In Artin, Chapter 16, read sections 1-7.

1. From Artin, Chapter 15, do problem 8.2 (pages 472-476). From Artin, Chapter 16, do these problems (pages 505-512): 3.1, 3.2, 4.1(b), 5.1(b,c), 6.2, 7.3.

2. Let p be a prime number and let $E = \mathbb{Q}[\zeta_p]$, where ζ_p is a primitive pth root of unity. Let $F = \mathbb{Q}$.

a) Find the degree and the Galois group G of the field extension $F \subset E$.

b) Determine if the extension is separable and normal.

- c) Find the fixed field of G in E.
- d) Is the extension Galois?

3. Let $L = \mathbb{Q}[\sqrt{2 + \sqrt{2}}].$

a) Show that L is Galois over \mathbb{Q} , and that its Galois group is cyclic of order 4. [Hint: PS 11, #4.]

- b) Show that L is not the splitting field over \mathbb{Q} of a polynomial $x^4 a$ for some $a \in \mathbb{Q}$.
- c) What happens to part (a) if we instead consider the field $\mathbb{Q}[\sqrt{3+\sqrt{3}}]$?

4. Let $K = \mathbb{C}(x)$ and $L = K[\sqrt[6]{x}]$. Show that L is Galois over K, find the Galois group, find all intermediate fields M (i.e. fields with $K \subset M \subset L$), and find all the Galois groups $\operatorname{Gal}(L/M)$ and $\operatorname{Gal}(M/K)$ for these fields M. Verify in this example that M is Galois over K if and only if $\operatorname{Gal}(L/M)$ is a normal subgroup of $\operatorname{Gal}(L/K)$, and that $\operatorname{Gal}(M/K)$ is then the quotient of these two groups.

5. Redo problem 4 above for the fields $K = \mathbb{Q}$ and $L = K[\zeta_3, \sqrt[3]{2}]$, where ζ_3 is a primitive cube root of unity.