Math 503 Problem Set #5 Due the week of Feb. 12, 2007, in lab.

Read Artin, Chapter 11, sections 1-3, 5.

Part A:
From Artin, do these problems (given at the end of Chapter 11):
Section 11.1: 1, 15; 11.2: 8 [Hint: Euclidean algorithm]; 11.3: 4, 9; 11.5: 1, 3.

Part B:
1. Let \(p > 2 \) be a prime number and let \(a \in \mathbb{Z} \) be relatively prime to \(p \).
 a) Show that \(a^{(p-1)/2} \equiv \pm 1 \pmod{p} \).
 b) Show that \(a \) is congruent to a square modulo \(p \) if and only if \(a^{(p-1)/2} \equiv 1 \pmod{p} \).
 [Hint: What is the structure of the group \(\mathbb{F}_p^\times \)?]

2. If \(R \subset S \) are commutative rings and \(I \subset R \) is an ideal of \(R \), let \(IS \subset S \) be the set of all finite \(S \)-linear combinations of elements of \(I \). Call \(IS \) the extension of \(I \) to \(S \). If \(J \subset S \) is an ideal of \(S \), call \(J \cap R \subset R \) the contraction of \(J \) to \(R \).
 a) Are extensions and contractions always ideals? Are extension and contraction inverse operations?
 b) For which prime ideals of \(\mathbb{Z} \) is the extension to \(\mathbb{Z}[i] \) also prime?
 c) Show that taking contraction induces a surjection from the prime ideals of \(\mathbb{Z}[i] \) to the prime ideals of \(\mathbb{Z} \). Is it injective?
 d) Do your assertions in part (c) hold for an arbitrary extension of integral domains \(R \subset S \)?

3. Let \(\zeta = (-1 + \sqrt{-3})/2 \in \mathbb{C} \) and let \(R = \mathbb{Z}[\zeta] \).
 a) Show that \(\zeta \) is a primitive cube root of unity. Find all other primitive cube roots of unity in \(\mathbb{C} \). Also find the minimal polynomial of \(\zeta \) over \(\mathbb{Q} \).
 b) Show that \(R \) is a subring of \(\mathbb{Q}[\sqrt{-3}] \), and determine which elements \(a + b\sqrt{-3} \in \mathbb{Q}[\sqrt{-3}] \) (for \(a, b \in \mathbb{Q} \)) lie in \(R \).
 c) Show that \(R \) is isomorphic to \(\mathbb{Z}[x]/(x^2 + x + 1) \).
 d) Show that \(R \) is a Euclidean domain. [Hint: Define a norm, and look at a picture of \(R \) in \(\mathbb{C} \).] Is \(R \) a PID? a UFD?

Part C:
From Artin, do these problems (at the end of Chapters 10 and 11):
Section 10.7: 13 (and explicitly describe the case \(R = \mathbb{Z} \) and \(P = (2) \)); 10.8: 8 (and explicitly describe the case \(R = \mathbb{C}[x]/(x^3) \)); 11.5: 8 (and in part (a), show this is also equivalent to there being an element of order 3 in \(\mathbb{F}_p^\times \)).

Also do the following problem:
For each positive integer \(n \), let \(U_n = (\mathbb{Z}/n)^\times \), the group of units modulo \(n \). Find generators of \(U_5 \) and \(U_{25} \), and determine whether there exist generators of \(U_{27} \) and \(U_{21} \). Conjectures? Proofs?