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Hausdorff Dimension

Let A C R? be Borel set. Let a > 0.

R = Rectangle = [T%_, [as, bi], Vol(R) = [T, (b — as).
Lebesgue measure:

A(A) = inf {iVol(Rn) A C O Rn}
n=1 n=1

a-Hausdorff measure:

oo o0
*(A) = lim inf Vol(R,))* : A C R,, diam(R,) <6
H(4) = Jim in {Q o))" A€ U R ciam(Rr) < }
H(A)
0o Hausdorff Dimension:

dimg(A) = ap = the number «
where H*(A) jumps from 0 to co
= sup{a: H*(A) > 0}




Hausdorff Dimension Agrees With Intuition

Point: Hausdorff Dimension = 0 Line: Hausdorff Dimension = 1

Plane: Hausdorff Dimension = 2 Sphere: Hausdorff Dimension = 2
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Hausdorff Dimension of Fractals: Middle-1/3 Cantor Set

0 /3 2/3 |

<— Cantor Set

Lebesgue Measure = “Length” =0
log 2
Hausdorff Dimension = ;)i =0.6309...
0g

3k+0 3k+1 3k+2 3k+3
n=1




More Fractals

log 3

Figure: Sierpinski Triangle (dimg = 10g2), graph of Brownian motion

dimy = 2), and surface of Romanesco broccoli (“dimy” ~ 1.26
2
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Hausdorff Dimension in Terms of Energy Integral

Theorem (Frostman)
dimg (A) = sup {a : 3p € M(A) s.t. Io(p) < oo}

Definition (Energy Integral of p)

wi= [ [l =yl duto)dnty)

Definition
M(A) is the set of all non-zero finite Borel measures on R? with
supp(p) C A.

Definition
supp(p) is the smallest closed set C' with u(R?\ C) = 0.




Fourier Transform of a Measure

Definition

If f:R? — R, the Fourier transform of f is

f(§ = /Rd e 2mET f(1)dx  for £ € RY.

Definition

If 11 is a measure on RY, the Fourier transform of j is

(€)= [ e dula) for € € RS




Hausdorff Dimension in Terms of Fourier Transform

Theorem (Frostman)
dimg(A) = sup {a: Ju € M(A) s.t. In(p) < oo}

Definition (Energy Integral of 1)

In() = / & -y dpu(x)dp(y) = C / Al a




Hausdorff Dimension in Terms of Fourier Transform

Theorem (Frostman)

dimg(A) = sup {a: Ju € M(A) s.t. In(p) < oo}

Definition (Energy Integral of 1)

W= [[ o=yl dut@ants) = ¢ [ la@)Pleas

Proof of Second Equality.

By Parseval and the convolution theorem for Fourier transforms,

L(y) = / 70 ) () i) = / (T w) () Fe)de

= [ 7 A = € [ aPigag




Hausdorff Dimension in Terms of Fourier Transform

Theorem (Frostman)
dimg (A) = sup {a : 3p € M(A) s.t. Io(p) < oo}

Definition (Energy Integral of )

/ & — g~ du(z)du(y) = C / Al e
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Hausdorff Dimension in Terms of Fourier Transform

Theorem (Frostman)

dimg (A) = sup {a : 3p € M(A) s.t. Io(p) < oo}

Definition (Energy Integral of )

= [[ 1= sl du@auts) =€ [ ) Pleag

Remark

I,(u) < oo is about the decay of [i(&) at oo.

Remark

If 1 € M(A) decays like |(£)1? < |€]77, then 8 < dimg(A).




Hausdorff Dimension and Fourier Dimension

Theorem (Hausdorff Dimension)
dimg(A) = sup {a €10,d] : 3p € M(A) s.t. /]ﬁ(£)|2\§|a_dd§ < oo} }




Hausdorff Dimension and Fourier Dimension

Theorem (Hausdorff Dimension)

dimg(A) = sup {a €10,d] : 3p € M(A) s.t. /]ﬁ(£)|2|§|a_dd§ < oo}

v

Definition (Fourier Dimension)

dimpr(4) = sup { 8 € [0.d] : Ju € M(A) sit. [AOP < I¢[7°




Hausdorff Dimension and Fourier Dimension

Theorem (Hausdorff Dimension)

dimg (A) = sup {a €10,d] : 3p € M(A) s.t. /]ﬁ(£)|2|§|°‘_dd§ < oo}

Definition (Fourier Dimension)

dimpr(A) = sup {8 € [0,d] : 3u € M(A) st. [A() S [¢] "}

Theorem

dimFA < dimHA.




