In Artin, Chapter 15, read sections 1-4.

1. From Artin, Chapter 15, do these problems (pages 472-476): 1.1, 2.1, 3.1, 3.3, 4.2(a).
2. Consider the situation of Problem Set $\# 9$, problem 3.
a) Show that if $\phi$ is injective then so is $\phi_{*}$. Also show that if $\psi$ is surjective then $\psi^{*}$ is injective.
b) Suppose that $R$ is a field. Show that if $\phi$ is surjective then so is $\phi_{*}$. Also show that if $\psi$ is injective then $\psi^{*}$ is surjective.
c) Show by example that the conclusion of part (b) does not necessarily hold for modules over an arbitrary commutative ring $R$. [Hint: Take $R=\mathbb{Z}$, let one of the modules be $\mathbb{Z} / 2$, and let one of the maps be multiplication by 2.]
3. For each of the following field extensions $F$ of $\mathbb{Q}$, find the degree of $F$ over $\mathbb{Q}$ and find the group $\operatorname{Aut}(F)$ of automorphisms of the field $F$. $\mathbb{Q}, \mathbb{Q}[\sqrt{5}], \mathbb{Q}\left[\zeta_{5}\right]$ (where $\zeta_{5}$ is a primitive fifth root of unity), $\mathbb{Q}[\sqrt[4]{2}], \mathbb{Q}[\sqrt[5]{2}]$.
4. Let $K=\mathbb{Q}[\sqrt{2}]$ and $L=\mathbb{Q}[\sqrt{2+\sqrt{2}}]$.
a) Find the multiplicative inverse of $\sqrt{2+\sqrt{2}}$ in $L$ (as a polynomial in $\sqrt{2+\sqrt{2}}$ ).
b) Show $K \subset L$. What is $[K: \mathbb{Q}]$ ? $[L: K]$ ? $[L: \mathbb{Q}]$ ?
c) Let $\phi$ be an automorphism of $L$. What can you say about the restriction $\phi \mid \mathbb{Q}$ ?
d) Let $\phi$ be an automorphism of $L$. What can you say about the restriction $\left.\phi\right|_{K}$ ?
e) Find an element of order 4 in $\operatorname{Aut}(L)$. What is the group $\operatorname{Aut}(L)$ abstractly?
5. a) Prove that if a rational number $\alpha=a / b$ (in lowest terms) is a root of a polynomial $c_{n} x^{n}+\cdots+c_{1} x+c_{0} \in \mathbb{Z}[x]$ of degree $n>0$, then $a \mid c_{0}$ and $b \mid c_{n}$.
b) Find all positive integers $r, s$ such that the polynomial $x^{3}+r x^{2}+s x+1$ is irreducible in $\mathbb{Q}[x]$. [Hint: Use part (a).]
