1. Let \(n > 2 \). Show that if the dihedral group \(D_n \) of order \(2n \) is isomorphic to a semi-direct product \(C_r \rtimes C_s \), then \(r = n \) and \(s = 2 \).

2. Show that \(A_4 \) is isomorphic to a semi-direct product \(C_2^2 \rtimes C_3 \).

3. Which of the following groups are isomorphic: \(C_2 \wr C_2 \), \(Q_8 \), \(D_4 \), \(C_2^3 \)?

4. Find all groups of order 66, up to isomorphism. Which are simple? solvable? nilpotent? abelian? cyclic? Which are split extensions (of a non-trivial quotient by a non-trivial subgroup)?

5. a) Show directly that every group of order 56 is solvable. [Hint: How many elements have order 7?]

 b) Consider the finite groups whose order is 56 and whose exponent is 14. For each such group, let \(N_p \) be the number of Sylow \(p \)-subgroups, for \(p = 2, 7 \).

 (i) Do there exist such groups with \(N_2 = N_7 = 1 \)?

 (ii) Do there exist such groups with \(N_7 = 1 \) and \(N_2 > 1 \)?

 (iii) Do there exist such groups with \(N_2 = 1 \) and \(N_7 > 1 \)?

 (iv) Do there exist such groups with \(N_2 > 1 \) and \(N_7 > 1 \)?

6. Find two extensions \(G \) of a fixed finite group \(B \) by a fixed finite abelian group \(A \) such that the two groups \(B \) are isomorphic as groups, but such that the two extensions \(1 \to A \to G \to B \to 1 \) are not isomorphic as extensions of \(B \) by \(A \). [Hint: Try \(A = C_3^2 \) and \(B = C_2 \).]

7. Show that there is a unique action of \(C_2 \) on \(C_2 \). With respect to that action, directly compute the groups \(C^2(C_2, C_2) \), \(Z^2(C_2, C_2) \), \(B^2(C_2, C_2) \), \(H^2(C_2, C_2) \). In the case of \(H^2 \), interpret each element in terms of an extension of \(C_2 \) by \(C_2 \).

8. Let \(0 \to A \xrightarrow{i} G \xrightarrow{\pi} B \to 1 \) be a short exact sequence of finite groups, with \(A \) abelian (written additively). For each \(b \in B \) pick some \(g_b \in G \) such that \(\pi(g_b) = b \). Define an action \(\alpha \) of \(B \) on \(A \) by \(b \cdot a = g_b \alpha g_b^{-1} \). For \(b_1, b_2 \in B \), define \(f(b_1, b_2) \in A \) by \(g_{b_1} g_{b_2} = f(b_1, b_2) g_{b_1 b_2} \).

 a) Show that \(f \in Z^2_\alpha(B, A) \); i.e. that \(f(b_1, b_2) + f(b_1 b_2, b_3) = b_1 \cdot f(b_2, b_3) + f(b_1, b_2 b_3) \).

 [Hint: Evaluate \(g_{b_1} g_{b_2} g_{b_3} \) in two ways.]

 b) Show that \((a_1 g_{b_1}) (a_2 g_{b_2}) = (a_1 + b_1 \cdot a_2 + f(b_1, b_2)) g_{b_1 b_2} \in G \) for \(a_1, a_2 \in A \) and \(b_1, b_2 \in B \), giving the multiplication law in \(G \).

 c) Suppose that for each \(b \in B \) we have another choice \(g'_b \in G \) of an element in \(G \) with \(\pi(g'_b) = b \), and let \(f' \) be the analogous element of \(Z^2_\alpha(B, A) \). For each \(b \in B \) define \(e(b) \in A \) by \(g'_b = e(b) g_b \). Show that \(f'(b_1, b_2) - f(b_1, b_2) = e(b_1) + b_1 \cdot e(b_2) - e(b_1 b_2) \); i.e. \(f, f' \) differ by an element of \(B^2_\alpha(B, A) \). [Hint: Evaluate \(g'_{b_1} g'_{b_2} \) in two ways.]