Explicit Salem Sets in Euclidean Space

Kyle Hambrook

San Jose State University

November 6, 2020

Outline

2 Fourier Dimension

4 Kahane's Problem

5 And Its Resolution

Let $A \subseteq \mathbb{R}^d$ be Borel set. Let $\alpha \ge 0$. $R = \text{Rectangle} = \prod_{i=1}^d [a_i, b_i]$, $\text{Vol}(R) = \prod_{i=1}^d (b_i - a_i)$.

Let $A \subseteq \mathbb{R}^d$ be Borel set. Let $\alpha \ge 0$. $R = \text{Rectangle} = \prod_{i=1}^d [a_i, b_i]$, $\text{Vol}(R) = \prod_{i=1}^d (b_i - a_i)$. Lebesgue measure:

$$\lambda(A) = \inf\left\{\sum_{n=1}^{\infty} \operatorname{Vol}(R_n) : A \subseteq \bigcup_{n=1}^{\infty} R_n\right\}$$

Let $A \subseteq \mathbb{R}^d$ be Borel set. Let $\alpha \ge 0$. $R = \text{Rectangle} = \prod_{i=1}^d [a_i, b_i]$, $\text{Vol}(R) = \prod_{i=1}^d (b_i - a_i)$. Lebesgue measure:

$$\lambda(A) = \inf\left\{\sum_{n=1}^{\infty} \operatorname{Vol}(R_n) : A \subseteq \bigcup_{n=1}^{\infty} R_n\right\}$$

 α -Hausdorff measure:

$$\mathcal{H}^{\alpha}(A) = \lim_{\delta \to 0^{+}} \inf \left\{ \sum_{n=1}^{\infty} (\operatorname{Vol}(R_{n}))^{\alpha} : A \subseteq \bigcup_{n=1}^{\infty} R_{n}, \ \operatorname{diam}(R_{n}) < \delta \right\}$$

Let $A \subseteq \mathbb{R}^d$ be Borel set. Let $\alpha \ge 0$. $R = \text{Rectangle} = \prod_{i=1}^d [a_i, b_i]$, $\text{Vol}(R) = \prod_{i=1}^d (b_i - a_i)$. Lebesgue measure:

$$\lambda(A) = \inf\left\{\sum_{n=1}^{\infty} \operatorname{Vol}(R_n) : A \subseteq \bigcup_{n=1}^{\infty} R_n\right\}$$

 α -Hausdorff measure:

$$\mathcal{H}^{\alpha}(A) = \lim_{\delta \to 0^{+}} \inf \left\{ \sum_{n=1}^{\infty} (\operatorname{Vol}(R_{n}))^{\alpha} : A \subseteq \bigcup_{n=1}^{\infty} R_{n}, \ \operatorname{diam}(R_{n}) < \delta \right\}$$

Let $A \subseteq \mathbb{R}^d$ be Borel set. Let $\alpha \ge 0$. $R = \text{Rectangle} = \prod_{i=1}^d [a_i, b_i]$, $\text{Vol}(R) = \prod_{i=1}^d (b_i - a_i)$. Lebesgue measure:

$$\lambda(A) = \inf\left\{\sum_{n=1}^{\infty} \operatorname{Vol}(R_n) : A \subseteq \bigcup_{n=1}^{\infty} R_n\right\}$$

 α -Hausdorff measure:

$$\mathcal{H}^{\alpha}(A) = \lim_{\delta \to 0^{+}} \inf \left\{ \sum_{n=1}^{\infty} (\operatorname{Vol}(R_{n}))^{\alpha} : A \subseteq \bigcup_{n=1}^{\infty} R_{n}, \ \operatorname{diam}(R_{n}) < \delta \right\}$$

Hausdorff Dimension:

 $\dim_H(A) = \alpha_0 =$ the number α where $\mathcal{H}^{\alpha}(A)$ jumps from 0 to ∞

Let $A \subseteq \mathbb{R}^d$ be Borel set. Let $\alpha \ge 0$. $R = \text{Rectangle} = \prod_{i=1}^d [a_i, b_i]$, $\text{Vol}(R) = \prod_{i=1}^d (b_i - a_i)$. Lebesgue measure:

$$\lambda(A) = \inf\left\{\sum_{n=1}^{\infty} \operatorname{Vol}(R_n) : A \subseteq \bigcup_{n=1}^{\infty} R_n\right\}$$

 α -Hausdorff measure:

$$\mathcal{H}^{\alpha}(A) = \lim_{\delta \to 0^{+}} \inf \left\{ \sum_{n=1}^{\infty} (\operatorname{Vol}(R_{n}))^{\alpha} : A \subseteq \bigcup_{n=1}^{\infty} R_{n}, \ \operatorname{diam}(R_{n}) < \delta \right\}$$

Hausdorff Dimension:

 $\begin{aligned} \dim_H(A) &= \alpha_0 = \text{the number } \alpha \\ \text{where } \mathcal{H}^{\alpha}(A) \text{ jumps from } 0 \text{ to } \infty \\ &= \sup \left\{ \alpha : \mathcal{H}^{\alpha}(A) > 0 \right\} \end{aligned}$

Hausdorff Dimension Agrees With Intuition

Point: Hausdorff Dimension = 0 Line: Hausdorff Dimension = 1

Sphere: Hausdorff Dimension = 2

Lebesgue Measure = "Length" = 0

Lebesgue Measure = "Length" = 0
Hausdorff Dimension =
$$\frac{\log 2}{\log 3} = 0.6309...$$

Lebesgue Measure = "Length" = 0
Hausdorff Dimension =
$$\frac{\log 2}{\log 3} = 0.6309...$$

$$C_{1/3} = \bigcap_{n=1}^{\infty} \bigcup_{k=0}^{3^{n-1}-1} \left(\left[\frac{3k+0}{3^n}, \frac{3k+1}{3^n} \right] \cup \left[\frac{3k+2}{3^n}, \frac{3k+3}{3^n} \right] \right)$$

