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Hausdorff Dimension

Let A ⊆ Rd be Borel set. Let α ≥ 0.
R = Rectangle =

∏d
i=1[ai, bi], Vol(R) =

∏d
i=1(bi − ai).

Lebesgue measure:

λ(A) = inf

{ ∞∑
n=1

Vol(Rn) : A ⊆
∞⋃
n=1

Rn

}
α-Hausdorff measure:

Hα(A) = lim
δ→0+

inf

{ ∞∑
n=1

(Vol(Rn))
α : A ⊆

∞⋃
n=1

Rn, diam(Rn) < δ

}

α0 α0 d

Hα(A)
∞
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R = Rectangle =
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i=1[ai, bi], Vol(R) =

∏d
i=1(bi − ai).

Lebesgue measure:

λ(A) = inf
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∞⋃
n=1

Rn

}
α-Hausdorff measure:

Hα(A) = lim
δ→0+

inf

{ ∞∑
n=1

(Vol(Rn))
α : A ⊆

∞⋃
n=1

Rn, diam(Rn) < δ

}

α0 α0 d

Hα(A)
∞ Hausdorff Dimension:

dimH(A) = α0 = the number α
where Hα(A) jumps from 0 to ∞
= sup {α : Hα(A) > 0}



Hausdorff Dimension Agrees With Intuition

Point: Hausdorff Dimension = 0

Plane: Hausdorff Dimension = 2

Line: Hausdorff Dimension = 1

Sphere: Hausdorff Dimension = 2



Hausdorff Dimension of Fractals: Middle-1/3 Cantor Set

0 1/3 2/3 1

···
←− Cantor Set



Hausdorff Dimension of Fractals: Middle-1/3 Cantor Set

0 1/3 2/3 1

···
←− Cantor Set

Lebesgue Measure = “Length” = 0



Hausdorff Dimension of Fractals: Middle-1/3 Cantor Set

0 1/3 2/3 1

···
←− Cantor Set

Lebesgue Measure = “Length” = 0

Hausdorff Dimension =
log 2

log 3
= 0.6309 . . .



Hausdorff Dimension of Fractals: Middle-1/3 Cantor Set

0 1/3 2/3 1

···
←− Cantor Set

Lebesgue Measure = “Length” = 0

Hausdorff Dimension =
log 2

log 3
= 0.6309 . . .

C1/3 =

∞⋂
n=1

3n−1−1⋃
k=0

([
3k + 0

3n
,
3k + 1

3n

]
∪
[
3k + 2

3n
,
3k + 3

3n

])



More Fractals

Figure: Sierpinski Triangle (dimH = log 3
log 2 ), graph of Brownian motion

(dimH = 3
2 ), and surface of Romanesco broccoli (“dimH” ≈ 1.26)



Hausdorff Dimension in Terms of Energy Integral

Theorem (Frostman)

dimH(A) = sup {α : ∃µ ∈M(A) s.t. Iα(µ) <∞}

Definition (Energy Integral of µ)

Iα(µ) :=

∫∫
|x− y|−αdµ(x)dµ(y)

Definition

M(A) is the set of all non-zero finite Borel measures on Rd with
supp(µ) ⊆ A.

Definition

supp(µ) is the smallest closed set C with µ(Rd \ C) = 0.
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Fourier Transform of a Measure

Definition

If f : Rd → R, the Fourier transform of f is

f̂(ξ) =

∫
Rd
e−2πiξ·xf(x)dx for ξ ∈ Rd.

Definition

If µ is a measure on Rd, the Fourier transform of µ is

µ̂(ξ) =

∫
Rd
e−2πiξ·xdµ(x) for ξ ∈ Rd



Hausdorff Dimension in Terms of Fourier Transform

Theorem (Frostman)

dimH(A) = sup {α : ∃µ ∈M(A) s.t. Iα(µ) <∞}

Definition (Energy Integral of µ)

Iα(µ) :=

∫∫
|x− y|−αdµ(x)dµ(y) = C

∫
|µ̂(ξ)|2|ξ|α−ddξ

Proof of Second Equality.

By Parseval and the convolution theorem for Fourier transforms,

Iα(µ) =

∫
(| · |−α ∗ µ)(y) dµ(y) =

∫
̂(| · |−α ∗ µ)(ξ) µ̂(ξ)dξ

=

∫
|̂ · |−α(ξ) µ̂(ξ) µ̂(ξ)dξ = C

∫
|µ̂(ξ)|2|ξ|α−ddξ
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If µ ∈M(A) decays like |µ̂(ξ)|2 . |ξ|−β, then β ≤ dimH(A).



