Read Herstein, Chapter 3, sections 3-4.

1. From Herstein, Chapter 3, do these problems:
 a) Section 3.2, page 130: #6, 7, 13 (note that #13 asks for a new proof of p.24, #15).
 b) Section 3.4, page 135: #3, 5-8.

2. Which of the following are ring homomorphisms? For those that are not, why not? For those that are, find the kernel and image.
 i) \(\mathbb{R}[x] \to \mathbb{C}, f(x) \mapsto f(3) \).
 ii) \(\mathbb{R}[x] \to \mathbb{C}, f(x) \mapsto f(2i) \).
 iii) \(\mathbb{C} \to \mathbb{R}, a + bi \mapsto a \) for \(a, b \in \mathbb{R} \).
 iv) \(\mathbb{Q}[\sqrt{2}] \to \mathbb{Q}[\sqrt{3}], a + b\sqrt{2} \mapsto a + b\sqrt{3} \) for \(a, b \in \mathbb{Q} \).
 v) \(\mathbb{Q}[\zeta] \to \mathbb{Q}[\zeta], a + b\zeta \mapsto a + b\zeta^2 \), for \(a, b \in \mathbb{Q} \), where \(\zeta = e^{2\pi i/3} \).
 vi) \(\mathbb{Z}[i] \to \mathbb{Z}/5, a + bi \mapsto a + 2b \), for \(a, b \in \mathbb{Z} \).
 vii) \(\mathbb{C} \to M_2(\mathbb{R}), a + bi \mapsto \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \), for \(a, b \in \mathbb{R} \).

3. Suppose that \(\phi : \mathbb{R} \to \mathbb{R} \) is a homomorphism of rings.
 a) Show that \(\phi(r) = r \) for all \(r \in \mathbb{Z} \).
 b) Do the same for all \(r \in \mathbb{Q} \).
 c) Show that if \(r \geq 0 \) then \(\phi(r) \geq 0 \). [Hint: \(r \geq 0 \iff r = s^2 \) for some \(s \).]
 d) Show that \(\phi \) is an increasing function. [Hint: Part (c).]
 e) Conclude that \(\phi \) is the identity. [Hint: Parts (b) and (d).]

4. Let \(\mathbb{H} \) be the ring of quaternions \(\alpha = a + bi + cj + dk \), with \(a, b, c, d \in \mathbb{R} \). Define the conjugate \(\bar{\alpha} = a - bi - cj - dk \), and the absolute value \(|\alpha| \geq 0 \) by \(|\alpha|^2 = a^2 + b^2 + c^2 + d^2 \).
 a) Show that \(|\alpha|^2 = \alpha \bar{\alpha} \) and that \(\overline{\alpha \beta} = \beta \bar{\alpha} \). Conclude that \(|\alpha \beta| = |\alpha||\beta| \). Also, find all \(\alpha \in \mathbb{H} \) such that \(|\alpha| = 0 \).
 b) Show that \(\mathbb{H} \) does not have any zero-divisors. [Hint: Use part (a).]