More Fractals

Figure: Sierpinski Triangle (dim_H = $\frac{\log 3}{\log 2}$), graph of Brownian motion (dim_H = $\frac{3}{2}$), and surface of Romanesco broccoli ("dim_H" ≈ 1.26)

Hausdorff Dimension in Terms of Energy Integral

Theorem (Frostman)

$$\dim_H(A) = \sup \{ \alpha : \exists \mu \in \mathcal{M}(A) \text{ s.t. } I_\alpha(\mu) < \infty \}$$

Hausdorff Dimension in Terms of Energy Integral

Theorem (Frostman)

$$\dim_H(A) = \sup \{ \alpha : \exists \mu \in \mathcal{M}(A) \text{ s.t. } I_\alpha(\mu) < \infty \}$$

Definition (Energy Integral of μ)

$$I_{\alpha}(\mu) := \iint |x - y|^{-\alpha} d\mu(x) d\mu(y)$$

Hausdorff Dimension in Terms of Energy Integral

Theorem (Frostman)

$$\dim_H(A) = \sup \{ \alpha : \exists \mu \in \mathcal{M}(A) \text{ s.t. } I_\alpha(\mu) < \infty \}$$

Definition (Energy Integral of μ)

$$I_{\alpha}(\mu) := \iint |x - y|^{-\alpha} d\mu(x) d\mu(y)$$

Definition

 $\mathcal{M}(A)$ is the set of all non-zero finite Borel measures on \mathbb{R}^d with $\mathrm{supp}(\mu)\subseteq A.$

Definition

 $\operatorname{supp}(\mu)$ is the smallest closed set C with $\mu(\mathbb{R}^d \setminus C) = 0$.

Fourier Transform of a Measure

Definition

If $f : \mathbb{R}^d \to \mathbb{R}$, the Fourier transform of f is

$$\widehat{f}(\xi) = \int_{\mathbb{R}^d} e^{-2\pi i \xi \cdot x} f(x) dx \quad \text{for } \xi \in \mathbb{R}^d.$$

Definition

If μ is a measure on $\mathbb{R}^d,$ the Fourier transform of μ is

$$\widehat{\mu}(\xi) = \int_{\mathbb{R}^d} e^{-2\pi i \xi \cdot x} d\mu(x) \quad \text{for } \xi \in \mathbb{R}^d$$

Theorem (Frostman) $\dim_H(A) = \sup \{ \alpha : \exists \mu \in \mathcal{M}(A) \text{ s.t. } I_{\alpha}(\mu) < \infty \}$

Definition (Energy Integral of μ)

$$I_{\alpha}(\mu) := \iint |x-y|^{-\alpha} d\mu(x) d\mu(y) = C \int |\widehat{\mu}(\xi)|^2 |\xi|^{\alpha-d} d\xi$$

Theorem (Frostman) $dim_H(A) = \sup \{ \alpha : \exists \mu \in \mathcal{M}(A) \text{ s.t. } I_{\alpha}(\mu) < \infty \}$

Definition (Energy Integral of μ)

$$I_{\alpha}(\mu) := \iint |x-y|^{-\alpha} d\mu(x) d\mu(y) = C \int |\widehat{\mu}(\xi)|^2 |\xi|^{\alpha-d} d\xi$$

Proof of Second Equality.

By Parseval and the convolution theorem for Fourier transforms,

$$I_{\alpha}(\mu) = \int (|\cdot|^{-\alpha} * \mu)(y) d\mu(y) = \int (|\widehat{\cdot|^{-\alpha} * \mu})(\xi) \,\overline{\widehat{\mu}}(\xi) d\xi$$
$$= \int \widehat{|\cdot|^{-\alpha}}(\xi) \,\widehat{\mu}(\xi) \,\overline{\widehat{\mu}}(\xi) d\xi = C \int |\widehat{\mu}(\xi)|^2 |\xi|^{\alpha-d} d\xi$$

Theorem (Frostman)

$$\dim_H(A) = \sup \{ \alpha : \exists \mu \in \mathcal{M}(A) \text{ s.t. } I_\alpha(\mu) < \infty \}$$

Definition (Energy Integral of μ)

$$I_{\alpha}(\mu) := \iint |x-y|^{-\alpha} d\mu(x) d\mu(y) = C \int |\widehat{\mu}(\xi)|^2 |\xi|^{\alpha-d} d\xi$$

Theorem (Frostman)

$$\dim_H(A) = \sup \{ \alpha : \exists \mu \in \mathcal{M}(A) \text{ s.t. } I_\alpha(\mu) < \infty \}$$

Definition (Energy Integral of μ)

$$I_{\alpha}(\mu) := \iint |x-y|^{-\alpha} d\mu(x) d\mu(y) = C \int |\widehat{\mu}(\xi)|^2 |\xi|^{\alpha-d} d\xi$$

Remark

 $I_{lpha}(\mu) < \infty$ is about the decay of $\widehat{\mu}(\xi)$ at ∞ .

Theorem (Frostman)

$$\dim_H(A) = \sup \{ \alpha : \exists \mu \in \mathcal{M}(A) \text{ s.t. } I_\alpha(\mu) < \infty \}$$

Definition (Energy Integral of μ)

$$I_{\alpha}(\mu) := \iint |x-y|^{-\alpha} d\mu(x) d\mu(y) = C \int |\widehat{\mu}(\xi)|^2 |\xi|^{\alpha-d} d\xi$$

Remark

 $I_{lpha}(\mu) < \infty$ is about the decay of $\widehat{\mu}(\xi)$ at ∞ .