Hausdorff Dimension in Terms of Fourier Transform

Theorem (Frostman)

dimH(A) = sup {α : ∃µ ∈M(A) s.t. Iα(µ) <∞}

Definition (Energy Integral of µ)

Iα(µ) :=

∫∫
|x− y|−αdµ(x)dµ(y) = C

∫
|µ̂(ξ)|2|ξ|α−ddξ

Remark

Iα(µ) <∞ is about the decay of µ̂(ξ) at ∞.

Remark

If µ ∈M(A) decays like |µ̂(ξ)|2 . |ξ|−β, then β ≤ dimH(A).



Hausdorff Dimension in Terms of Fourier Transform

Theorem (Frostman)

dimH(A) = sup {α : ∃µ ∈M(A) s.t. Iα(µ) <∞}

Definition (Energy Integral of µ)

Iα(µ) :=

∫∫
|x− y|−αdµ(x)dµ(y) = C

∫
|µ̂(ξ)|2|ξ|α−ddξ

Remark

Iα(µ) <∞ is about the decay of µ̂(ξ) at ∞.

Remark

If µ ∈M(A) decays like |µ̂(ξ)|2 . |ξ|−β, then β ≤ dimH(A).



Hausdorff Dimension and Fourier Dimension

Theorem (Hausdorff Dimension)

dimH(A) = sup

{
α ∈ [0, d] : ∃µ ∈M(A) s.t.

∫
|µ̂(ξ)|2|ξ|α−ddξ <∞

}

Definition (Fourier Dimension)

dimF (A) = sup
{
β ∈ [0, d] : ∃µ ∈M(A) s.t. |µ̂(ξ)|2 . |ξ|−β

}
Theorem

dimFA ≤ dimHA.
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Hausdorff Dimension vs Fourier Dimension

Fourier dimension depends on the ambient space, while Hausdorff
dimension does not.

Example

x
L

y

• If we view L as an interval in R, then

dimFL = dimHL = 1.

• If we view L as a line segment in R2, then

dimFL = 0 and dimHL = 1.



Hausdorff Dimension vs Fourier Dimension

Examples

• If A is a k-dimensional plane in Rd with k < d, then

dimFA = 0 and dimHA = k.

• If A ⊆ (d− 1)-dimensional plane in Rd, then

dimFA = 0 and dimHA ∈ [0, d− 1]

Proof.

If A ⊆
{
x ∈ Rd : x · ξ0 = c

}
, and µ ∈M(A), then

µ̂(nξ0) =

∫
A
e−2πinξ0·xdµ(x) = e−2πincµ(A) 6= 0,

which does not go to zero as ξ = nξ0 →∞.
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Hausdorff Dimension vs Fourier Dimension

Examples

• If C1/3 = middle-1/3 Cantor set in R, then

dimFC1/3 = 0 and dimHC1/3 =
log 2

log 3

• If Cδ = middle-δ Cantor set in R, then

dimFCδ < dimHCδ for all δ ∈ (0, 1)

and
0 < dimFCδ for almost every δ ∈ (0, 1)

• If dimFCδ > 0, then 2/(1− δ) is not a Pisot number (i.e., an algebraic
integer whose conjugates are strictly less than 1 in absolute value).

• If dimFA > 0, then A generates Rd as an additive group.



Salem Sets

Theorem

dimFA ≤ dimHA.

Definition

A set Borel set A ⊆ Rd is called a Salem set if

dimFA = dimHA.

Examples

• For some non-Salem sets, see the previous slide.
• Point = Salem set of dimension 0
• Sphere = Salem set of dimension d− 1
• Ball = Salem set of dimension d
• Salem sets of dimensions α 6= 0, d− 1, d are harder to find.



Salem Sets of Every Dimension

Theorem (Salem (1951))

For every α ∈ (0, 1), there exists a Salem set A ⊆ R with dimension α.

Theorem (Kahane (1966))

For every α ∈ (0, d), there exists a Salem set A ⊆ Rd with dimension α.

Remarks

• Salem’s Construction: Random Cantor sets
• Kahane’s Construction: Images of Brownian motion
• There are many other random constructions (e.g., by Kahane, Shapiro,
Bluhm,  Laba and Pramanik, Chen and Seeger).

