In Artin, Chapter 14, read sections 6-9.

1. From Artin, Chapter 14, do these problems (pages 437-441): 6.1, 7.1, 7.2, 7.5, 8.1.
2. Which of the following R-modules are finitely generated? Which are free?
a) $R=\mathbb{Z}[\sqrt{-5}], M=(2,1+\sqrt{-5}) \subset R$
b) $R=\mathbb{R}[x], M=\mathbb{R}[x, y]$
c) $R=\mathbb{R}[x], M=\mathbb{R}[x, y] /\left(y^{2}-x\right)$
d) $R=\mathbb{R}[x, y], M=(x, y) \subset R$
e) $R=\mathbb{R}[x], M=\mathbb{R}[x, 1 / x]$.
3. Determine which of the following rings are Noetherian:
the ring of integers of $K=\mathbb{Q}[\sqrt{d}]$ where d is a square-free integer; $\mathbb{Z}[i, x, y] /\left(x^{2}+i y^{3}\right)$; $\mathbb{Z}[\sqrt{2}, \sqrt[3]{2}, \sqrt[4]{2}, \ldots] ; \mathbb{Z}[1 / 2] ; \mathbb{Z}[1 / 2,1 / 3,1 / 4, \ldots]$.
4. Let G be a group. For any positive integer n, let G_{n} consist of the elements of G whose order divides n. Let $G_{\text {tor }}$ be the union of all the sets G_{n}. (So the elements of $G_{\text {tor }}$ are the elements of G having finite order; these are also called "torsion elements.")
a) Show that if G is abelian, then G_{n} and $G_{\text {tor }}$ are subgroups of G.
b) Show by example that if G is non-abelian then these subsets need not be subgroups of G. [Hint: For $G_{\text {tor }}$, consider the infinite dihedral group.]
5. a) Let $G=\prod_{i=1}^{s} \mathbb{Z} / d_{i}$. In the notation of problem 4 , show that G_{n} is isomorphic to $\prod_{i=1}^{s} \mathbb{Z} /\left(n, d_{i}\right)$, where $\left(n, d_{i}\right)$ is the greatest common divisor of n and d_{i}.
b) Prove the uniqueness part of the fundamental theorem of finite abelian groups in the following form: If $\prod_{i=1}^{s} \mathbb{Z} / d_{i}$ is isomorphic to $\prod_{i=1}^{s^{\prime}} \mathbb{Z} / d_{i}^{\prime}$, where $d_{1}\left|d_{2}\right| \cdots \mid d_{s}$ and $d_{1}^{\prime}\left|d_{2}^{\prime}\right| \cdots \mid d_{s^{\prime}}^{\prime}$, and where $d_{i}, d_{i}^{\prime} \geq 2$, then $s=s^{\prime}$ and $d_{i}=d_{i}^{\prime}$ for all i. [Hint: Use part (a) for suitable choices of n.]