Remark

If
$$\mu \in \mathcal{M}(A)$$
 decays like $|\widehat{\mu}(\xi)|^2 \lesssim |\xi|^{-\beta}$, then $\beta \leq \dim_H(A)$.

Theorem (Hausdorff Dimension) $dim_{H}(A) = \sup \left\{ \alpha \in [0, d] : \exists \mu \in \mathcal{M}(A) \text{ s.t. } \int |\widehat{\mu}(\xi)|^{2} |\xi|^{\alpha - d} d\xi < \infty \right\}$

Theorem (Hausdorff Dimension) $dim_{H}(A) = \sup \left\{ \alpha \in [0, d] : \exists \mu \in \mathcal{M}(A) \text{ s.t. } \int |\widehat{\mu}(\xi)|^{2} |\xi|^{\alpha - d} d\xi < \infty \right\}$

Definition (Fourier Dimension)

$$\dim_F(A) = \sup \left\{ \beta \in [0,d] : \exists \mu \in \mathcal{M}(A) \text{ s.t. } |\widehat{\mu}(\xi)|^2 \lesssim |\xi|^{-\beta} \right\}$$

Theorem (Hausdorff Dimension) $dim_{H}(A) = \sup \left\{ \alpha \in [0, d] : \exists \mu \in \mathcal{M}(A) \text{ s.t. } \int |\widehat{\mu}(\xi)|^{2} |\xi|^{\alpha - d} d\xi < \infty \right\}$

Definition (Fourier Dimension)

$$\dim_F(A) = \sup \left\{ \beta \in [0,d] : \exists \mu \in \mathcal{M}(A) \text{ s.t. } |\widehat{\mu}(\xi)|^2 \lesssim |\xi|^{-\beta} \right\}$$

Theorem

 $\dim_F A \leq \dim_H A.$

Fourier dimension depends on the ambient space, while Hausdorff dimension does not.

Example

 \bullet If we view L as an interval in $\mathbb R,$ then

$$\dim_F L = \dim_H L = 1.$$

• If we view L as a line segment in $\mathbb{R}^2,$ then

 $\dim_F L = 0$ and $\dim_H L = 1$.

Examples

• If A is a k-dimensional plane in \mathbb{R}^d with k < d, then

$$\dim_F A = 0 \quad \text{and} \quad \dim_H A = k.$$

• If $A \subseteq (d-1)$ -dimensional plane in \mathbb{R}^d , then

 $\dim_F A = 0$ and $\dim_H A \in [0, d-1]$

Examples

• If A is a k-dimensional plane in \mathbb{R}^d with k < d, then

$$\dim_F A = 0 \quad \text{and} \quad \dim_H A = k.$$

• If $A \subseteq (d-1)$ -dimensional plane in \mathbb{R}^d , then

$$\dim_F A = 0 \quad \text{ and } \quad \dim_H A \in [0, d-1]$$

Proof.

If
$$A \subseteq \{x \in \mathbb{R}^d : x \cdot \xi_0 = c\}$$
, and $\mu \in \mathcal{M}(A)$, then

$$\widehat{\mu}(n\xi_0) = \int_A e^{-2\pi i n\xi_0 \cdot x} d\mu(x) = e^{-2\pi i nc} \mu(A) \neq 0,$$

which does not go to zero as $\xi = n\xi_0 \rightarrow \infty$.

Examples

• If
$$C_{1/3} = \operatorname{middle-} 1/3$$
 Cantor set in $\mathbb R$, then

$$\dim_F C_{1/3} = 0 \quad \text{and} \quad \dim_H C_{1/3} = \frac{\log 2}{\log 3}$$

• If $C_{\delta} = \mathsf{middle} \cdot \delta$ Cantor set in \mathbb{R} , then

$$\dim_F C_{\delta} < \dim_H C_{\delta} \quad \text{for all } \delta \in (0,1)$$

and

$$0 < \dim_F C_{\delta}$$
 for almost every $\delta \in (0, 1)$

• If dim_F $C_{\delta} > 0$, then $2/(1 - \delta)$ is not a Pisot number (i.e., an algebraic integer whose conjugates are strictly less than 1 in absolute value).

• If dim $_FA > 0$, then A generates \mathbb{R}^d as an additive group.

Salem Sets

Theorem

 $\dim_F A \leq \dim_H A.$

Definition

A set Borel set $A \subseteq \mathbb{R}^d$ is called a Salem set if

 $\dim_F A = \dim_H A.$

Examples

- For some non-Salem sets, see the previous slide.
- Point = Salem set of dimension 0
- Sphere = Salem set of dimension d-1
- Ball = Salem set of dimension d
- Salem sets of dimensions $\alpha \neq 0, d-1, d$ are harder to find.

Theorem (Salem (1951))

For every $\alpha \in (0,1)$, there exists a Salem set $A \subseteq \mathbb{R}$ with dimension α .

Theorem (Salem (1951))

For every $\alpha \in (0,1)$, there exists a Salem set $A \subseteq \mathbb{R}$ with dimension α .

Theorem (Kahane (1966))

For every $\alpha \in (0, d)$, there exists a Salem set $A \subseteq \mathbb{R}^d$ with dimension α .

Theorem (Salem (1951))

For every $\alpha \in (0,1)$, there exists a Salem set $A \subseteq \mathbb{R}$ with dimension α .

Theorem (Kahane (1966))

For every $\alpha \in (0, d)$, there exists a Salem set $A \subseteq \mathbb{R}^d$ with dimension α .

Remarks

- Salem's Construction: Random Cantor sets
- Kahane's Construction: Images of Brownian motion
- There are many other **random** constructions (e.g., by Kahane, Shapiro, Bluhm, Łaba and Pramanik, Chen and Seeger).

