Read Artin, Chapter 13, sections 1-3.

Part A:
From Artin, do these problems (given at the end of Chapter 12): Miscellaneous problems 8, 9.
From Artin, do these problems (given at the end of Chapter 13): Section 13.1: 1, 4; 13.2: 1; 13.3: 1, 2.

Part B:
1. a) If R is a commutative ring, find an isomorphism $R \otimes \mathbb{Z} [\sqrt{2}] \cong R[x]/(x^2 - 2)$.
 b) Determine whether $\mathbb{Z}[\sqrt{3}] \otimes \mathbb{Z} [\sqrt{2}]$ and $\mathbb{Z}[\sqrt{2}] \otimes \mathbb{Z} [\sqrt{2}]$ are integral domains.
 c) Simplify each of the following \mathbb{Z}-modules (up to isomorphism): $\mathbb{Z}/10 \otimes \mathbb{Z} [\sqrt{2}]$, $\mathbb{Z}/10 \otimes \mathbb{Z} [\sqrt{2}] / 6$, $\mathbb{Z}/10 \otimes \mathbb{Q}$, $\mathbb{Q} \otimes \mathbb{Z}$, $\mathbb{Q} \otimes \mathbb{Z} / 3$.

2. Let R be a commutative ring, let $\phi : N_1 \rightarrow N_2$ be a homomorphism of R-modules, and let M be an R-module.
 a) Show that there is an induced homomorphism of R-modules $\phi_* : M \otimes N_1 \rightarrow M \otimes N_2$ defined by $\phi_* (m \otimes n) = m \otimes \phi(n)$.
 b) Show that if ϕ is surjective then so is ϕ_*.
 c) Show that if M is a free R-module (e.g. if R is a field), then if ϕ is injective then so is ϕ_*. But show by example that if M is arbitrary, then it is possible for ϕ to be injective and ϕ_* not to be injective. [Compare PS #9, problem B2.]

3. For each of the following field extensions F of \mathbb{Q}, find the degree of F over \mathbb{Q} and find the group $\text{Aut}(F)$ of automorphisms of F.
 \mathbb{Q}, $\mathbb{Q}[\sqrt{5}]$, $\mathbb{Q}[\zeta_5]$ (where ζ_5 is a primitive fifth root of unity), $\mathbb{Q}[\sqrt{2}]$, $\mathbb{Q}[\sqrt[4]{2}]$

Part C:
From Artin, do these problems (at the end of Chapter 13):
Section 13.1: 2, 3; 13.2: 3.

Also do the following problem:
Let $K = \mathbb{Q}[\sqrt{2}]$ and $L = \mathbb{Q}[\sqrt{2} + \sqrt{2}]$.
 a) Find the multiplicative inverse of $\sqrt{2} + \sqrt{2}$ in L (as a polynomial in $\sqrt{2} + \sqrt{2}$).
 b) Show $K \subset L$. What is $[K : \mathbb{Q}]$? $[L : K]$? $[L : \mathbb{Q}]$?
 c) Let ϕ be an automorphism of L. What can you say about the restriction $\phi|_{\mathbb{Q}}$?
 d) Let ϕ be an automorphism of L. What can you say about the restriction $\phi|_{K}$?
 e) Find an element of order 4 in $\text{Aut}(L)$. What is the group $\text{Aut}(L)$ abstractly?