Problem (Kahane (1966))

Can we find explicit (i.e., non-random) Salem sets in Rd of every
dimension?
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Explicit Salem Sets in R

Definition (Set of τ -Well-Approximable Numbers)

E(τ) =

{
x ∈ R :

∣∣∣∣x− r

q

∣∣∣∣ ≤ |q|−τ for ∞-many (q, r) ∈ Z× Z
}
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∣∣∣∣x− r

q
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}

Example

Given x = π, find (q, r) ∈ Z× Z such that∣∣∣∣x− r

q

∣∣∣∣ ≤ |q|−2
Taking r

q = 314159
105

= 3.14159 doesn’t work:∣∣∣∣x− r

q

∣∣∣∣ = ∣∣∣∣π − 314159

105

∣∣∣∣ = 0.0000026535 . . . > 10−10 = |q|−2

But the simpler rational rq = 22
7 = 3.142857 does:∣∣∣∣x− r

q

∣∣∣∣ = ∣∣∣∣π − 22

7

∣∣∣∣ = 0.0012644 . . . < 7−2 = |q|−2



Explicit Salem Sets in R

Definition (Set of τ -Well-Approximable Numbers)

E(τ) =

{
x ∈ R :

∣∣∣∣x− r

q

∣∣∣∣ ≤ |q|−τ for ∞-many (q, r) ∈ Z× Z
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Theorem (Dirichlet (1834))

E(τ) = R when τ ≤ 2.
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Explicit Salem Sets in R

Definition (Set of τ -Well-Approximable Numbers)

E(τ) =

{
x ∈ R :

∣∣∣∣x− r

q

∣∣∣∣ ≤ |q|−τ for ∞-many (q, r) ∈ Z× Z
}

Theorem (Dirichlet (1834))

E(τ) = R when τ ≤ 2.

Theorem (Jarnik-Besicovitch (1929-1932))

E(τ) has Hausdorff dimension 2/τ when τ > 2.

Theorem (Kaufman (1981))

E(τ) is a Salem set of dimension 2/τ when τ > 2.



Explicit Salem Sets in Rd: d > 1?

Definition

Erot(τ) =
{
x ∈ Rd : |x| ∈ E(τ)

}

Theorem (Bluhm (1996))

Erot(τ) is a Salem set with dimension d− 1 +
2

τ
for every τ > 2.

Remarks

• Gives explicit Salem sets in Rd of every dimension α ∈ (d− 1, d).
• Leaves α ∈ (0, d− 1).
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Explicit Salem Sets in Rd: d > 1?

In number theory, the natural multi-dimensional version of E(τ) is:

Definition

E(m,n, τ)=
{
x ∈ Rmn : |xq − r| ≤ |q|−τ+1 for ∞-many (q, r) ∈ Zn × Zm

}
Here x ∈ Rmn is viewed as an m× n matrix and | · | is the max norm.

This is about simultaneous Diophantine approximation of linear forms, i.e.,
having good approximate integer solutions of several linear forms at once:

|x11q1 + x12q2 + · · ·+ x1nqn − r1| ≤ |q|−τ+1

|x21q1 + x22q2 + · · ·+ x2nqn − r2| ≤ |q|−τ+1

...

|xm1q1 + xm2q2 + · · ·+ xmnqn − rm| ≤ |q|−τ+1
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Explicit Salem Sets in Rd: d > 1?

In number theory, the natural multi-dimensional version of E(τ) is:

Definition

E(m,n, τ)=
{
x ∈ Rmn : |xq − r| ≤ |q|−τ+1 for ∞-many (q, r) ∈ Zn × Zm

}
Here x ∈ Rmn is viewed as an m× n matrix and | · | is the max norm.

Theorem (Bovey-Dodson (1986))

dimHE(m,n, τ) = m(n− 1) +
m+ n

τ
for every τ > 1 +

n

m

Theorem (Hambrook (2015))

dimFE(m,n, τ) ≥ 2n

τ
for every τ > 1 +

n

m

But we don’t know whether E(m,n, τ) is Salem because

m(n− 1) +
m+ n

τ
>

2n

τ
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Explicit Salem Sets in Rd: d = 2

Definition

E(C, τ) =
{
x ∈ R2 :

∣∣∣∣x− r

q

∣∣∣∣ ≤ |q|−τ for ∞-many (q, r) ∈ Z2 × Z2

}
Here r/q is interpreted via the identification R2 ' C.

Theorem (Hambrook (2017))

E(C, τ) is a Salem set with dimension 4/τ for every τ > 2.

Remarks

• Gives Salem sets in R2 of every dimension α ∈ (0, 2).
• Resolves Kahane’s problem when d = 2.

Remarks on Proof

Kaufman’s proof applies almost verbatim. The hard part was coming up
with the set E(C, τ) where Kaufman’s proof would work.
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Explicit Salem Sets in Rd: d = 4?