Theorem (Salem (1951))

For every $\alpha \in (0,1)$, there exists a Salem set $A \subseteq \mathbb{R}$ with dimension α .

Theorem (Kahane (1966))

For every $\alpha \in (0, d)$, there exists a Salem set $A \subseteq \mathbb{R}^d$ with dimension α .

Remarks

- Salem's Construction: Random Cantor sets
- Kahane's Construction: Images of Brownian motion
- There are many other **random** constructions (e.g., by Kahane, Shapiro, Bluhm, Łaba and Pramanik, Chen and Seeger).

Problem (Kahane (1966))

Can we find explicit (i.e., non-random) Salem sets in \mathbb{R}^d of every dimension?

Explicit Salem Sets in ${\mathbb R}$

Definition (Set of τ -Well-Approximable Numbers)

$$E(\tau) = \left\{ x \in \mathbb{R} : \left| x - \frac{r}{q} \right| \le |q|^{-\tau} \text{ for } \infty \text{-many } (q, r) \in \mathbb{Z} \times \mathbb{Z} \right\}$$
Explicit Salem Sets in $\mathbb R$

Definition (Set of τ -Well-Approximable Numbers)

$$E(\tau) = \left\{ x \in \mathbb{R} : \left| x - \frac{r}{q} \right| \le |q|^{-\tau} \text{ for } \infty \text{-many } (q, r) \in \mathbb{Z} \times \mathbb{Z} \right\}$$

Example

Given $x = \pi$, find $(q, r) \in \mathbb{Z} \times \mathbb{Z}$ such that

$$\left|x - \frac{r}{q}\right| \le |q|^{-2}$$

Explicit Salem Sets in $\mathbb R$

Definition (Set of τ -Well-Approximable Numbers)

$$E(\tau) = \left\{ x \in \mathbb{R} : \left| x - \frac{r}{q} \right| \le |q|^{-\tau} \text{ for ∞-many $(q,r) \in \mathbb{Z} \times \mathbb{Z}$} \right\}$$

Example

Given $x = \pi$, find $(q, r) \in \mathbb{Z} \times \mathbb{Z}$ such that

$$\left|x - \frac{r}{q}\right| \le |q|^{-2}$$

Taking $\frac{r}{q} = \frac{314159}{10^5} = 3.14159$ doesn't work: $\left| x - \frac{r}{q} \right| = \left| \pi - \frac{314159}{10^5} \right| = 0.0000026535... > 10^{-10} = |q|^{-2}$

Explicit Salem Sets in $\mathbb R$

Definition (Set of τ -Well-Approximable Numbers)

$$E(\tau) = \left\{ x \in \mathbb{R} : \left| x - \frac{r}{q} \right| \le |q|^{-\tau} \text{ for } \infty \text{-many } (q, r) \in \mathbb{Z} \times \mathbb{Z} \right\}$$

Example

Given $x = \pi$, find $(q, r) \in \mathbb{Z} \times \mathbb{Z}$ such that

$$\left|x - \frac{r}{q}\right| \le |q|^{-2}$$

Taking $\frac{r}{q} = \frac{314159}{10^5} = 3.14159$ doesn't work: $\left| x - \frac{r}{q} \right| = \left| \pi - \frac{314159}{10^5} \right| = 0.0000026535... > 10^{-10} = |q|^{-2}$

But the simpler rational $\frac{r}{q} = \frac{22}{7} = 3.\overline{142857}$ does:

$$\left|x - \frac{r}{q}\right| = \left|\pi - \frac{22}{7}\right| = 0.0012644... < 7^{-2} = |q|^{-2}$$

Explicit Salem Sets in ${\mathbb R}$

Definition (Set of τ -Well-Approximable Numbers)

$$E(\tau) = \left\{ x \in \mathbb{R} : \left| x - \frac{r}{q} \right| \le |q|^{-\tau} \text{ for } \infty \text{-many } (q, r) \in \mathbb{Z} \times \mathbb{Z} \right\}$$

Theorem (Dirichlet (1834)) $E(\tau) = \mathbb{R}$ when $\tau \leq 2$.

Explicit Salem Sets in ${\mathbb R}$

Definition (Set of τ -Well-Approximable Numbers)

$$E(\tau) = \left\{ x \in \mathbb{R} : \left| x - \frac{r}{q} \right| \le |q|^{-\tau} \text{ for } \infty \text{-many } (q, r) \in \mathbb{Z} \times \mathbb{Z} \right\}$$

Theorem (Dirichlet (1834)) $E(\tau) = \mathbb{R}$ when $\tau \leq 2$.

Theorem (Jarnik-Besicovitch (1929-1932))

 $E(\tau)$ has Hausdorff dimension $2/\tau$ when $\tau > 2$.

Explicit Salem Sets in ${\mathbb R}$

Definition (Set of τ -Well-Approximable Numbers)

$$E(\tau) = \left\{ x \in \mathbb{R} : \left| x - \frac{r}{q} \right| \le |q|^{-\tau} \text{ for } \infty \text{-many } (q, r) \in \mathbb{Z} \times \mathbb{Z} \right\}$$

Theorem (Dirichlet (1834)) $E(\tau) = \mathbb{R}$ when $\tau \leq 2$.

Theorem (Jarnik-Besicovitch (1929-1932))

 $E(\tau)$ has Hausdorff dimension $2/\tau$ when $\tau > 2$.

Theorem (Kaufman (1981))

 $E(\tau)$ is a Salem set of dimension $2/\tau$ when $\tau > 2$.

Definition

$$E_{\mathsf{rot}}(\tau) = \left\{ x \in \mathbb{R}^d : |x| \in E(\tau) \right\}$$

Definition

$$E_{\mathsf{rot}}(\tau) = \left\{ x \in \mathbb{R}^d : |x| \in E(\tau) \right\}$$

Theorem (Bluhm (1996))

 $E_{\rm rot}(\tau)$ is a Salem set with dimension $d-1+rac{2}{\tau}$ for every $\tau>2$.