Hausdorff Dimension vs Fourier Dimension

Fourier dimension depends on the ambient space, while Hausdorff
dimension does not.

Example

L

e If we view L as an interval in R, then

dimpL =dimgL = 1.

o If we view L as a line segment in R?, then

dimpL =0 and dimgL=1.




Hausdorff Dimension vs Fourier Dimension

Examples
e If Ais a k-dimensional plane in R? with k < d, then
dmpA=0 and dimgA=%.
e If A C (d— 1)-dimensional plane in RY, then
dimpA=0 and dimyAe€[0,d—1]




Hausdorff Dimension vs Fourier Dimension

Examples
e If Ais a k-dimensional plane in R? with k < d, then
dmpA=0 and dimgA=%.
e If A C (d— 1)-dimensional plane in RY, then
dimpA=0 and dimyAe€[0,d—1]

Proof.
If AC {xERdzx-&):c}, and u € M(A), then

i(néy) = /A ¢~ 2N ) () = ¢~2TIC () £,

which does not go to zero as £ = néy — 0.




Hausdorff Dimension vs Fourier Dimension

Examples

e If Cy/3 = middle-1/3 Cantor set in R, then

log 2
log 3

dimF01/3 =0 and dImH01/3 =

e If C5 = middle-§ Cantor set in R, then
dimpCs < dimpgCs  for all § € (0,1)

and
0 < dimpCjs for almost every 6 € (0,1)

e If dimpCjs > 0, then 2/(1 — §) is not a Pisot number (i.e., an algebraic
integer whose conjugates are strictly less than 1 in absolute value).

o If dimpA > 0, then A generates R? as an additive group.




Salem Sets

Theorem

dimFA < dimHA.

Definition
A set Borel set A C R? is called a Salem set if

Examples

e For some non-Salem sets, see the previous slide.

e Point = Salem set of dimension 0

e Sphere = Salem set of dimension d — 1

e Ball = Salem set of dimension d

e Salem sets of dimensions o # 0,d — 1, d are harder to find.
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Remarks

e Salem’'s Construction: Random Cantor sets

e Kahane's Construction: Images of Brownian motion

e There are many other random constructions (e.g., by Kahane, Shapiro,
Bluhm, taba and Pramanik, Chen and Seeger).




Salem Sets of Every Dimension

Theorem (Salem (1951))

For every o € (0, 1), there exists a Salem set A C R with dimension «.

Theorem (Kahane (1966))

For every a € (0,d), there exists a Salem set A C RY with dimension c.

Remarks

e Salem’'s Construction: Random Cantor sets

e Kahane's Construction: Images of Brownian motion

e There are many other random constructions (e.g., by Kahane, Shapiro,
Bluhm, taba and Pramanik, Chen and Seeger).

Problem (Kahane (1966))

Can we find explicit (i.e., non-random) Salem sets in R? of every
dimension?




Explicit Salem Sets in R
Definition (Set of 7-Well-Approximable Numbers)

E(T):{:ce]R:

r
w__
q
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Explicit Salem Sets in R

Definition (Set of 7-Well-Approximable Numbers)

E(T):{:ce]R:

r
m__
q

< |q|”7 for co-many (q,r) € Z X Z}

Example

Given x =, find (¢,7) € Z x Z such that

r _
z— = <lq?
q
Takmg 311401559 = 3.14159 doesn't work:
314159
w1 =|r - 2222 = 0.0000026535. .. > 10710 = |g| 2
q 105




Explicit Salem Sets in R

Definition (Set of 7-Well-Approximable Numbers)

E(T):{SCER:

r
m__
q

< |q|”7 for co-many (q,r) € Z X Z}

Example

Given x =, find (¢,7) € Z x Z such that

T _
x——]s|q|2

q
Takmg 311401559 = 3.14159 doesn't work:
314159
z— 1= |r = 222220 0.0000026535 ... > 10710 =
q 10°

But the simpler rational g = % = 3.142857 does:

T 22

:E__
q

=0.0012644 ... < 772 = |¢| 2

= |q|7?




Explicit Salem Sets in R
Definition (Set of 7-Well-Approximable Numbers)

E(T):{xe]R:

r
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< |q|”7 for co-many (q,r) € Z X Z}

Theorem (Dirichlet (1834))
E(1) =R when 1 < 2.
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Explicit Salem Sets in R
Definition (Set of 7-Well-Approximable Numbers)

T
xr — —

E(T):{:ce]R:

< |q|”7 for co-many (q,r) € Z X Z}

Theorem (Dirichlet (1834))
E(1) =R when 1 < 2.

