In Artin, Chapter 15, read sections 5-8 (optional: 9-10).

1. From Artin, Chapter 15, do these problems (pages 472-476): 5.3, 5.4, 6.3, 7.3, 7.7. [Note: In $6.3, n>2$. As a hint, use that $\mathbb{Q}\left(\zeta_{p}\right) \subseteq \mathbb{Q}\left(\zeta_{n}\right)$ if $p \mid n$. Also use problem 3 below.]
2. a) Given a point P in the plane and a circle C with center P, show that for every positive integer n one can construct (with straightedge and compass) a circle whose circumference is n times that of C, and a circle whose area is n times that of C.
b) What happens in instead one is given a point P in 3 -space and a sphere S with center P, and one wants to find spheres whose surface area or volume is n times that of S ? [Note: For a sphere of radius r, the surface area is $4 \pi r^{2}$ and the volume is $\frac{4}{3} \pi r^{3}$.]
3. a) Show that if K is a field whose characteristic is not 2 , and if $L=K[\sqrt{a}]$ and $L^{\prime}=K[\sqrt{b}]$ are two field extensions of K of degree 2 , then L and L^{\prime} are isomorphic as field extensions of K if and only if there exists $c \in K$ such that $b=a c^{2}$.
b) Show that this fails in characteristic 2. [Hint: Take $K=\mathbb{F}_{2}(t)$.]
4. Let p be a prime number, and let r, s be positive integers. Show that r divides s if and only if $p^{r}-1$ divides $p^{s}-1$.
5. a) Find the degree of $\alpha=\sqrt{3}+\sqrt{5}$ over \mathbb{Q}, and also find its minimal polynomial.
b) Determine whether $\mathbb{Q}(\alpha)=\mathbb{Q}(\sqrt{3}, \sqrt{5})$.
c) Repeat part (a) for $\beta=\sqrt[4]{2}$.
d) For each of the fields $\mathbb{Q}(\sqrt{3}, \sqrt{5})$ and $\mathbb{Q}(\beta)$, compare the degree of the field over \mathbb{Q} with the order of the group of automorphisms of the field.