Definition

$$E_{\mathsf{rot}}(\tau) = \left\{ x \in \mathbb{R}^d : |x| \in E(\tau) \right\}$$

Theorem (Bluhm (1996))

 $E_{\rm rot}(\tau)$ is a Salem set with dimension $d-1+\frac{2}{\tau}$ for every $\tau>2$.

Remarks

- Gives explicit Salem sets in \mathbb{R}^d of every dimension $\alpha \in (d-1, d)$.
- Leaves $\alpha \in (0, d-1)$.

In number theory, the natural multi-dimensional version of $E(\tau)$ is:

In number theory, the natural multi-dimensional version of $E(\tau)$ is:

Definition

$$\begin{split} E(m,n,\tau) = & \left\{ x \in \mathbb{R}^{mn} \colon |xq-r| \leq |q|^{-\tau+1} \text{ for } \infty \text{-many } (q,r) \in \mathbb{Z}^n \times \mathbb{Z}^m \right\} \\ \text{Here } x \in \mathbb{R}^{mn} \text{ is viewed as an } m \times n \text{ matrix and } |\cdot| \text{ is the max norm.} \end{split}$$

In number theory, the natural multi-dimensional version of $E(\tau)$ is:

Definition

 $E(m, n, \tau) = \left\{ x \in \mathbb{R}^{mn} \colon |xq - r| \le |q|^{-\tau + 1} \text{ for } \infty \text{-many } (q, r) \in \mathbb{Z}^n \times \mathbb{Z}^m \right\}$ Here $x \in \mathbb{R}^{mn}$ is viewed as an $m \times n$ matrix and $|\cdot|$ is the max norm.

This is about simultaneous Diophantine approximation of linear forms, i.e., having good approximate integer solutions of several linear forms at once:

$$|x_{11}q_1 + x_{12}q_2 + \dots + x_{1n}q_n - r_1| \le |q|^{-\tau+1}$$
$$|x_{21}q_1 + x_{22}q_2 + \dots + x_{2n}q_n - r_2| \le |q|^{-\tau+1}$$
$$\vdots$$

 $|x_{m1}q_1 + x_{m2}q_2 + \dots + x_{mn}q_n - r_m| \le |q|^{-\tau+1}$

In number theory, the natural multi-dimensional version of $E(\tau)$ is:

Definition

$$\begin{split} E(m,n,\tau) = & \left\{ x \in \mathbb{R}^{mn} \colon |xq-r| \leq |q|^{-\tau+1} \text{ for } \infty \text{-many } (q,r) \in \mathbb{Z}^n \times \mathbb{Z}^m \right\} \\ \text{Here } x \in \mathbb{R}^{mn} \text{ is viewed as an } m \times n \text{ matrix and } |\cdot| \text{ is the max norm.} \end{split}$$

Theorem (Bovey-Dodson (1986))

$$\dim_H E(m,n, au) = m(n-1) + rac{m+n}{ au}$$
 for every $au > 1 + rac{n}{m}$

In number theory, the natural multi-dimensional version of $E(\tau)$ is:

Definition

$$\begin{split} E(m,n,\tau) = & \left\{ x \in \mathbb{R}^{mn} \colon |xq-r| \leq |q|^{-\tau+1} \text{ for } \infty\text{-many } (q,r) \in \mathbb{Z}^n \times \mathbb{Z}^m \right\} \\ \text{Here } x \in \mathbb{R}^{mn} \text{ is viewed as an } m \times n \text{ matrix and } | \cdot | \text{ is the max norm.} \end{split}$$

Theorem (Bovey-Dodson (1986))

$$\dim_H E(m, n, \tau) = m(n-1) + \frac{m+n}{\tau}$$
 for every $\tau > 1 + \frac{n}{m}$

Theorem (Hambrook (2015))

$$\dim_F E(m,n, au) \geq rac{2n}{ au}$$
 for every $au > 1 + rac{n}{m}$

In number theory, the natural multi-dimensional version of $E(\tau)$ is:

Definition

$$\begin{split} E(m,n,\tau) = & \left\{ x \in \mathbb{R}^{mn} \colon |xq-r| \leq |q|^{-\tau+1} \text{ for } \infty\text{-many } (q,r) \in \mathbb{Z}^n \times \mathbb{Z}^m \right\} \\ \text{Here } x \in \mathbb{R}^{mn} \text{ is viewed as an } m \times n \text{ matrix and } | \cdot | \text{ is the max norm.} \end{split}$$

Theorem (Bovey-Dodson (1986))

$$\dim_H E(m, n, \tau) = m(n-1) + \frac{m+n}{\tau}$$
 for every $\tau > 1 + \frac{n}{m}$

Theorem (Hambrook (2015))

$$\dim_F E(m,n, au) \geq rac{2n}{ au}$$
 for every $au > 1 + rac{n}{m}$

But we don't know whether $E(m, n, \tau)$ is Salem because

$$m(n-1) + \frac{m+n}{\tau} > \frac{2n}{\tau}$$

Definition

$$E(\mathbb{C},\tau) = \left\{ x \in \mathbb{R}^2 : \left| x - \frac{r}{q} \right| \le |q|^{-\tau} \text{ for ∞-many $(q,r) \in \mathbb{Z}^2 \times \mathbb{Z}^2$} \right\}$$

Here r/q is interpreted via the identification $\mathbb{R}^2 \simeq \mathbb{C}$.