Theorem (Jarnik-Besicovitch (1929-1932))
E(7) has Hausdorff dimension 2/T when T > 2.

Theorem (Kaufman (1981))

E(7) is a Salem set of dimension 2/T when T > 2.




Explicit Salem Sets in R%: d > 17

Definition

Frot(7) = {z € R? s 2] € B(7) }
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Definition

Frot(7) = {z € R? s 2] € B(7) }

Theorem (Bluhm (1996))

2
E,ot(T) is a Salem set with dimension d — 1 + — for every T > 2.
T




Explicit Salem Sets in R%: d > 17

Definition

Eot(r) = {x eR?: |z| e E(T)}

Theorem (Bluhm (1996))

2
E,ot(T) is a Salem set with dimension d — 1 + — for every T > 2.
T

Remarks

e Gives explicit Salem sets in R? of every dimension a € (d — 1,d).
e Leaves a € (0,d — 1).
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Explicit Salem Sets in R%: d > 17

In number theory, the natural multi-dimensional version of E(7) is:

Definition
E(m,n,7)={z € R™: |zq —r| < lg| ™" for co-many (q,7) € Z" x zm}

Here x € R™" is viewed as an m X n matrix and | - | is the max norm.

This is about simultaneous Diophantine approximation of linear forms, i.e.,
having good approximate integer solutions of several linear forms at once:

|z11q1 + T12G2 + -+ -+ T1ngn — 11| < g7

|zo1q1 + T22q2 + -+ - + Tongn — 12| < |g|TT

|96m1Q1 + Tmaq2 + - + TypnGn — rm| < |q,7T+1



Explicit Salem Sets in R%: d > 17

In number theory, the natural multi-dimensional version of E(7) is:

Definition

E(m,n,7)={x € R™: |zqg —r| < |q| """ for co-many (q,7) € Z" x Z™}

Here z € R™" is viewed as an m X n matrix and | - | is the max norm.

Theorem (Bovey-Dodson (1986))

+n

dimgE(m,n,7) =m(n —1)+ m

n
for every T > 1+ —
m

v
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v

Theorem (Bovey-Dodson (1986))
+n

dimgE(m,n,7) = m(n—1) + m for every T > 1+ %

Theorem (Hambrook (2015))

2
dimpE(m,n,7) > L for every T > 1+ %
T




Explicit Salem Sets in R%: d > 17

In number theory, the natural multi-dimensional version of E(7) is:
Definition
E(m,n,7)={x € R™: |zqg —r| < |q| """ for co-many (q,7) € Z" x Z™}

Here z € R™" is viewed as an m X n matrix and | - | is the max norm.

v

Theorem (Bovey-Dodson (1986))

dimgE(m,n,7) =m(n —1)+ mtn

n
for every T > 1+ —
m

Theorem (Hambrook (2015))

2
dimpE(m,n,7) > L for every T > 1+ %
T

But we don't know whether E(m,n, ) is Salem because

2
m(n_1)+m+n>_n

T T



Explicit Salem Sets in R%: d = 2

Definition

E(C,7) = {a: eR?:

x — t‘ < |q|™" for co-many (q,r) € Z* x Zz}
q

Here r/q is interpreted via the identification R? ~ C.




Explicit Salem Sets in R%: d = 2

Definition

E(C,7) = {x eR?:

x — f‘ < |q|™" for co-many (q,r) € Z* x Zz}
q

Here r/q is interpreted via the identification R? ~ C.

Theorem (Hambrook (2017))

E(C,7) is a Salem set with dimension 4/T for every T > 2.




Explicit Salem Sets in R%: d = 2

Definition

E(C,1) = {l‘ €ER?: |z — f‘ < |q|™" for co-many (q,r) € Z* x Zz}
q

Here r/q is interpreted via the identification R? ~ C.

Theorem (Hambrook (2017))

E(C,7) is a Salem set with dimension 4/T for every T > 2.

Remarks

e Gives Salem sets in R? of every dimension a € (0, 2).
e Resolves Kahane's problem when d = 2.




Explicit Salem Sets in R%: d = 2

Definition

E(C,1) = {.’B €ER?: |z — i‘ < |q|™" for co-many (q,r) € Z* x Zz}
q

Here r/q is interpreted via the identification R? ~ C.

Theorem (Hambrook (2017))
E(C,7) is a Salem set with dimension 4/T for every T > 2.

