Read Artin, Chapter 5, section 9, and Chapter 6, sections 1-6.

From Artin, do these problems:

Section 5.2 (pp.188-189): 15.
Section 5.3 (p.189): 2.
Section 5.4 (pp.189-192): 9, 14.
Section 5.9 (p.195): 7.
Section 6.1 (pp.229-230): 3, 14.
Section 6.4 (pp.230-231): 2, 15.
Section 6.6 (pp.232-233): 2.

Also do the following problems:

1. a) Find all groups of order 35.
 b) Find all groups of order 175.
 c) Find all groups of order 34. [Hint: For which \(n \) is there an element of order \(n \)? For each such \(n \), how many elements can have order \(n \)? If \(g \) has order 17 and \(h \) has order 2, what is \(hgh^{-1} \)?]

2. a) Show that \(\text{Aut}(\mathbb{Z}/n\mathbb{Z}) \approx (\mathbb{Z}/n\mathbb{Z})^\times \), for any positive integer \(n \). [The left hand side refers to automorphisms as a group.]
 b) Let \(G_1 = \mathbb{Z}/3\mathbb{Z} \), and for \(i \geq 1 \) let \(G_{i+1} = \text{Aut}(G_i) \). For every positive integer \(n \) find \(G_n \), and determine which of these are abelian.
 c) Do the same with \(G_1 = \mathbb{Z}/8\mathbb{Z} \).