Definition

$$E(\mathbb{C},\tau) = \left\{ x \in \mathbb{R}^2 : \left| x - \frac{r}{q} \right| \le |q|^{-\tau} \text{ for ∞-many $(q,r) \in \mathbb{Z}^2 \times \mathbb{Z}^2$} \right\}$$

Here r/q is interpreted via the identification $\mathbb{R}^2 \simeq \mathbb{C}$.

Theorem (Hambrook (2017))

 $E(\mathbb{C}, \tau)$ is a Salem set with dimension $4/\tau$ for every $\tau > 2$.

Definition

$$E(\mathbb{C},\tau) = \left\{ x \in \mathbb{R}^2 : \left| x - \frac{r}{q} \right| \le |q|^{-\tau} \text{ for } \infty \text{-many } (q,r) \in \mathbb{Z}^2 \times \mathbb{Z}^2 \right\}$$

Here r/q is interpreted via the identification $\mathbb{R}^2 \simeq \mathbb{C}$.

Theorem (Hambrook (2017))

 $E(\mathbb{C}, \tau)$ is a Salem set with dimension $4/\tau$ for every $\tau > 2$.

Remarks

- Gives Salem sets in \mathbb{R}^2 of every dimension $\alpha \in (0,2)$.
- Resolves Kahane's problem when d = 2.

Definition

$$E(\mathbb{C},\tau) = \left\{ x \in \mathbb{R}^2 : \left| x - \frac{r}{q} \right| \le |q|^{-\tau} \text{ for } \infty \text{-many } (q,r) \in \mathbb{Z}^2 \times \mathbb{Z}^2 \right\}$$

Here r/q is interpreted via the identification $\mathbb{R}^2 \simeq \mathbb{C}$.

Theorem (Hambrook (2017))

 $E(\mathbb{C}, \tau)$ is a Salem set with dimension $4/\tau$ for every $\tau > 2$.

Remarks

- Gives Salem sets in \mathbb{R}^2 of every dimension $\alpha \in (0,2)$.
- Resolves Kahane's problem when d = 2.

Remarks on Proof

Kaufman's proof applies almost verbatim. The hard part was coming up with the set $E(\mathbb{C}, \tau)$ where Kaufman's proof would work.

Since $\mathbb{R}^2 \simeq \mathbb{C}$ worked, it is natural to try

$$\mathbb{R}^4 \simeq \mathbb{H} (=$$
 the set of quaternions)
 $(a, b, c, d) = a + bi + cj + dk$
 $i^2 = j^2 = k^2 = ijk = -1$

Definition

$$E(\mathbb{H},\tau) = \left\{ x \in \mathbb{R}^4 : \left| x - \frac{r}{q} \right| \le |q|^{-\tau} \text{ for } \infty\text{-many } (q,r) \in \mathbb{Z}^4 \times \mathbb{Z}^4 \right\}$$

Remarks

The proof that $E(\mathbb{H},\tau)$ is Salem fails because there is no good divisor bound for the quaternions.

Definition

$$E(K, B, \tau) = \left\{ x \in \mathbb{R}^d : \left| x - \frac{r}{q} \right| \le |q|^{-\tau} \text{ for } \infty \text{-many } (q, r) \in \mathbb{Z}^d \times \mathbb{Z}^d \right\}$$

$$K = \text{degree } d \text{ field extension of } \mathbb{Q} \text{ (i.e., a number field)}$$

$$\mathcal{O}(K) = \text{ring of integers of } K$$

$$B = \{\omega_1, \dots, \omega_d\} = \text{integral basis for } K$$

$$\mathbb{Q}^d \simeq K, \quad \mathbb{Z}^d \simeq \mathcal{O}(K), \quad \mathbb{R}^d \simeq \mathbb{R}\omega_1 + \dots + \mathbb{R}\omega_d$$

$$(q_1, \dots, q_d) = q_1\omega_1 + \dots + q_d\omega_d$$

Definition

$$E(K, B, \tau) = \left\{ x \in \mathbb{R}^d : \left| x - \frac{r}{q} \right| \le |q|^{-\tau} \text{ for } \infty \text{-many } (q, r) \in \mathbb{Z}^d \times \mathbb{Z}^d \right\}$$

$$K = \text{degree } d \text{ field extension of } \mathbb{Q} \text{ (i.e., a number field)}$$

$$\mathcal{O}(K) = \text{ring of integers of } K$$

$$B = \{\omega_1, \dots, \omega_d\} = \text{integral basis for } K$$

$$\mathbb{Q}^d \simeq K, \quad \mathbb{Z}^d \simeq \mathcal{O}(K), \quad \mathbb{R}^d \simeq \mathbb{R}\omega_1 + \dots + \mathbb{R}\omega_d$$

$$(q_1, \dots, q_d) = q_1\omega_1 + \dots + q_d\omega_d$$

Theorem (Fraser, Hambrook (2019))

 $E(K, B, \tau)$ is a Salem set with dimension $2d/\tau$ for every $\tau > 2$.

Definition

$$E(K, B, \tau) = \left\{ x \in \mathbb{R}^d : \left| x - \frac{r}{q} \right| \le |q|^{-\tau} \text{ for } \infty \text{-many } (q, r) \in \mathbb{Z}^d \times \mathbb{Z}^d \right\}$$

$$K = \text{degree } d \text{ field extension of } \mathbb{Q} \text{ (i.e., a number field)}$$

$$\mathcal{O}(K) = \text{ring of integers of } K$$

$$B = \{\omega_1, \dots, \omega_d\} = \text{integral basis for } K$$

$$\mathbb{Q}^d \simeq K, \quad \mathbb{Z}^d \simeq \mathcal{O}(K), \quad \mathbb{R}^d \simeq \mathbb{R}\omega_1 + \dots + \mathbb{R}\omega_d$$

$$(q_1, \dots, q_d) = q_1\omega_1 + \dots + q_d\omega_d$$

Theorem (Fraser, Hambrook (2019))

 $E(K, B, \tau)$ is a Salem set with dimension $2d/\tau$ for every $\tau > 2$.