Remarks

e Gives Salem sets in R? of every dimension a € (0, 2).
e Resolves Kahane's problem when d = 2.

Remarks on Proof
Kaufman's proof applies almost verbatim. The hard part was coming up
with the set E(C, 1) where Kaufman's proof would work.




Explicit Salem Sets in R%: d = 47

Since R? ~ C worked, it is natural to try

R* ~ H (= the set of quaternions)
(a,byc,d) =a+bi+cj+ dk
==k =ijk=—1

Definition

E(H,7) = {w eR:

x — f‘ < |g|™ for co-many (q,7) € Z* x Z4}
q

v
Remarks

The proof that E(H, 7) is Salem fails because there is no good divisor
bound for the quaternions.




Explicit Salem Sets in R%: All d
Definition

E(K,B,T) = {a: eR?:

x — T‘ < |q|™" for co-many (q,r) € Z% x Zd}
q

K = degree d field extension of Q (i.e., a number field)
O(K) = ring of integers of K
B = {wi,...,wq} = integral basis for K
Ql~K, 72¢~0(K), RY~Rw+ -+ Ruwy
(q1,---,qa) = quw1 + -+ + qawa
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E(K,B,T) is a Salem set with dimension 2d/T for every T > 2.




Explicit Salem Sets in R%: All d
Definition

E(K,B,T) = {a: eR?:

x — f’ < |q|™" for co-many (q,r) € Z% x Zd}
q

K = degree d field extension of Q (i.e., a number field)
O(K) = ring of integers of K
B = {wi,...,wq} = integral basis for K
Ql~K, 72¢~0(K), RY~Rw+ -+ Ruwy
(q1,---+qa) = quw1 + -+ + qawa

Theorem (Fraser, Hambrook (2019))
E(K,B,T) is a Salem set with dimension 2d/T for every T > 2.

Remarks

e Gives Salem sets in R of every dimension o € (0, d).
e Completely resolves Kahane's problem.




Explicit Salem Sets in R%: All d

Theorem (Fraser, Hambrook (2019))
E(K, B, ) is a Salem set with dimension 2d/T for every T > 2.

Remarks on Proof

The proofs for E(7) and E(C, 7) rely on features of R and C that don't
generalize easily to number fields K:
e Divisor bounds in Z and Z?* ~ Z[i] (which come from unique
factorization and finiteness of the unit group)
e Transpose of matrix for z € C is matrix for T.
e For ¢ = a+ib € Z[i], N({q)) = a® + b = |q|.




Explicit Salem Sets in R%: All d

Theorem (Fraser, Hambrook (2019))
E(K, B, ) is a Salem set with dimension 2d/T for every T > 2.

Remarks on Proof
To overcome these obstacles, we:
e Use unique factorization of ideals in O(K) and Dirichlet's unit group
theorem to obtain an appropriate divisor bound.
e Rediscover an algebra theorem: Transpose of matrix for ¢ € K is
matrix for ¢ in a different basis.
e Use pigeonholing argument to eliminate dependence on comparability
of algebraic norm N({(g)) and geometric norm |q|.




Proof

Want:
dimpE(K, B,7) = dimyE(K, B, 7) = 2d/r
e dimpE(K,B,7) < dimgE(K, B, ) by definition of Fourier dimension.

e dimyFE(K,B,7) < 2d/7 by standard covering argument, which comes
from writing

E(K,B,7) = {:1: eR?:

x — r' < |q|™" for co-many (q,r) € Z% x Zd}
q

ﬂ U U Blr/ald™)

=1|q|>N rezd

e 2d/7 < dimpE(K, B, T) proved by constructing a measure ...



Proof

n = W—liInF]\/[kF]Mk_1 e FMld.%'
k—o00
My < My < ... — oo rapidly

FM(SU) = Z Z qu(SU—T/C])

qezd  rezd

normalized bump on B(r/q, M~7)
Mlgl<m

Here ¢.(z) = e %p(x/e), ¢ = M™, and ¢ is positive, smooth, L'-
normalized, and supported in B(0,1). Then

supp(u) C ﬂ supp(Fr,) € E(K, B, 1)
k=1

and ...



Proof
Fu(s)=o(s/M7) Y N e(s-r/q) forsez!

q€Z reRy
M/2<|q|<M

where R, = set of representatives of O(K)/(q).
Matrix Games: There is a L € Z depending on K and B such that

=0 otherwise

Z e(s-r/q) { < N({q)) if q divides Ls

reRy

Problem: Need bound on number of divisors g of Ls such that |¢| < M.
Solution: Unique factorization of ideals in O(K), Dirichlet’s unit theorem.

