In Artin, Chapter 16, read sections 1-7.

1. From Artin, Chapter 15, do problem 8.2 (pages 472-476). From Artin, Chapter 16, do these problems (pages 505-512): 3.1, 3.2, 4.1(b), 5.1(b,c), 6.2, 7.3.
2. Let p be a prime number and let $E=\mathbb{Q}\left[\zeta_{p}\right]$, where ζ_{p} is a primitive p th root of unity. Let $F=\mathbb{Q}$.
a) Find the degree and the Galois group G of the field extension $F \subset E$.
b) Determine if the extension is separable and normal.
c) Find the fixed field of G in E.
d) Is the extension Galois?
3. Let $L=\mathbb{Q}[\sqrt{2+\sqrt{2}}]$.
a) Show that L is Galois over \mathbb{Q}, and that its Galois group is cyclic of order 4. [Hint: PS 11, \#4.]
b) Show that L is not the splitting field over \mathbb{Q} of a polynomial $x^{4}-a$ for some $a \in \mathbb{Q}$.
c) What happens to part (a) if we instead consider the field $\mathbb{Q}[\sqrt{3+\sqrt{3}}]$?
4. Let $K=\mathbb{C}(x)$ and $L=K[\sqrt[6]{x}]$. Show that L is Galois over K, find the Galois group, find all intermediate fields M (i.e. fields with $K \subset M \subset L$), and find all the Galois groups $\operatorname{Gal}(L / M)$ and $\operatorname{Gal}(M / K)$ for these fields M. Verify in this example that M is Galois over K if and only if $\operatorname{Gal}(L / M)$ is a normal subgroup of $\operatorname{Gal}(L / K)$, and that $\operatorname{Gal}(M / K)$ is then the quotient of these two groups.
5. Redo problem 4 above for the fields $K=\mathbb{Q}$ and $L=K\left[\zeta_{3}, \sqrt[3]{2}\right]$, where ζ_{3} is a primitive cube root of unity.