Remarks

- Gives Salem sets in \mathbb{R}^d of every dimension $\alpha \in (0, d)$.
- Completely resolves Kahane's problem.

Theorem (Fraser, Hambrook (2019))

 $E(K, B, \tau)$ is a Salem set with dimension $2d/\tau$ for every $\tau > 2$.

Remarks on Proof

The proofs for $E(\tau)$ and $E(\mathbb{C}, \tau)$ rely on features of \mathbb{R} and \mathbb{C} that don't generalize easily to number fields K:

- Divisor bounds in \mathbb{Z} and $\mathbb{Z}^2 \simeq \mathbb{Z}[i]$ (which come from unique factorization and finiteness of the unit group)
- Transpose of matrix for $x \in \mathbb{C}$ is matrix for \overline{x} .
- For $q = a + ib \in \mathbb{Z}[i]$, $N(\langle q \rangle) = a^2 + b^2 = |q|^2$.

Theorem (Fraser, Hambrook (2019))

 $E(K, B, \tau)$ is a Salem set with dimension $2d/\tau$ for every $\tau > 2$.

Remarks on Proof

To overcome these obstacles, we:

- Use unique factorization of ideals in $\mathcal{O}(K)$ and Dirichlet's unit group theorem to obtain an appropriate divisor bound.
- Rediscover an algebra theorem: Transpose of matrix for $q \in K$ is matrix for q in a *different basis*.
- Use pigeonholing argument to eliminate dependence on comparability of algebraic norm $N(\langle q \rangle)$ and geometric norm |q|.

Proof

Want:

$$\dim_F E(K, B, \tau) = \dim_H E(K, B, \tau) = 2d/\tau$$

- $\dim_F E(K, B, \tau) \leq \dim_H E(K, B, \tau)$ by definition of Fourier dimension.
- $\dim_{H} E(K,B,\tau) \leq 2d/\tau$ by standard covering argument, which comes from writing

$$\begin{split} E(K,B,\tau) &= \left\{ x \in \mathbb{R}^d : \left| x - \frac{r}{q} \right| \le |q|^{-\tau} \text{ for } \infty\text{-many } (q,r) \in \mathbb{Z}^d \times \mathbb{Z}^d \right\} \\ &= \bigcap_{N=1}^\infty \bigcup_{|q|>N} \bigcup_{r \in \mathbb{Z}^d} \overline{B}(r/q,|q|^{-\tau}) \end{split}$$

• $2d/\tau \leq \dim_F E(K, B, \tau)$ proved by constructing a measure ...

Proof

$$\begin{split} \mu &= \underset{k \to \infty}{\text{w-lim}} F_{M_k} F_{M_{k-1}} \cdots F_{M_1} dx \\ M_1 &\leq M_2 \leq \ldots \to \infty \text{ rapidly} \\ F_M(x) &= \sum_{\substack{q \in \mathbb{Z}^d \\ \frac{M}{2} < |q| \leq M}} \sum_{r \in \mathbb{Z}^d} \underbrace{\phi_\epsilon(x - r/q)}_{\text{normalized bump on } \overline{B}(r/q, M^{-\tau})} \end{split}$$

Here $\phi_{\epsilon}(x) = \epsilon^{-d}\phi(x/\epsilon)$, $\epsilon = M^{\tau}$, and ϕ is positive, smooth, L^1 -normalized, and supported in $\overline{B}(0,1)$. Then

$$\operatorname{supp}(\mu) \subseteq \bigcap_{k=1}^{\infty} \operatorname{supp}(F_{M_k}) \subseteq E(K, B, \tau)$$

and ...

Proof

$$\widehat{F_M}(s) = \widehat{\phi}(s/M^{\tau}) \sum_{\substack{q \in \mathbb{Z}^d \\ M/2 < |q| \le M}} \sum_{r \in R_q} e(s \cdot r/q) \quad \text{for } s \in \mathbb{Z}^d$$

where $R_q = \text{set}$ of representatives of $\mathcal{O}(K)/\langle q \rangle$. Matrix Games: There is a $L \in \mathbb{Z}$ depending on K and B such that

$$\left|\sum_{r \in R_q} e(s \cdot r/q)\right| \quad \left\{ \begin{array}{ll} \leq N(\langle q \rangle) & \text{if } q \text{ divides } Ls \\ = 0 & \text{otherwise} \end{array} \right.$$

Problem: Need bound on number of divisors q of Ls such that $|q| \leq M$. Solution: Unique factorization of ideals in $\mathcal{O}(K)$, Dirichlet's unit theorem.

$$|\widehat{F_M}(\xi)|^2 \le C|\xi|^{-2d/\tau} \exp\left(\frac{\log|\xi|}{\log\log|\xi|}\right) (\log M)^C$$

An induction argument gives

$$|\widehat{\mu}(\xi)|^2 \le |\xi|^{-2d/\tau} \exp\left(\frac{C \log|\xi|}{\log \log|\xi|}\right)$$

What Else?

A Sample of Related Problems:

- \bullet Exact Fourier Dimension of $E(m,n,\tau)$
- Restricted Diophantine Approximation
- Fourier Restriction

For infinite $Q \subseteq \mathbb{Z}$, define $E(\tau, Q) = \left\{ x \in \mathbb{R} : \left| x - \frac{r}{q} \right| \le \frac{1}{|q|^{\tau}} \text{ for infinitely many } (q, r) \in Q \times \mathbb{Z} \right\}$ and $w(Q) = \inf \{ u \ge 0 : \sum |u|^{-\nu} < u \}$

$$\nu(Q) = \inf\{\nu \ge 0 : \sum_{q \in Q} |q|^{-\nu} < \infty\}$$

Theorem (Borosh-Fraenkel (1972))

If
$$au > 2$$
, then ${\sf dim}_H E(au,Q) = rac{1+
u(Q)}{ au}$.

