Chapter 7: Systems of Linear Differential Equations

Philip Gressman

University of Pennsylvania
Definition

Every vector function (with values in \mathbb{R}^n) which is k-times continuously differentiable on an interval I is said to belong to $C^k(I, \mathbb{R}^n)$.

Basic Fact

The space $C^k(I, \mathbb{R}^n)$ is a vector space over the reals under pointwise addition and scalar multiplication. This vector space is infinite-dimensional.

Important Transformations

Differentiation maps $C^k(I, \mathbb{R}^n)$ to $C^{k-1}(I, \mathbb{R}^n)$ for $k > 0$ and maps $C^\infty(I, \mathbb{R}^n)$ to itself. If $A(t)$ is a k-times differentiable matrix-valued function, then multiplication by A on the left also maps $C^k(I, \mathbb{R}^n)$ to itself.
Linear Independence

Definition

Vector functions \(x_1, \ldots, x_\ell \) are, as always, called **linearly independent** when there are no constants \(c_1, \ldots, c_\ell \) for which

\[
c_1 x_1 + \cdots + c_\ell x_\ell = 0
\]

except \(c_1 = \cdots = c_\ell = 0 \).

IMPORTANT: Remember that when we say that a vector function equals zero, that means it equals the old-fashioned zero vector at every single point.

Linear **dependence** is hard: if \(x_1, \ldots, x_\ell \) are linearly independent at even a single point, then as vector functions they are linearly independent. The converse is not true: they might even be linearly dependent at every point and still be linearly independent as vector functions.
We say that time-dependent vectors $\vec{X}_1, \ldots, \vec{X}_n$ are linearly independent on an interval I when the only constants c_1, \ldots, c_n such that

$$c_1 \vec{X}_1(t) + c_2 \vec{X}_2(t) + \cdots + c_n \vec{X}_n(t) \equiv 0$$

on the entire interval are all zeros.

Ind: $\begin{bmatrix} 1 \\ t \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} \sin t \\ \cos t \end{bmatrix}$

Dep: $\begin{bmatrix} \sin^2 t \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 + t \end{bmatrix}, \begin{bmatrix} \cos^2 t \\ t \end{bmatrix}$

Ind: $\begin{bmatrix} 0 \\ t \end{bmatrix}, \begin{bmatrix} 0 \\ t^2 \end{bmatrix}$.
The Wronskian

Given time-dependent column vectors $\vec{X}_1, \ldots, \vec{X}_n$ each of length n, we form the Wronskian to be the determinant of the matrix whose columns are exactly $\vec{X}_1, \ldots, \vec{X}_n$, i.e.,

$$W(\vec{X}_1, \ldots, \vec{X}_n) = \det(\vec{X}_1, \ldots, \vec{X}_n).$$

FACT: If the Wronskian is nonzero even at a single point, then $\vec{X}_1, \ldots, \vec{X}_n$ must be linearly independent. In fact, they might even be linearly independent when the Wronskian is always zero, but for solutions to first-order systems of ODEs this pathology does not happen.
A first-order linear system may be written in the form

$$\frac{d}{dt} \vec{X} = A(t)\vec{X} + \vec{G}(t).$$

Here A is an $n \times n$ matrix whose entries may or may not depend on t. $\vec{G}(t)$ is a column vector of length n which is fully described in the problem itself, and $\vec{X}(t)$ is an unknown column vector of length n whose entries may depend on t.

The general solution is a complete listing of all solution vectors.

This is the specific solution for which $X(0)$ is prescribed.
• Higher-order systems of ODEs can always be recast as a system of first-order ODEs with more unknown functions.

• Systems of ODEs can always be solved by elimination; this is, however, a labor-intensive way to do it since unknown constants will be related and you’ll have to do a lot of linear equation solving.
Homogeneous Equations

Definition

The equation $\frac{d}{dt} \vec{X} = A(t) \vec{X}$ is called **homogeneous**. If your equation is given as $\frac{d}{dt} \vec{X} = A(t) \vec{X} + \vec{G}(t)$ for some nonzero $\vec{G}(t)$, then the equation $\frac{d}{dt} \vec{X} = A(t) \vec{X}$ is called the **associated homogeneous first-order system**.

Superposition Principle

If $\vec{X}_1(t)$ and $\vec{X}_2(t)$ are solutions of the homogeneous ODE $\frac{d}{dt} \vec{X} = A(t) \vec{X}$, then $c_1 \vec{X}_1 + c_2 \vec{X}_2$ will also be a solution. The same can be said for any linear combination of any number of solutions (i.e., more than two solutions).
7.3: Theory of First-order Systems

Theorem: Existence and Uniqueness

The IVP \(x(t_0) = x_0, \ x' = A(t)x(t) + b(t) \) for \(x, b \) vector-valued functions of time and \(A \) a matrix-valued function of time, has a unique \(C^1 \) solution on any interval \(I \) containing \(x_0 \) when \(A \) and \(b \) are continuous.

