Part I:
Read Fulton, Chapter 6, sections 4-6.
Do problems:
5.38 on pp.127;
6.27, 6.29, 6.30 on pp.147-148;

Part II:
Read Hartshorne, Chapter II, sections 6-8. (Section 9 is optional.)
1. In Chapter II, do problems 6.6, 7.1.
(Additional study problems: 6.2, 6.4, 6.10, 7.6, 7.7, 7.13, 8.2, 8.3.)
2. a) Show that the quartic (degree 4) curves in \mathbb{P}^2 form a complete linear system, and find its dimension d. (Here “curve” means the scheme defined by the ideal of a homogeneous polynomial, and degenerate curves are permitted.)
 b) Let P be a closed point of \mathbb{P}^2, and consider the curves in the linear system in (a) that pass through P. Show that they form a linear system, and find its dimension. Is this a complete linear system?
 c) Redo part (b) with P replaced by two distinct points P, Q in \mathbb{P}^2 (i.e. curves passing through both points).
 d) Does the obvious pattern of dimensions, suggested by your answers to parts (a)-(c), continue indefinitely if more and more points are chosen?
3. Let k be an algebraically closed field, and let X be a smooth connected projective curve that is not isomorphic to \mathbb{P}_k^1. Let K be the function field of X. Let $f \in K - k$.
 a) Show that f defines a non-constant rational map from X to \mathbb{P}^1, and that this extends to a morphism $X \to \mathbb{P}^1$.
 b) Deduce that the divisor $(f)_\infty$ has degree > 1. [Hint: What is the degree of the morphism in (a)?]
 c) Deduce that if P is a closed point of X, then there is no rational function on X having a pole of order 1 at P and having no other poles.
 d) Conclude that if $P, Q \in X$ are distinct closed points, then viewed as divisors, P and Q are not linearly equivalent.
 e) Evaluate the dimensions of the k-vector spaces $\Gamma(X, O)$ and $\Gamma(X, O(P))$, where P is a closed point of X.
 f) Do your answers to parts (a)-(e) change if we instead take $X = \mathbb{P}^1$?
4. a) Show directly, by considering differential forms, that $\Omega^1_X \approx O(-2)$ if $X = \mathbb{P}^1$.
 b) Show directly, by considering differential forms, that $\Omega^1_X \approx O$, if $X \subset \mathbb{P}^2$ is the cubic curve given by $y^2z = x^3 - xz^2$.
 c) Verify Riemann-Roch directly for $X = \mathbb{P}^1$. That is, show that for any divisor D,
 $$\dim \Gamma(X, O(D)) - \dim \Gamma(X, \Omega^1_X \otimes O(-D)) = \deg D + 1 - g,$$
 where $g = \text{genus}(\mathbb{P}^1) = 0$. [Hint: $D \sim nP$ for some $n \in \mathbb{Z}$ and any point P on \mathbb{P}^1.]