Since R2 ' C worked, it is natural to try

R4 ' H (= the set of quaternions)

(a, b, c, d) = a+ bi+ cj + dk

i2 = j2 = k2 = ijk = −1

Definition

E(H, τ) =
{
x ∈ R4 :

∣∣∣∣x− r

q

∣∣∣∣ ≤ |q|−τ for ∞-many (q, r) ∈ Z4 × Z4

}

Remarks

The proof that E(H, τ) is Salem fails because there is no good divisor
bound for the quaternions.



Explicit Salem Sets in Rd: All d

Definition

E(K,B, τ) =

{
x ∈ Rd :

∣∣∣∣x− r

q

∣∣∣∣ ≤ |q|−τ for ∞-many (q, r) ∈ Zd × Zd
}

K = degree d field extension of Q (i.e., a number field)
O(K) = ring of integers of K
B = {ω1, . . . , ωd} = integral basis for K

Qd ' K, Zd ' O(K), Rd ' Rω1 + · · ·+ Rωd
(q1, . . . , qd) = q1ω1 + · · ·+ qdωd

Theorem (Fraser, Hambrook (2019))

E(K,B, τ) is a Salem set with dimension 2d/τ for every τ > 2.

Remarks

• Gives Salem sets in Rd of every dimension α ∈ (0, d).
• Completely resolves Kahane’s problem.
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Explicit Salem Sets in Rd: All d

Theorem (Fraser, Hambrook (2019))

E(K,B, τ) is a Salem set with dimension 2d/τ for every τ > 2.

Remarks on Proof

The proofs for E(τ) and E(C, τ) rely on features of R and C that don’t
generalize easily to number fields K:
• Divisor bounds in Z and Z2 ' Z[i] (which come from unique

factorization and finiteness of the unit group)
• Transpose of matrix for x ∈ C is matrix for x.
• For q = a+ ib ∈ Z[i], N(〈q〉) = a2 + b2 = |q|2.



Explicit Salem Sets in Rd: All d

Theorem (Fraser, Hambrook (2019))

E(K,B, τ) is a Salem set with dimension 2d/τ for every τ > 2.

Remarks on Proof

To overcome these obstacles, we:
• Use unique factorization of ideals in O(K) and Dirichlet’s unit group

theorem to obtain an appropriate divisor bound.
• Rediscover an algebra theorem: Transpose of matrix for q ∈ K is

matrix for q in a different basis.
• Use pigeonholing argument to eliminate dependence on comparability

of algebraic norm N(〈q〉) and geometric norm |q|.



Proof

Want:
dimFE(K,B, τ) = dimHE(K,B, τ) = 2d/τ

• dimFE(K,B, τ) ≤ dimHE(K,B, τ) by definition of Fourier dimension.

• dimHE(K,B, τ) ≤ 2d/τ by standard covering argument, which comes
from writing

E(K,B, τ) =

{
x ∈ Rd :

∣∣∣∣x− r

q

∣∣∣∣ ≤ |q|−τ for ∞-many (q, r) ∈ Zd × Zd
}

=

∞⋂
N=1

⋃
|q|>N

⋃
r∈Zd

B(r/q, |q|−τ )

• 2d/τ ≤ dimFE(K,B, τ) proved by constructing a measure ...



Proof

µ = w-lim
k→∞

FMk
FMk−1

· · ·FM1dx

M1 ≤M2 ≤ . . .→∞ rapidly

FM (x) =
∑
q∈Zd

M
2
<|q|≤M

∑
r∈Zd

φε(x− r/q)︸ ︷︷ ︸
normalized bump on B(r/q,M−τ )

Here φε(x) = ε−dφ(x/ε), ε = M τ , and φ is positive, smooth, L1-
normalized, and supported in B(0, 1). Then

supp(µ) ⊆
∞⋂
k=1

supp(FMk
) ⊆ E(K,B, τ)

and ...



Proof

F̂M (s) = φ̂(s/M τ )
∑
q∈Zd

M/2<|q|≤M

∑
r∈Rq

e(s · r/q) for s ∈ Zd

where Rq = set of representatives of O(K)/〈q〉.
Matrix Games: There is a L ∈ Z depending on K and B such that∣∣∣∣∣∣

∑
r∈Rq

e(s · r/q)

∣∣∣∣∣∣
{
≤ N(〈q〉) if q divides Ls
= 0 otherwise

Problem: Need bound on number of divisors q of Ls such that |q| ≤M .
Solution: Unique factorization of ideals in O(K), Dirichlet’s unit theorem.

|F̂M (ξ)|2 ≤ C|ξ|−2d/τ exp
(

log |ξ|
log log |ξ|

)
(logM)C

An induction argument gives

|µ̂(ξ)|2 ≤ |ξ|−2d/τ exp
(
C log |ξ|
log log |ξ|

)



What Else?

