Math 503 Problem Set #3 Due the week of Jan. 29, 2007, in lab.

Read Artin, Chapter 10, sections 5-8.

Part A:
From Artin, do these problems (given at the end of Chapter 10):
Section 10.5: 2, 4, 6; 10.7: 3, 7, 10 (and relate your answer to the last problem on PS #1).

Part B:
1. Let \(R \) be a commutative ring. Show that if \(R \) is an integral domain then the characteristic of \(R \) is either 0 or prime. Does the converse hold?

2. Let \(R \) be a commutative ring and \(f(x) \in R[x] \) a polynomial of degree \(n > 0 \).
 a) Show that if \(R \) is an integral domain then \(f(x) \) has at most \(n \) roots in \(R \). [Hint: Use induction to show that if \(a_1, \ldots, a_r \in R \) are distinct roots of \(f(x) \), then the product \((x - a_1) \cdots (x - a_r) \) divides \(f(x) \).]
 b) Show by example that the same assertion need not hold if \(R \) is not an integral domain. [Hint: Try \(R = \mathbb{Z}/8[x] \) and \(f(x) = x^2 - c \) for some \(c \in \mathbb{Z}/8 \).] Where does your proof in part (a) break down in this situation?

3. Which of the following ideals are maximal in the indicated rings? For those that are not, find a maximal ideal containing the given ideal. Explain your assertions. [Caution: One of these is tricky.]
 \((x - 3) \subset \mathbb{Q}[x] \); \((x - 3) \subset \mathbb{Z}[x] \); \((x^2 - 3) \subset \mathbb{R}[x] \); \((x^2 + 3) \subset \mathbb{R}[x] \); \((x - 3) \subset \mathbb{C}[x, y] \);
 \((x^2 + 1, y - 3) \subset \mathbb{R}[x, y] \); \((x^2 + 1, y - 3) \subset \mathbb{C}[x, y] \); \((x^2 + 1, y^2 + 1) \subset \mathbb{R}[x, y] \).

Part C:
From Artin, do these problems (at the end of Chapter 10):
Section 10.5: 16; 10.7: 9, 11; Miscellaneous problems: 2.

Also do the following problem:
 a) Show that \(\sqrt{2} \) is irrational.
 b) More generally, show that if \(m \in \mathbb{Z} \) and \(x^2 - m \) has no root in \(\mathbb{Z} \), then \(x^2 - m \) has no root in \(\mathbb{Q} \).
 c) Still more generally, show that if \(a_0, a_1, \ldots, a_{n-1} \in \mathbb{Z} \), and if the polynomial \(f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1 x + a_0 \) has no root in \(\mathbb{Z} \), then it has no root in \(\mathbb{Q} \).
 d) What if, in part (c), the polynomial \(a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \) (for some integers \(a_0, a_1, \ldots, a_n \)) is considered instead?