In Artin, Chapter 14, review sections 1-4 and read sections 5-7.

1. From Artin, Chapter 14, do these problems (pages 437-441): 1.4, 2.4, 4.1(a) (second matrix only), 5.1, 5.2.
2. Let R be a commutative ring.
a) If M, N are R-modules, let $\operatorname{Hom}_{R}(M, N)$ be the set of R-module homomorphisms $M \rightarrow N$. Show that $\operatorname{Hom}_{R}(M, N)$ is an R-module.
b) Show that if M and N are free R-modules of rank m and n respectively, then $\operatorname{Hom}_{R}(M, N)$ is free R-module of rank $m n$. [Hint: Use matrices.]

3 . Let R be a commutative ring.
a) Show that if $\phi: N_{1} \rightarrow N_{2}$ is a homomorphism of R-modules, and if M is an R module, then there is a homomorphism of R-modules $\phi_{*}: \operatorname{Hom}_{R}\left(M, N_{1}\right) \rightarrow \operatorname{Hom}_{R}\left(M, N_{2}\right)$ defined by $\phi_{*}(f)=\phi \circ f$.
b) Show that if $\psi: M_{1} \rightarrow M_{2}$ is a homomorphism of R-modules, and if N is an R module, then there is a homomorphism of R-modules $\psi^{*}: \operatorname{Hom}_{R}\left(M_{2}, N\right) \rightarrow \operatorname{Hom}_{R}\left(M_{1}, N\right)$ defined by $\psi^{*}(g)=g \circ \psi$.
4. Let R be a commutative ring.
a) Show that if M is an R-module, then $\operatorname{Hom}_{R}(R, M)$ is isomorphic to M as an R-module. [Hint: Send f to $f(1)$.]
b) If M is an R-module, define its dual module by $M^{*}=\operatorname{Hom}_{R}(M, R)$. If $R=\mathbb{Z}$, find M^{*} in each of these cases: $M=\mathbb{Z}, \mathbb{Z} \times \mathbb{Z}, \mathbb{Z} / 3, \mathbb{Q}$. Also, explain the relationship of dual modules to dual vector spaces.
c) Evaluate $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / 4, \mathbb{Z} / n)$ in each of these cases: $n=2,3,4$.
5. Consider the ideal $I \subset \mathbb{C}[x, y]$ generated by the set $\left\{y-x, y-x^{2}, y-x^{3}, \ldots\right\}$. Is I finitely generated? If so, find an explicit finite generating set. Also find the zero locus of I in \mathbb{C}^{2}.