Consequences

Theorem: When \(x(t) \) is a time-dependent vector in \(\mathbb{R}^n \), the general solution of \(x'(t) = A(t)x(t) \) on any interval is an \(n \)-dimensional vector space.

Theorem: Solutions \(x_1, \ldots, x_n \) are linearly independent if and only if the Wronskian is never zero.

Theorem: If \(x_p \) is any solution to \(x' = Ax + b \), then the general solution to this ODE is given by \(x = x_c + x_p \) where \(x_c \) ranges over all solutions of the associated homogeneous equation.
Finding the general solution of an inhomogeneous system is only slightly more difficult than solving a homogeneous one.

1. You must first find some solution \vec{X}_p. It is called a particular solution.

2. The general solution of the inhomogeneous system will always be of the form

$$\vec{X} = c_1 \vec{X}_1 + \cdots + c_n \vec{X}_n + \vec{X}_p$$

Where $\vec{X}_1, \ldots, \vec{X}_n$ are a fundamental set of solutions (i.e., a complete set) for the associated homogeneous system.
We consider a system of ODEs with the form

\[
\frac{d}{dt} \vec{X} = A\vec{X}
\]

where \(\vec{X} \) is a column vector of length \(n \) and \(A \) is an \(n \times n \) matrix with constant entries. We begin by looking for very simple solutions, then use the superposition principle to describe the more complicated ones.

The Simplest Case

An example of a very simple solution is one whose direction does not change (only the magnitude). It would be expressible in the form

\[
\vec{X}(t) = f(t)\vec{E}
\]

where \(\vec{E} \) is a constant vector and \(f \) is some unknown function of \(t \).
When you assume that a solution has some special form, it is known as an *ansatz*. It’s a completely reasonable question to ask and mathematically rigorous because you might end up learning that no such solutions exist. For us, we plug our ansatz

$$\vec{X}(t) = f(t)\vec{E}$$

into the equation and get

$$f'(t)\vec{E} = f(t)A\vec{E} \Rightarrow A\vec{E} = \frac{f'(t)}{f(t)}\vec{E}.$$

If the equation must be true at all times, then $\frac{f'(t)}{f(t)}$ must be constant. Call the constant λ. We arrive at the eigenvector equation...
If \vec{E} is an eigenvector of A with eigenvalue λ, then

$$\vec{X}(t) = Ce^{\lambda t} \vec{E}$$

solves the first-order system

$$\frac{d}{dt} \vec{X} = A \vec{X}.$$

Moreover, linearly independent eigenvectors give linearly independent solutions of the system.

If A is $n \times n$ and has n linearly independent eigenvectors $\vec{E}_1, \ldots, \vec{E}_n$ with eigenvalues $\lambda_1, \ldots, \lambda_n$, then the general solution of the system will be

$$\vec{X}(t) = C_1 e^{\lambda_1 t} \vec{E}_1 + \cdots + C_n e^{\lambda_n t} \vec{E}_n.$$
Complex Eigenvalues

If A is a real matrix with complex eigenvalue $\lambda = \alpha + i\beta$ and eigenvector $\vec{E} = \vec{E}_{re} + i\vec{E}_{im}$, then

$$\vec{X}(t) = e^{\alpha t + i\beta t}(\vec{E}_{re} + i\vec{E}_{im})$$

will be a solution. This can only happen if the real parts and imaginary parts are each solutions by themselves. We conclude

$$\vec{X}_{re}(t) = e^{\alpha t}(\cos \beta t)\vec{E}_{re} - e^{\alpha t}(\sin \beta t)\vec{E}_{im}$$
$$\vec{X}_{im}(t) = e^{\alpha t}(\sin \beta t)\vec{E}_{re} + e^{\alpha t}(\cos \beta t)\vec{E}_{im}$$

are linearly independent real solutions of the system of ODEs.
“Missing” Eigenvectors

If A does not have n eigenvectors, the ansatz gives only a partial answer and we end up missing some solutions. We fix this by making a better ansatz (with increasing complexity depending on how bad the situation is). For example:

New Ansatz

$$\vec{X}(t) = e^{\lambda t} \vec{E}_2 + t e^{\lambda t} \vec{E}.$$

Plug it into $\frac{d}{dt} \vec{X} = A \vec{X}$, and we get

$$e^{\lambda t} \left(\lambda \vec{E}_2 + (1 + \lambda t) \vec{E} \right) = e^{\lambda t} \left(A \vec{E}_2 + t A \vec{E} \right).$$

We must have $A \vec{E} = \lambda \vec{E}$ and $(A - \lambda I) \vec{E}_2 = \vec{E}$.