A Sample of Related Problems:

• Exact Fourier Dimension of E(m,n, τ)

• Restricted Diophantine Approximation

• Fourier Restriction



Restricted Denominators

For infinite Q ⊆ Z, define

E(τ,Q) =

{
x ∈ R :

∣∣∣∣x− r

q

∣∣∣∣ ≤ 1

|q|τ
for infinitely many (q, r) ∈ Q× Z

}
and

ν(Q) = inf{ν ≥ 0 :
∑
q∈Q
|q|−ν <∞}

Theorem (Borosh-Fraenkel (1972))

If τ > 2, then dimHE(τ,Q) =
1 + ν(Q)

τ
.

Theorem (Hambrook (2015))

If τ > 2, then dimFE(τ,Q) ≥ 2ν(Q)

τ
. In particular, if ν(Q) = 1 (eg. Q =

primes), then E(τ,Q) is Salem.
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Restricted Denominators

Theorem (Hambrook (2015))

If τ > 2, then dimFE(τ,Q) ≥ 2ν(Q)

τ
. In particular, if ν(Q) = 1 (eg. Q =

primes), then E(τ,Q) is Salem.

Problem

Increase lower bound when

ν(Q) = inf{ν ≥ 0 :
∑
q∈Q
|q|−ν <∞} < 1?.

For example, when Q = squares and ν(Q) = 1/2.



Restricted Denominators and Numerators

For infinite Q,R ⊆ Z, define

E(τ,Q,R) =

{
x ∈ R :

∣∣∣∣x− r

q

∣∣∣∣ ≤ 1

|q|τ
for infinitely many (q, r) ∈ Q×R

}
Theorem (Harman (1988))

If τ > 2 and Q = R = primes, then dimHE(τ,Q,R) =
2

τ
.

Problem

If τ > 2 and Q = R = primes, then dimFE(τ,Q,R) =
2

τ
?



Restricted Denominators and Numerators

Problem

If τ > 2 and Q = R = primes, then dimFE(τ,Q,R) =
2

τ
?

Reduces to...

Problem

Are there infinitely many integers M such that for every prime q and
integer k satisfying M/2 ≤ q ≤M and q - k and for every ε > 0, we have∣∣∣∣∣∣∣∣

∑
0≤r<q
r prime

e2πikr/q

∣∣∣∣∣∣∣∣ ≤ Cε|k|
εM ε?

Remark

For primes, this looks unlikely. But maybe there’s another approach. Or
maybe for another set R.



Fourier Restriction

Fourier Restriction Problem

Given a measure µ on Rd, determine the exponents 1 ≤ p ≤ 2 and q ≥ 1
for which (∫

|f̂(ξ)|qdµ(ξ)
)1/q

≤ C
(∫
|f(x)|pdx

)1/p

(R)

for all functions f in a dense subspace of Lp(λ). In other words, determine
when the Fourier transform f 7→ f̂ is a continuous operator from Lp(λ) to
Lq(µ).

Applications

Strichartz estimates in PDE

Exponential sum estimates in number theory

Kakeya problem in geometric measure theory



Sharpness

Mockenhaupt-Mitis-Bak-Seeger Restriction Theorem

If dimH(µ) ≥ α and dimF (µ) ≥ β, then the restriction inequality (R)
holds whenever 1 ≤ p ≤ p0 and q = 2, where
p0 = (4d− 4α+ 2β)/(4d− 4α+ β).

The range of p is best possible on Rd (Knapp example) and R:

Theorem (Hambrook- Laba (2013))

There is a measure µ on R that satisfies dimH(µ) ≥ α and dimF (µ) ≥ β,
but the restriction inequality (R) fails whenever p > p0 and q = 2.

However, as shown by Chen and Seeger and by  Laba and Wang, there are
measures µ that satisfy dimH(µ) ≥ α and dimF (µ) ≥ β and (R) for some
p > p0. The constructions are random.

Problem

Are there explicit (i.e., non-random) measures µ that satisfy dimH(µ) ≥ α
and dimF (µ) ≥ β and (R) for some p > p0? In particular, is there such a
measure on E(τ)?



The End

Thank You for Your Attention

Any Questions?
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