1. Define the **center** of a group G to be $Z = \{ g \in G \mid (\forall h \in G) gh = hg \}$.
 a) Is Z a subgroup? Is it normal?
 b) Find the center of $C_n, D_n, S_n, A_n, Q, Z, GL_2(\mathbb{R})$.

2. If H is a subgroup of G, define the **normalizer** of H by $N(H) = \{ a \in G \mid aHa^{-1} = H \}$. Is $N(H)$ a subgroup of G? Is H a subgroup of $N(H)$? Is $H \triangleleft N(H)$? Is $N(H) \triangleleft G$?

3. a) If H is a subgroup of G and $H \neq G$, we say that H is a **maximal** subgroup if the only subgroups containing H are itself and G. Show that if H is maximal then so is aHa^{-1}, for any $a \in G$.
 b) Define the **Frattini** subgroup Φ of G to be the intersection of the maximal subgroups of G. Show that $\Phi \triangleleft G$.
 c) Find the Frattini subgroup Φ of $D_4, C_4, \text{ and } Q$. In each case, find G/Φ. Conjecture?

4. a) If $x \in G$, define its **centralizer** $Z(x) = \{ g \in G \mid xg = gx \}$. Show that $Z(x)$ is a subgroup of G, and that its index $(G : Z(x))$ equals the number of elements in the conjugacy class $\{gxg^{-1} \mid g \in G \}$ of x.
 b) Consider the conjugacy classes in G that have more than one element. Choose one element from each such class, and gather them together as a set S. Show that $|G| = |Z| + \sum_{x \in S} (G : Z(x))$, where Z is the center of G.

5. Let H and K be subgroups of G. If $k \in K$, call the subgroup kHk^{-1} a **K-conjugate** of H. Show that the number of K-conjugates of H is $(K : K \cap N(H))$, where $N(H)$ is the normalizer of H.

6. Define the **commutator** subgroup G' of G to be the subgroup of G generated by the set $C := \{ aba^{-1}b^{-1} \mid a, b \in G \}$.
 a) Show $G' \triangleleft G$.
 b) Show that G/G' is abelian.
 c) Find G' and G/G' if $G = Z, D_4, S_3, C_2 \times C_3$.
 * d) Is it always the case that $G' = C$ for an arbitrary group? for a finite group?

7. a) Show that $\text{Inn } G \triangleleft \text{Aut } G$.
 b) Find $\text{Inn } G$ and $\text{Aut } G$ for $G = S_n, n \leq 4$. Conjecture?

8. Prove or disprove: A group is abelian if and only if every subgroup is normal.