We must take \vec{E} to be an eigenvector, but \vec{E}_2 satisfies a different equality and is called a *generalized eigenvector*.
“Missing” Eigenvectors in General

General Ansatz

\[
\vec{X}(t) = e^{\lambda t} \left[\frac{t^n}{n!} \vec{E}_n + \cdots + t \vec{E}_1 + \vec{E}_0 \right]
\]

Generalized Eigenvectors

The general ansatz will solve the system when

\[
(A - \lambda I) \vec{E}_n = 0,
\]

\[
(A - \lambda I) \vec{E}_{n-1} = \vec{E}_n,
\]

\[
\vdots
\]

\[
(A - \lambda I) \vec{E}_0 = \vec{E}_1.
\]
Given the first-order system

$$\frac{d}{dt} \vec{X} = A \vec{X}$$

one useful technique you should be able to use is solution by diagonalization. Here the idea is like substitution: you assume $\vec{X} = P \vec{Y}$ for some matrix P and then try to solve for Y instead of X:

$$\frac{d}{dt} P \vec{Y} = A(P \vec{Y}) \Rightarrow \frac{d}{dt} \vec{Y} = (P^{-1}AP) \vec{Y}.$$

So if A is diagonalizable, you can do the following:

1. Solve the system

$$\frac{d}{dt} \vec{Y} = D \vec{Y}$$

where D is the diagonalization of A.

2. To solve the original system, simply set $\vec{X} = P \vec{Y}$.
Matrix exponentiation

\[e^{At} := I + tA + \frac{t^2}{2} A^2 + \frac{t^3}{3!} A^3 + \cdots \]

Solution of the IVP

There is exactly one solution to the IVP

\[\frac{d}{dt} \vec{X}(t) = A \vec{X}(t), \quad \vec{X}(0) = \vec{V} \]

and it equals \(\vec{X}(t) = e^{At} \vec{V} \).

There are several tricks that you might use to carry out the infinite sum and write down a simple formula that equals \(e^{At} \).
1 Use diagonalization to find a pattern for the powers A, A^2, A^3, A^4, \ldots. The exponential of a diagonal matrix is simply the exponential of each of the diagonal entries.

2 Solve it like a system of equations: You can write $e^{At} = b_0(t)I + b_1(t)A + \cdots + b_{n-1}(t)A^{n-1}$ for unknown functions b_0, \ldots, b_{n-1}. Often you can solve for these functions using the fact that

$$e^{\lambda t} = b_0(t) + b_1(t)\lambda + \cdots + b_{n-1}(t)\lambda^{n-1}$$

for each of the eigenvalues λ (note that you will be able to solve when you have n distinct eigenvalues).

3 For 2×2: if there is only one eigenvalue and only one eigenvector, then the matrix exponential will take the form

$$e^{At} = e^{\lambda t} [I + t(A - \lambda I)].$$
A phase portrait is a simultaneous plotting of several solutions of an ODE. The axes are the coordinates of the vector and the time variable is suppressed.

Two Eigenvals. < 0 Two Eigenvals. > 0 Mixed Signs

Pictures from Paul’s Online Math Notes
Phase Portraits for Complex Eigenvalues

When eigenvalue $\lambda = \alpha + i\beta$:

- $\alpha < 0$
- $\alpha = 0$
- $\alpha > 0$

Pictures from Paul’s Online Math Notes
Phase Portraits for “Missing” Eigenvectors

$\lambda < 0$ \hspace{2cm} $\lambda > 0$

Pictures from Paul’s Online Math Notes
Inhomogeneous Systems/Undetermined Coefficients

Just like for single inhomogeneous ODEs, one can often make an educated guess about the form of the particular solution:

\[
\frac{d}{dt} \vec{X} = \begin{bmatrix} 2 & -1 \\ 0 & 3 \end{bmatrix} \vec{X} + \begin{bmatrix} 1 + e^{-t} \\ 2 \end{bmatrix} \Rightarrow \vec{X}_p = \vec{V}_1 + \vec{V}_2 e^{-t}
\]

The structure of the method is still the same:

1. Expand the inhomogeneous terms to look like vectors times constants, exponentials, powers of \(t \), and/or sines and cosines.

2. Use the tables from undetermined coeffs and/or your intuition to guess the form of the particular solution.

3. Instead of multiplying the terms in \(\vec{X}_p \) by unknown constants, multiply by unknown vectors.

4. Try to solve for the unknown vectors. If it doesn’t work, try including more terms in your guess with higher powers of \(t \) attached.