathbb{R}^{d}:$ All d

Definition

$$
E(K, B, \tau)=\left\{x \in \mathbb{R}^{d}:\left|x-\frac{r}{q}\right| \leq|q|^{-\tau} \text { for } \infty \text {-many }(q, r) \in \mathbb{Z}^{d} \times \mathbb{Z}^{d}\right\}
$$

$K=$ degree d field extension of \mathbb{Q} (i.e., a number field)
$\mathcal{O}(K)=$ ring of integers of K
$B=\left\{\omega_{1}, \ldots, \omega_{d}\right\}=$ integral basis for K

$$
\begin{gathered}
\mathbb{Q}^{d} \simeq K, \quad \mathbb{Z}^{d} \simeq \mathcal{O}(K), \quad \mathbb{R}^{d} \simeq \mathbb{R} \omega_{1}+\cdots+\mathbb{R} \omega_{d} \\
\left(q_{1}, \ldots, q_{d}\right)=q_{1} \omega_{1}+\cdots+q_{d} \omega_{d}
\end{gathered}
$$

Theorem (Fraser, Hambrook (2019))
$E(K, B, \tau)$ is a Salem set with dimension $2 d / \tau$ for every $\tau>2$.

Remarks

- Gives Salem sets in \mathbb{R}^{d} of every dimension $\alpha \in(0, d)$.
- Completely resolves Kahane's problem.

Explicit Salem Sets in $\mathbb{R}^{d}:$ All d

Theorem (Fraser, Hambrook (2019))
$E(K, B, \tau)$ is a Salem set with dimension $2 d / \tau$ for every $\tau>2$.

Remarks on Proof
The proofs for $E(\tau)$ and $E(\mathbb{C}, \tau)$ rely on features of \mathbb{R} and \mathbb{C} that don't generalize easily to number fields K :

- Divisor bounds in \mathbb{Z} and $\mathbb{Z}^{2} \simeq \mathbb{Z}[i]$ (which come from unique factorization and finiteness of the unit group)
- Transpose of matrix for $x \in \mathbb{C}$ is matrix for \bar{x}.
- For $q=a+i b \in \mathbb{Z}[i], N(\langle q\rangle)=a^{2}+b^{2}=|q|^{2}$.

Explicit Salem Sets in $\mathbb{R}^{d}:$ All d

Theorem (Fraser, Hambrook (2019))
$E(K, B, \tau)$ is a Salem set with dimension $2 d / \tau$ for every $\tau>2$.

Remarks on Proof

To overcome these obstacles, we:

- Use unique factorization of ideals in $\mathcal{O}(K)$ and Dirichlet's unit group theorem to obtain an appropriate divisor bound.
- Rediscover an algebra theorem: Transpose of matrix for $q \in K$ is matrix for q in a different basis.
- Use pigeonholing argument to eliminate dependence on comparability of algebraic norm $N(\langle q\rangle)$ and geometric norm $|q|$.

Proof

Want:

$$
\operatorname{dim}_{F} E(K, B, \tau)=\operatorname{dim}_{H} E(K, B, \tau)=2 d / \tau
$$

- $\operatorname{dim}_{F} E(K, B, \tau) \leq \operatorname{dim}_{H} E(K, B, \tau)$ by definition of Fourier dimension.
- $\operatorname{dim}_{H} E(K, B, \tau) \leq 2 d / \tau$ by standard covering argument, which comes from writing

$$
\begin{aligned}
E(K, B, \tau) & =\left\{x \in \mathbb{R}^{d}:\left|x-\frac{r}{q}\right| \leq|q|^{-\tau} \text { for } \infty \text {-many }(q, r) \in \mathbb{Z}^{d} \times \mathbb{Z}^{d}\right\} \\
& =\bigcap_{N=1}^{\infty} \bigcup_{|q|>N} \bigcup_{r \in \mathbb{Z}^{d}} \bar{B}\left(r / q,|q|^{-\tau}\right)
\end{aligned}
$$

- $2 d / \tau \leq \operatorname{dim}_{F} E(K, B, \tau)$ proved by constructing a measure \ldots

Proof

$$
\begin{gathered}
\mu=\underset{k \rightarrow \infty}{\mathrm{w}-\lim _{M}} F_{M_{k}} F_{M_{k-1}} \cdots F_{M_{1}} d x \\
F_{M}(x)=\sum_{\substack{q \in \mathbb{Z}^{d} \\
\frac{M}{2}<|q| \leq M}} \sum_{r \in \mathbb{Z}^{d}} \underbrace{\phi_{\epsilon}(x-r / q)}_{\text {normalized bump on } \bar{B}\left(r / q, M^{-\tau}\right)}
\end{gathered}
$$

Here $\phi_{\epsilon}(x)=\epsilon^{-d} \phi(x / \epsilon), \epsilon=M^{\tau}$, and ϕ is positive, smooth, L^{1} normalized, and supported in $\bar{B}(0,1)$. Then

$$
\operatorname{supp}(\mu) \subseteq \bigcap_{k=1}^{\infty} \operatorname{supp}\left(F_{M_{k}}\right) \subseteq E(K, B, \tau)
$$

and ...