_ I
Far(©) < Clel " exp (1g1g§g\> (log M)°

An induction argument gives

~ - C'log [¢]
2 2d/T L o8ls]
(&) < [€[7"T exp (1oglog|§|>



What Else?

A Sample of Related Problems:
e Exact Fourier Dimension of E(m,n,T)
o Restricted Diophantine Approximation

e Fourier Restriction



Restricted Denominators

For infinite ) C Z, define

E(1,Q) = {xeR:

and

1 ..
z— " < ’T for infinitely many (q,r) € @ % Z}
q q"

v(Q)=inf{r>0: Z lq| ™" < oo}
q€Q

Theorem (Borosh-Fraenkel (1972))

If T > 2, then dmygE(1,Q) = LV(Q)

T
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For infinite ) C Z, define

E(1,Q) = {xeR:

and

1 ..
z— " < ’T for infinitely many (q,r) € @ % Z}
q q"

v(Q)=inf{r>0: Z lq| ™" < oo}
q€Q

Theorem (Borosh-Fraenkel (1972))

If T > 2, then dmygE(1,Q) = LV(Q)

T




Restricted Denominators

For infinite ) C Z, define

E(1,Q) = {xeR:

and

r
€r — —

1
< —— for infinitely many (¢,7) € @ X Z}

g7
v(Q)=inf{vr>0: Z lg| ™" < oo}
9€Q

Theorem (Borosh-Fraenkel (1972))

If> 2, then dimy B(r, Q) = @)

T

Theorem (Hambrook (2015))

2
If T > 2, then dimpE(1,Q) > M In particular, if v(Q) =1 (eg. Q =
T
primes), then E(T,Q) is Salem.

v




Restricted Denominators

Theorem (Hambrook (2015))

2
If 7> 2, then dimpE(1,Q) > ﬂ In particular, if v(Q) =1 (eg. Q =
T
primes), then E(7,Q) is Salem.

Problem
Increase lower bound when
v(Q) =inf{r >0: Z lg| ™" < oo} < 17.
q€Q
For example, when @@ = squares and v(Q) = 1/2.




Restricted Denominators and Numerators

For infinite Q, R C Z, define

E(r,Q,R) = {l‘ER:

r
xr — —

1
< W for infinitely many (¢,r) € @ % R}
q T

Theorem (Harman (1988))

2
If 7> 2 and Q = R = primes, then dimyE(1,Q,R) = —.
T

Problem

2
If 7> 2and Q = R = primes, then dimpE(7,Q, R) = ;?




Restricted Denominators and Numerators

Problem

2
If 7> 2 and Q = R = primes, then dimpE(7,Q, R) = ;?

Reduces to...
Problem

Are there infinitely many integers M such that for every prime ¢ and
integer k satisfying M /2 < ¢ < M and ¢ 1 k and for every ¢ > 0, we have

Z 627m'lm"/q Scﬁ|k|€Me?

0<r<gq
T prime

Remark

For primes, this looks unlikely. But maybe there's another approach. Or
maybe for another set R.




Fourier Restriction

Fourier Restriction Problem

Given a measure 1 on R, determine the exponents 1 < p < 2 and ¢ > 1
for which

(R) ([17@raue) e (/ If(w)l”dw>1/p

for all functions f in a dense subspace of LP(\). In other words, determine
when the Fourier transform f +— f is a continuous operator from LP()) to
L(p).

v

Applications
@ Strichartz estimates in PDE
@ Exponential sum estimates in number theory

o Kakeya problem in geometric measure theory




Sharpness

Mockenhaupt-Mitis-Bak-Seeger Restriction Theorem

If dimg () > o and dimp (i) > 3, then the restriction inequality (R)
holds whenever 1 < p < pg and ¢ = 2, where
po = (4d — 4o+ 23)/(4d — 4o + ).

The range of p is best possible on R? (Knapp example) and R:

Theorem (Hambrook-taba (2013))

There is a measure p on R that satisfies dimg () > « and dimp(u) > S,
but the restriction inequality (R) fails whenever p > py and q = 2.

However, as shown by Chen and Seeger and by taba and Wang, there are
measures p that satisfy dimg(u) > « and dimp(u) > 8 and (R) for some
p > pg. The constructions are random.

Problem

Are there explicit (i.e., non-random) measures . that satisfy dimg () > «
and dimp(p) > B and (R) for some p > po? In particular, is there such a
measure on E(71)?



The End

Thank You for Your Attention

Any Questions?
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