Read Artin, Chapter 11, sections 4-8.

1. From Artin, Chapter 11, do these problems (pages 354-358):
3.9, 3.12, 3.13, 7.1, 7.3.
2. Which of the following commutative rings are integral domains? Which are fields? $\mathbb{Z} / 21 \mathbb{Z}, \mathbb{R}[x] /\left(x^{2}+2\right), \mathbb{R}[x] /\left(x^{2}-2\right), \mathbb{F}_{2}[x] /\left(x^{2}-1\right), \quad \mathbb{F}_{2}[x] /\left(x^{2}-x-1\right), \quad \mathbb{Z}[x] /(2, x)$, $\mathbb{Z}[x] /(x-2), \quad \mathbb{R}[x, y] /\left(y-x^{2}\right), \mathbb{R}[x, y] /\left(x, y-x^{2}\right), \quad \mathbb{R}[x, y] /\left(y, y-x^{2}\right), \mathbb{R}[x] /\left(x^{4}+1\right)$.
3. Which of the following ideals are maximal in the indicated rings? For those that are not, find a maximal ideal containing the given ideal. Explain your assertions. [Caution: One of these is especially tricky.] $(x-3) \subset \mathbb{Q}[x] ; \quad(x-3) \subset \mathbb{Z}[x] ; \quad\left(x^{2}-3\right) \subset \mathbb{R}[x] ; \quad\left(x^{2}+3\right) \subset \mathbb{R}[x] ; \quad(x-3) \subset \mathbb{C}[x, y] ;$ $\left(x^{2}+1, y-3\right) \subset \mathbb{R}[x, y] ; \quad\left(x^{2}+1, y-3\right) \subset \mathbb{C}[x, y] ; \quad\left(x^{2}+1, y^{2}+1\right) \subset \mathbb{R}[x, y]$.
4. Let R be a commutative ring and $f(x) \in R[x]$ a polynomial of degree $n>0$.
a) Show that if R is an integral domain then $f(x)$ has at most n roots in R. [Hint: Use induction to show that if $a_{1}, \ldots, a_{r} \in R$ are distinct roots of $f(x)$, then the product $\left(x-a_{1}\right) \cdots\left(x-a_{r}\right)$ divides $f(x)$.]
b) Show by example that the same assertion need not hold if R is not an integral domain. [Hint: Try $R=\mathbb{Z} / 8[x]$ and $f(x)=x^{2}-c$ for some $c \in \mathbb{Z} / 8$.] Where does your proof in part (a) break down in this situation?
5. If a, b, c are non-zero elements of a ring R, we say that $a=b c$ is a non-trivial factorization of a if neither b nor c is a unit in R.
a) Which elements of \mathbb{Z} can be factored non-trivially? Which elements of $\mathbb{R}[x]$?
b) Find all the units in the ring $\mathbb{Z}[i]$ of Gaussian integers.
c) Which of the following elements of $\mathbb{Z}[i]$ can be factored non-trivially? For each one that can be, do so explicitly. $2,3,5,7,11,13,15,3 i, 5 i, 2+i, 3+i$
d) Make a conjecture about which Gaussian integers can be factored non-trivially.