Proof

$$
\widehat{F_{M}}(s)=\widehat{\phi}\left(s / M^{\tau}\right) \sum_{\substack{q \in \mathbb{Z}^{d} \\ M / 2<|q| \leq M}} \sum_{r \in R_{q}} e(s \cdot r / q) \quad \text { for } s \in \mathbb{Z}^{d}
$$

where $R_{q}=$ set of representatives of $\mathcal{O}(K) /\langle q\rangle$.
Matrix Games: There is a $L \in \mathbb{Z}$ depending on K and B such that

$$
\left|\sum_{r \in R_{q}} e(s \cdot r / q)\right| \quad \begin{cases}\leq N(\langle q\rangle) & \text { if } q \text { divides } L s \\ =0 & \text { otherwise }\end{cases}
$$

Problem: Need bound on number of divisors q of $L s$ such that $|q| \leq M$. Solution: Unique factorization of ideals in $\mathcal{O}(K)$, Dirichlet's unit theorem.

$$
\left|\widehat{F_{M}}(\xi)\right|^{2} \leq C|\xi|^{-2 d / \tau} \exp \left(\frac{\log |\xi|}{\log \log |\xi|}\right)(\log M)^{C}
$$

An induction argument gives

$$
|\widehat{\mu}(\xi)|^{2} \leq|\xi|^{-2 d / \tau} \exp \left(\frac{C \log |\xi|}{\log \log |\xi|}\right)
$$

What Else?

A Sample of Related Problems:

- Exact Fourier Dimension of $E(m, n, \tau)$
- Restricted Diophantine Approximation
- Fourier Restriction

Restricted Denominators

For infinite $Q \subseteq \mathbb{Z}$, define

$$
E(\tau, Q)=\left\{x \in \mathbb{R}:\left|x-\frac{r}{q}\right| \leq \frac{1}{|q|^{\tau}} \text { for infinitely many }(q, r) \in Q \times \mathbb{Z}\right\}
$$

and

$$
\nu(Q)=\inf \left\{\nu \geq 0: \sum_{q \in Q}|q|^{-\nu}<\infty\right\}
$$

Theorem (Borosh-Fraenkel (1972))
If $\tau>2$, then $\operatorname{dim}_{H} E(\tau, Q)=\frac{1+\nu(Q)}{\tau}$.

Restricted Denominators

For infinite $Q \subseteq \mathbb{Z}$, define

$$
E(\tau, Q)=\left\{x \in \mathbb{R}:\left|x-\frac{r}{q}\right| \leq \frac{1}{|q|^{\tau}} \text { for infinitely many }(q, r) \in Q \times \mathbb{Z}\right\}
$$

and

$$
\nu(Q)=\inf \left\{\nu \geq 0: \sum_{q \in Q}|q|^{-\nu}<\infty\right\}
$$

Theorem (Borosh-Fraenkel (1972))
If $\tau>2$, then $\operatorname{dim}_{H} E(\tau, Q)=\frac{1+\nu(Q)}{\tau}$.

Restricted Denominators

For infinite $Q \subseteq \mathbb{Z}$, define

$$
E(\tau, Q)=\left\{x \in \mathbb{R}:\left|x-\frac{r}{q}\right| \leq \frac{1}{|q|^{\tau}} \text { for infinitely many }(q, r) \in Q \times \mathbb{Z}\right\}
$$

and

$$
\nu(Q)=\inf \left\{\nu \geq 0: \sum_{q \in Q}|q|^{-\nu}<\infty\right\}
$$

Theorem (Borosh-Fraenkel (1972))
If $\tau>2$, then $\operatorname{dim}_{H} E(\tau, Q)=\frac{1+\nu(Q)}{\tau}$.
Theorem (Hambrook (2015))
If $\tau>2$, then $\operatorname{dim}_{F} E(\tau, Q) \geq \frac{2 \nu(Q)}{\tau}$. In particular, if $\nu(Q)=1$ (eg. $Q=$ primes), then $E(\tau, Q)$ is Salem.