For infinite $Q \subseteq \mathbb{Z}$, define $E(\tau, Q) = \left\{ x \in \mathbb{R} : \left| x - \frac{r}{q} \right| \le \frac{1}{|q|^{\tau}} \text{ for infinitely many } (q, r) \in Q \times \mathbb{Z} \right\}$ and $w(Q) = \inf \{ u \ge 0 : \sum |u|^{-\nu} < u \}$

$$\nu(Q) = \inf\{\nu \ge 0 : \sum_{q \in Q} |q|^{-\nu} < \infty\}$$

Theorem (Borosh-Fraenkel (1972))

If
$$au > 2$$
, then ${\sf dim}_H E(au,Q) = rac{1+
u(Q)}{ au}$.

For infinite $Q \subseteq \mathbb{Z}$, define $E(\tau, Q) = \left\{ x \in \mathbb{R} : \left| x - \frac{r}{q} \right| \le \frac{1}{|q|^{\tau}} \text{ for infinitely many } (q, r) \in Q \times \mathbb{Z} \right\}$ and

$$\nu(Q) = \inf\{\nu \ge 0 : \sum_{q \in Q} |q|^{-\nu} < \infty\}$$

Theorem (Borosh-Fraenkel (1972))

If
$$au > 2$$
, then $\dim_H E(au, Q) = rac{1+
u(Q)}{ au}$.

Theorem (Hambrook (2015))

If
$$\tau > 2$$
, then $\dim_F E(\tau, Q) \ge \frac{2\nu(Q)}{\tau}$. In particular, if $\nu(Q) = 1$ (eg. $Q = primes$), then $E(\tau, Q)$ is Salem.

Theorem (Hambrook (2015))

If $\tau > 2$, then $\dim_F E(\tau, Q) \ge \frac{2\nu(Q)}{\tau}$. In particular, if $\nu(Q) = 1$ (eg. Q = primes), then $E(\tau, Q)$ is Salem.

Problem

Increase lower bound when

$$\nu(Q) = \inf\{\nu \ge 0 : \sum_{q \in Q} |q|^{-\nu} < \infty\} < 1?.$$

For example, when Q = squares and $\nu(Q) = 1/2$.

Restricted Denominators and Numerators

For infinite $Q, R \subseteq \mathbb{Z}$, define $E(\tau, Q, R) = \left\{ x \in \mathbb{R} : \left| x - \frac{r}{q} \right| \le \frac{1}{|q|^{\tau}} \text{ for infinitely many } (q, r) \in Q \times R \right\}$

Theorem (Harman (1988))

If $\tau > 2$ and Q = R = primes, then $\dim_H E(\tau, Q, R) = \frac{2}{\tau}$.

Problem

If
$$\tau > 2$$
 and $Q = R =$ primes, then $\dim_F E(\tau, Q, R) = \frac{2}{\tau}$?

Restricted Denominators and Numerators

Problem

If
$$au > 2$$
 and $Q = R =$ primes, then $\dim_F E(au, Q, R) = rac{2}{ au}?$

Reduces to ...

Problem

Are there infinitely many integers M such that for every prime q and integer k satisfying $M/2 \leq q \leq M$ and $q \nmid k$ and for every $\epsilon > 0$, we have

$$\left| \sum_{\substack{0 \le r < q \\ r \text{ prime}}} e^{2\pi i k r/q} \right| \le C_{\epsilon} |k|^{\epsilon} M^{\epsilon}?$$

Remark

For primes, this looks unlikely. But maybe there's another approach. Or maybe for another set R.

Fourier Restriction

Fourier Restriction Problem

Given a measure μ on $\mathbb{R}^d,$ determine the exponents $1\leq p\leq 2$ and $q\geq 1$ for which

(R)
$$\left(\int |\widehat{f}(\xi)|^q d\mu(\xi)\right)^{1/q} \le C \left(\int |f(x)|^p dx\right)^{1/p}$$

for all functions f in a dense subspace of $L^p(\lambda)$. In other words, determine when the Fourier transform $f \mapsto \hat{f}$ is a continuous operator from $L^p(\lambda)$ to $L^q(\mu)$.

Applications

- Strichartz estimates in PDE
- Exponential sum estimates in number theory
- Kakeya problem in geometric measure theory
Sharpness

Mockenhaupt-Mitis-Bak-Seeger Restriction Theorem

If dim_H(μ) $\geq \alpha$ and dim_F(μ) $\geq \beta$, then the restriction inequality (R) holds whenever $1 \leq p \leq p_0$ and q = 2, where $p_0 = (4d - 4\alpha + 2\beta)/(4d - 4\alpha + \beta)$.

The range of p is best possible on \mathbb{R}^d (Knapp example) and \mathbb{R} :

Theorem (Hambrook-Łaba (2013))

There is a measure μ on \mathbb{R} that satisfies $\dim_H(\mu) \ge \alpha$ and $\dim_F(\mu) \ge \beta$, but the restriction inequality (R) fails whenever $p > p_0$ and q = 2.

However, as shown by Chen and Seeger and by Łaba and Wang, there are measures μ that satisfy dim_H(μ) $\geq \alpha$ and dim_F(μ) $\geq \beta$ and (R) for some $p > p_0$. The constructions are **random**.

Problem

Are there explicit (i.e., non-random) measures μ that satisfy $\dim_H(\mu) \ge \alpha$ and $\dim_F(\mu) \ge \beta$ and (R) for some $p > p_0$? In particular, is there such a measure on $E(\tau)$?

The End

Thank You for Your Attention

Any Questions?