Read Artin, Chapter 11, section 9.

1. From Artin, Chapter 11, do these problems (pages 354-358): 6.2, 6.5, 7.5, 8.2, 8.4, 9.1. (In problem 8.4, the upper half plane is $\{a+b i \mid a, b \in \mathbb{R}, b \geq 0\}$.)
2. In Problem Set 3, problem 4, does the assertion in part (a) still hold if R is a noncommutative ring with no zero-divisors? Either prove that it must still hold, or else give a counterexample and say where your argument for part (a) of that problem breaks down. [Hint: Consider $R=\mathbb{H}$ and the polynomial $x^{2}+1$. If $f(x)=(x-a)(x-b) \in R[x]$ and $c \in R$, must $f(c)=(c-a)(c-b) ?]$
3. Let $f(x, y)=x^{2}+y^{2}+1$.
a) Is the principal ideal $(f) \subset \mathbb{C}[x, y]$ maximal? If not, find a maximal ideal containing it.
b) Do the same with \mathbb{C} replaced by \mathbb{R}.
4. Find the maximal ideals of $\mathbb{Z}[1 / 2]$. Do the same for $\mathbb{C}\left[x, x^{-1}\right]$.
5. Let S be a ring and let $R \subset S$ be a subring. If I is an ideal of S, define its contraction I^{c} to R to be $I \cap R$.
a) Show that I^{c} is an ideal of R.
b) If I is a maximal ideal of S, must I^{c} be a maximal ideal of R ? Do this in the following two cases:
i) $R=\mathbb{C}[x], S=\mathbb{C}[x, y]$.
ii) $R=\mathbb{C}[x], S=\mathbb{C}(x)$.