Restricted Denominators

Theorem (Hambrook (2015))
If $\tau>2$, then $\operatorname{dim}_{F} E(\tau, Q) \geq \frac{2 \nu(Q)}{\tau}$. In particular, if $\nu(Q)=1$ (eg. $Q=$ primes), then $E(\tau, Q)$ is Salem.

Problem

Increase lower bound when

$$
\nu(Q)=\inf \left\{\nu \geq 0: \sum_{q \in Q}|q|^{-\nu}<\infty\right\}<1 ?
$$

For example, when $Q=$ squares and $\nu(Q)=1 / 2$.

Restricted Denominators and Numerators

For infinite $Q, R \subseteq \mathbb{Z}$, define
$E(\tau, Q, R)=\left\{x \in \mathbb{R}:\left|x-\frac{r}{q}\right| \leq \frac{1}{|q|^{\tau}}\right.$ for infinitely many $\left.(q, r) \in Q \times R\right\}$
Theorem (Harman (1988))
If $\tau>2$ and $Q=R=$ primes, then $\operatorname{dim}_{H} E(\tau, Q, R)=\frac{2}{\tau}$.

Problem

If $\tau>2$ and $Q=R=$ primes, then $\operatorname{dim}_{F} E(\tau, Q, R)=\frac{2}{\tau}$?

Restricted Denominators and Numerators

Problem

If $\tau>2$ and $Q=R=$ primes, then $\operatorname{dim}_{F} E(\tau, Q, R)=\frac{2}{\tau}$?
Reduces to...

Problem

Are there infinitely many integers M such that for every prime q and integer k satisfying $M / 2 \leq q \leq M$ and $q \nmid k$ and for every $\epsilon>0$, we have

$$
\left|\sum_{\substack{0 \leq r<q \\ r \text { prime }}} e^{2 \pi i k r / q}\right| \leq C_{\epsilon}|k|^{\epsilon} M^{\epsilon} ?
$$

Remark

For primes, this looks unlikely. But maybe there's another approach. Or maybe for another set R.

Fourier Restriction

Fourier Restriction Problem

Given a measure μ on \mathbb{R}^{d}, determine the exponents $1 \leq p \leq 2$ and $q \geq 1$ for which

$$
\begin{equation*}
\left(\int|\widehat{f}(\xi)|^{q} d \mu(\xi)\right)^{1 / q} \leq C\left(\int|f(x)|^{p} d x\right)^{1 / p} \tag{R}
\end{equation*}
$$

for all functions f in a dense subspace of $L^{p}(\lambda)$. In other words, determine when the Fourier transform $f \mapsto \widehat{f}$ is a continuous operator from $L^{p}(\lambda)$ to $L^{q}(\mu)$.

Applications

- Strichartz estimates in PDE
- Exponential sum estimates in number theory
- Kakeya problem in geometric measure theory

Sharpness

Mockenhaupt-Mitis-Bak-Seeger Restriction Theorem
If $\operatorname{dim}_{H}(\mu) \geq \alpha$ and $\operatorname{dim}_{F}(\mu) \geq \beta$, then the restriction inequality (R) holds whenever $1 \leq p \leq p_{0}$ and $q=2$, where
$p_{0}=(4 d-4 \alpha+2 \beta) /(4 d-4 \alpha+\beta)$.
The range of p is best possible on \mathbb{R}^{d} (Knapp example) and \mathbb{R} :
Theorem (Hambrook-Łaba (2013))
There is a measure μ on \mathbb{R} that satisfies $\operatorname{dim}_{H}(\mu) \geq \alpha$ and $\operatorname{dim}_{F}(\mu) \geq \beta$, but the restriction inequality (R) fails whenever $p>p_{0}$ and $q=2$.

However, as shown by Chen and Seeger and by Łaba and Wang, there are measures μ that satisfy $\operatorname{dim}_{H}(\mu) \geq \alpha$ and $\operatorname{dim}_{F}(\mu) \geq \beta$ and (R) for some $p>p_{0}$. The constructions are random.

Problem

Are there explicit (i.e., non-random) measures μ that satisfy $\operatorname{dim}_{H}(\mu) \geq \alpha$ and $\operatorname{dim}_{F}(\mu) \geq \beta$ and (R) for some $p>p_{0}$? In particular, is there such a measure on $E(\tau)$?

The End

Thank You for Your Attention

Any Questions?

